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Abstract: Environmental perception and information processing are two key steps of active safety for
vehicle reversing. Single-sensor environmental perception cannot meet the need for vehicle reversing
safety due to its low reliability. In this paper, we present a novel multi-sensor environmental
perception method using low-rank representation and a particle filter for vehicle reversing safety.
The proposed system consists of four main steps, namely multi-sensor environmental perception,
information fusion, target recognition and tracking using low-rank representation and a particle
filter, and vehicle reversing speed control modules. First of all, the multi-sensor environmental
perception module, based on a binocular-camera system and ultrasonic range finders, obtains the
distance data for obstacles behind the vehicle when the vehicle is reversing. Secondly, the information
fusion algorithm using an adaptive Kalman filter is used to process the data obtained with the
multi-sensor environmental perception module, which greatly improves the robustness of the sensors.
Then the framework of a particle filter and low-rank representation is used to track the main obstacles.
The low-rank representation is used to optimize an objective particle template that has the smallest L-1
norm. Finally, the electronic throttle opening and automatic braking is under control of the proposed
vehicle reversing control strategy prior to any potential collisions, making the reversing control safer
and more reliable. The final system simulation and practical testing results demonstrate the validity
of the proposed multi-sensor environmental perception method using low-rank representation and
a particle filter for vehicle reversing safety.

Keywords: multi-sensors; information fusion; adaptive Kalman filter; particle filter; low-rank
representation; vehicle reversing control

1. Introduction

Vehicles have long been widely utilized around the world. To reduce the probability and rate
of traffic accidents is always the focus of research [1–4]. The growing number of reversing traffic
accidents has become a serious social safety problem in recent years. Collision, especially reversing
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collision due to careless or violent driving, is one of the major causes of traffic accidents [5,6]. Drivers’
abnormal behavior and some minor mistakes may result in a great deal of accidents when the vehicle
reverses. In 2012, the National Highway Traffic Safety Administration (NHTSA) reported that about
8% of traffic accidents were caused by driving in reverse [7]. In Finland, analysis of data indicated
that reversing accidents contributed to approximately 24% of motor vehicle crashes and most of the
reversing accidents (70%) took place in parking lots [8]. Statistics also show that reversing accidents
are 1.2 times more likely to occur with middle-aged drivers than with young drivers. The main reason
for the increase of reversing accidents might be that the rear view is a blind and restricted area [8,9].
Also, in another study of the NHTSA [10], 99% of reversing accidents were due to drivers’ behavior
and about 80% of all driving mishaps are due to drivers’ inattention when reversing. The reversing
accidents reflect problems in vehicle maneuvering and drivers’ observations. In reversing traffic safety,
an obstacle detection and avoidance system plays an important role in preventing reversing collisions.
The earlier an obstacle in the rear area is detected or the better the restricted rear area is viewed, the
more chances there are to protect passengers.

To avoid these reversing accidents and to reduce losses through reversing accidents, several
emerging technologies were rapidly developed [11]. Sensors installed at the rear of a vehicle can
effectively help watch for potential reverse collisions. Vehicle reversing safety using multi-sensors and
pre-collision technology have been extensively developed and implemented. We mainly devote this
paper to multi-sensors and key information processing in efforts to enhance safety while reversing.

1.1. Multi-Sensor Environmental Perception for Vehicle Reversing

Pre-collision detection using multi-sensor technology, both moving object detection [1] and the
vehicle parking assistant [9,12–14], is an important part of a reversing vehicle’s active safety system.
The systems use multiple sensors, such as RADAR, LIDAR, or GPS technology and a camera, to
perceive the current traffic situation for vehicle collision detection and reversing safety [11]. Another
example of multiple sensors, including motion sensors (accelerometer, gyroscope, and magnetometer),
wireless signal strength indicators (WiFi, Bluetooth, and Zigbee), and visual sensors (LIDAR and
camera), is used in a hidden Markov model (HMM) framework for mobile-device user-positioning [15].
A new integrated vehicle health maintenance system (IVHMS) [16], equipped with gear sensors, engine
sensors, and fuel and electrical sensors, is reported. The different kinds of sensors mentioned in the
above three papers perceive different information and so provide the whole state of the system. Some
information, for example-images of a target and the distance between two objects, can be obtained by
different sensors. As described in [17], the authors presented multi-sensors of eight thermal infrared
and panchromatic images to gain better results than an individual sensor. All of the endeavors of
the researchers aim to improve the performance of environmental perception. The authors of [18]
described a probabilistic analysis of dynamic scenes and collision risk assessment to improve driving
safety by means of sensor data (LIDAR-based sensors). Among the multiple sensors, stereo vision
stands out because it is not limited to plane vision and gives precise measurements. Stereo vision can
combine the views from between the left and right cameras to obtain a 3D visual of an object [19].
Owing to these features, stereo vision can be used to detect object distance and track obstacles and
potential collisions for a reversing or parking vehicle [11,13,20,21].

According to [15], multiple sensors might offer erroneous or inconsistent information. So, in
order to gain the ability to identify and eliminate spurious data with high accuracy, information from
multiple sensors must be processed properly [22]. However, since the different sensors are used to
measure different physical phenomena, it is not easy to effectively fuse the information to have a better
result. One of the major problems in multi-sensor information fusion is that the sensors frequently
provide spurious observations that are useless to predicting and modeling. Thus many researchers
have attempted to settle this problem by developing fusion systems and a fusion framework [23] based
on the information obtained from multi-sensors. In [24], the authors presented a unified sensor fusion
strategy based on a modified Bayesian approach that can automatically identify the inconsistency in
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sensor measurements. Other authors presented a sensor-fusion module with integrated vision, Global
Positioning Systems (GPSs), and Geographical Information Systems (GIS) [23]. GPS and GIS provide
prior knowledge about the road for the vision module. Except for positioning systems, information
fusion can be used in different fields. A human detection system that can be employed on board
for autonomous surveillance was proposed in [25] based on the fusion of two sensor modules, one
for a laser and another for visual data. A consensus-like distributed fusion scheme [26] is presented
for multiple stationary ground targets by a group of unmanned aerial vehicles with limited sensing
and communication capabilities. Some more popular methods for multi-sensor fusion are explored
extensively in the literature, including fuzzy logic [27], neural network [28], genetic algorithm [29],
and Bayesian information fusion [30].

1.2. Target Recognition and Tracking of Vehicle Safety

Target recognition and tracking plays an irreplaceable role in vehicle reversing safety.
The fundamental problem is how to recognize and track the target in a changing environment while
the driver is reversing.

In the process of target recognition and tracking, overcoming contradictions among the target
tracking rapidity, precision, and robustness [31] is always the focus. For real-time target tracking
using MAVs, paper [32] concentrates on the development of a vision-based navigation system. It is
proven to be a realistic and cost-effective solution. On the other hand, some authors presented a robust
feature matching-based solution to real-time target recognition and tracking [33] under large-scale
variation using affordable memory consumption. The results show that the method preforms
well. Other researchers were devoted to designing an experimental setup to have human-robot
interaction [34] in a surveillance robot. This is helpful in dangerous or emergent situations, such as
earthquake and fire, for tracking the targeted person in a robust manner indoors and outdoors under
different light and dynamic conditions.

Moving object detection by a backup camera mounted on a vehicle was proposed in [1].
The authors presented a procedure using traditional moving object detection methods for relaxing
the stationary camera’s restriction, by introducing additional steps before and after the detection.
The target application was to use a road vehicle’s rear-view camera systems. Unlike the algorithm in
paper [1], the authors in [35] used the frame difference method to recognize a regular moving target
and the Camshift algorithm to track a significant moving target. In fact, in the application of target
recognition and tracking of a vehicle, there is more than one target that needs to be recognized and
tracked. This increases the work burden of the system. In [36], a multi-target tracking algorithm aided
by high-resolution range profile (HRRP) was proposed. The problem of multi-target data association
was simplified to multiple sub-problems of data association for a single target. Similarly, a preceding
vehicle detection and tracking adaptive to illumination variation in night traffic scenes was presented
based on relevance analysis in the literature [4]. The test results indicate that the proposed system
could detect vehicles quickly, correctly, and robustly in actual traffic conditions with illumination
variation, which was helpful for vehicle safety. A performance evaluation of vehicle safety strategies
for reversing speed was proposed [5]. In [9], a vision-based top-view transformation model for
a vehicle parking assistant was presented. A novel searching algorithm estimates the parameters that
are used to transform the coordinates from the source image. Using that approach, it is not necessary
to provide any interior and exterior orientation parameters of the camera for a parking assistant.
Visual sensor-based road detection for field robot navigation was proposed in [18]. The authors
presented a hierarchical visual sensor-based method for robust road detection in challenging road
scenes. The experimental results show that the proposed method exhibits high robustness. The vision
system of a surface moving platform is an important piece of equipment for avoidance, target tracking,
and recognition. Paper [37] mainly discussed the feature extraction and recognition methods of
multiple targets. In this paper, a goal down image detection adaptive sparse representation and
tracking method based on image is proposed. The results show that recognition can achieve over than
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90% which means it has a good performance. In [38], the authors presented a stereo vision-based
vehicle detection system on the road using a disparity histogram. Their system can be viewed as three
main parts: obstacle detection, obstacle segmentation, and vehicle detection, with a 95.5% average
detection rate.

Based on sparse expression, researchers built a new adaptive sparse expression [39] theory system,
improved the robustness of the image recognition, and promoted target tracking technology innovation.
This system has wide application potential. Some robust visual tracking and vehicle classifications
have been proposed in [40–43].

1.3. Reversing Speed Control for Vehicle Safety

In [44], model predictive control (MPC) was used to compute the spacing-control laws for
transitional maneuvers of vehicles. Drivers may adapt to the automatic braking control feature
available on adaptive cruise control (ACC) in ways unintended by designers [45]. In [46],
an autonomous reverse parking system was presented based on robust path generation and improved
sliding mode control for vehicle reversing safety. Their system consists of four key parts: a novel
path-planning module; a modified sliding mode controller on the steering wheel; image processing and
real-time estimation of the vehicle’s position; and a robust overall control scheme. The authors of [14]
presented a novel vehicle speed control method based on driver vigilance detection using EEG and
sparse representation. The scheme mentioned in this paper has been implemented and successfully
used to reverse the vehicle. In [47], a Bayesian network is used to detect human action to reduce
reversing traffic accidents. The authors used Lidar and wheel speed sensors to detect environmental
situations. In [48], a robust trajectory tracking for a reversing tractor trailer system was proposed.
They treat the vehicle reversing speed control by virtue of neural network [49], fuzzy control [50], and
human–automation interaction [18,51].

Despite successful utilization of the existing approaches and systems, a variety of factors in vehicle
reversing safety systems still challenge researchers. Many studies have been conducted on reversing
safety systems, focusing on three main problems: (1) how to find smaller size, higher reliability,
and lower cost multi-sensors that are suitable to environmental perception; (2) how to realize target
recognition and tracking based on information fusion for different physical phenomena measured by
the multi-sensors; (3) how to realize the vehicle reversing speed control strategy based on multi-sensor
environmental perception and object tracking for preventing collisions in realistic conditions?

In this paper, we introduce a multi-sensor environmental perception method using low-rank
representation and a particle filter for vehicle reversing safety. A multi-sensor environmental perception
module based on a binocular-camera system and ultrasonic range finders is used to acquire the distance
of an obstacle behind the vehicle. The information fusion algorithm using adaptive Kalman filter is
employed to process the data obtained by the binocular vision and ultrasonic sensors. The framework
of particle filter and low-rank representation is used to track the main obstacles. After obstacle
detection and tracking, the vehicle reversing control strategy takes steps to avoid reversing collisions.

The rest of the paper is organized as follows. In Section 2, we present the general system
architecture of our proposed system. Section 3 focuses on multi-sensor environmental perception for
vehicle reversing. Target recognition and tracking are developed in Section 4, and vehicle reversing
speed control strategies are described in Section 5. Section 6 is devoted to the system simulation and
validation. Finally, some conclusions are provided in Section 7.

2. System Architecture

The general architecture of our system, as shown in Figure 1, is made up of multi-sensor
environmental perception, target recognition and object tracking, and vehicle reversing speed
control strategy.
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In the first step, when a vehicle is reversing, the Electronic Control Unit (ECU) receives the 
reversing information behind the vehicle and automatically operates the multi-sensors’ 
environmental perception module to acquire rear-view information. Then the binocular cameras and 
two ultrasonic range finders capture information about the complex reversing environment. After 
obtaining the images, we can get the obstacle’s distance information using disparity computation 
and triangulation. At the same time, two ultrasonic sensors are applied for rear collision 
intervention, which inform drivers of distance feedback for obstacles behind the vehicle. The left 
block of Figure 1 shows the binocular cameras and two ultrasonic sensors. 

The second step includes the information fusion algorithm based on multi-sensors for obstacles 
detection, and target tracking using particle filter and low-rank representation. As shown in the 
middle blocks of Figures 1 and 2, an adaptive Kalman filter is used to process the data by binocular 
vision and ultrasonic sensors. The result of multi-sensor information fusion is very important for a 
vehicle to keep a safe distance from obstacles. A novel framework of a particle filter based on 
low-rank representation is used to track the main obstacles for vehicle reversing, as shown in the 
middle block of Figure 1. In this paper, we introduce a low-rank matrix in the particle filter to choose 
an optimal objective particle template with the smallest L-1 norm. As shown in Figure 3, combining 
low-rank representation in a target particle, we eventually choose the particle that has the smallest 
difference compared with target templates in the candidates set. The proposed novel obstacle 
tracking algorithm can successfully track the obstacle when the vehicle is reversing. 
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Figure 1. Flowchart of the proposed system.

In the first step, when a vehicle is reversing, the Electronic Control Unit (ECU) receives the
reversing information behind the vehicle and automatically operates the multi-sensors’ environmental
perception module to acquire rear-view information. Then the binocular cameras and two ultrasonic
range finders capture information about the complex reversing environment. After obtaining the
images, we can get the obstacle’s distance information using disparity computation and triangulation.
At the same time, two ultrasonic sensors are applied for rear collision intervention, which inform
drivers of distance feedback for obstacles behind the vehicle. The left block of Figure 1 shows the
binocular cameras and two ultrasonic sensors.

The second step includes the information fusion algorithm based on multi-sensors for obstacles
detection, and target tracking using particle filter and low-rank representation. As shown in the middle
blocks of Figures 1 and 2, an adaptive Kalman filter is used to process the data by binocular vision
and ultrasonic sensors. The result of multi-sensor information fusion is very important for a vehicle
to keep a safe distance from obstacles. A novel framework of a particle filter based on low-rank
representation is used to track the main obstacles for vehicle reversing, as shown in the middle block
of Figure 1. In this paper, we introduce a low-rank matrix in the particle filter to choose an optimal
objective particle template with the smallest L-1 norm. As shown in Figure 3, combining low-rank
representation in a target particle, we eventually choose the particle that has the smallest difference
compared with target templates in the candidates set. The proposed novel obstacle tracking algorithm
can successfully track the obstacle when the vehicle is reversing.
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3. Multi-Sensor Environmental Perception 

In this section, two types of sensors, ultrasonic range finders and binocular cameras, are used to 
perceive the environment around a vehicle. As shown in Figure 4, the proposed multiple sensors are 
used in our research. Two ultrasonic range finders measure the distance from obstacles, and the 
binocular cameras are used to capture vision and distance information about the obstacles. We 
integrate the two sensors on a board as a vehicle reversing multi-sensor in Figure 4. The images from 
the binocular cameras are shown in Figure 5. 
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Figure 3. A novel target tracking algorithm in our proposed approach.

The final step is the vehicle reversing speed control strategy, also shown in the right block of
Figure 1. After target recognition and tracking, the ECU of the vehicle controls reversing speed for
vehicle safety. Based on the information fusion of multi-sensor environmental perception and obstacle
tracking, ECU will judge the safe distance for reversing. If a danger is detected, ECU will control the
speed of the vehicle to avoid a reversing collision.

3. Multi-Sensor Environmental Perception

In this section, two types of sensors, ultrasonic range finders and binocular cameras, are used
to perceive the environment around a vehicle. As shown in Figure 4, the proposed multiple sensors
are used in our research. Two ultrasonic range finders measure the distance from obstacles, and the
binocular cameras are used to capture vision and distance information about the obstacles. We integrate
the two sensors on a board as a vehicle reversing multi-sensor in Figure 4. The images from the
binocular cameras are shown in Figure 5.
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3.1. Obstacle Detection Based on Binocular Cameras

Stereo vision technology is used more often in machine vision. With two images from left and
right, a person can approximately obtain an object’s 3D geometry, distance, and position. In this
paper, videos captured by binocular cameras as in Figure 4 are used not only for visual information for
a driver, but also for ECU for vehicle reversing safety.

3.1.1. Binocular Stereo Calibration

In order to get the depth of an obstacle, key parameters are introduced to solve the 3D depth
computation of a target for binocular stereo rectification [52] of the binocular cameras. To get these
parameters, images are calibrated using methods given in the literature [5]. For binocular stereo
rectification, the parameters are defined as follows:

M: intrinsic matrix, a 3 ˆ 3 matrix containing camera normalized focal length and optical center.
fx, fy: camera normalized focal length.
cx, cy: camera normalized optical center.
d: distortion vector, it is a 5 ˆ 1 vector.
k1, k2, k3: radial distortion parameters.
p1, p2: tangential distortion parameters.
R: rotation matrix, it is a 3 ˆ 3 matrix that contains three 3 ˆ 1 vectors.
r1, r2, r3: rotation matrix vectors.
t: translation vector, it is a 3 ˆ 1 vector of three translation parameters.
Tx, Ty, Tz: translation parameters.

We can find the relation of the real-world plane coordinates (X, Y) and the camera coordinates
(x, y) using the above parameters:
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fx 0 cx

0 fy cy
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where s is a scale ratio and r3 can be removed by the depth Z = 0, and the coordinate should be
modified by a Taylor series expansion at r = 0.

«

xcorrected
ycorrected

ff

“ p1` k1r2 ` k2r4 ` k3r6q

«

xd
yd

ff

`

«

2p1xdyd ` p2pr2 ` 2xd
2q

p1pr2 ` 2yd
2q ` 2p2xdyd

ff (2)

where (xd, yd) is a coordinate before correction and (xcorrected, ycorrected) is a corrected coordinate for
stereo rectification. A single camera can be calibrated using Equations (1) and (2).

At the same time, another two parameters called rotation matrix Rs = (rs1, rs2, rs3) and translation
vector Ts = (Tsx, Tsy, Tsz), which aligns with two cameras, are computed as in Equation (3):

Pl “ Rs
TpPr ´Tsq (3)

where Pr and Pl are the right and left camera coordinates, respectively. A 3D point P can be
projected into the left and right cameras as in Equations (4) and (5) according to the above single
camera calibration:

Pl “ Rl P`Tl (4)

Pr “ RrP`Tr (5)
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where Rl is the rotation matrix of left camera and Rr is the rotation matrix of right camera. Tl is the
translation vector of left camera and Tr is the translation vector of right camera. Rs and Ts can be
calculated using Equations (3)–(5).

3.1.2. Binocular Stereo Rectification and Stereo Correspondence

When the binocular camera images are obtained, the next steps are to rectify binocular stereo
and establish stereo correspondence. Stereo rectification is used to remove the distortions and turn
the stereo binocular images into a standard aligned form utilizing the calibration results. This is
an important step for calculating the disparity of binocular images for vehicle reversing. Open Source
Computer Vision Library (OpenCV) [53] is introduced to rectify the binocular images.

For binocular stereo rectification and stereo correspondence, the parameters are defined as follows:

Rs: the segment which is used to obtain the minimization of reprojection distortion
Rl and Rr: the rotation matrices
Ml and Mr: intrinsic matrices.

After finding the correspondence points, the disparity can easily be calculated. Disparity
optimization algorithm is also used to remove bad matching points.

After stereo rectification and correspondence, we compute the disparity of the binocular images.
The disparities of different targets that have a different distance to the binocular cameras usually
contain the edge information of the targets, which can be used for separating targets from others.
This important characteristic can be used for target recognition and tracking.

The disparity is usually affected by the noise of light and shelter. We must take measures to
decrease the noise to obtain the edge information successfully. In our paper, some operations, such
as dilation, erosion, and image binarization, are used to settle this problem. After that, there are still
regions with a small area that is the noise, so we choose the largest region as the target to track. In order
to gain the location of the target, the external rectangle of the target can be obtained. As a result, we can
also get the location of the external rectangle. The four points of the rectangle are the initial location of
the particle filter. Of course, the target chosen by binocular stereo vision is the particle template.

3.1.3. Binocular Triangulation

After binocular stereo rectification and correspondence, binocular triangulation is used to compute
the position of a target in 3D space. A binocular stereo model is shown in Figure 6. The theorems of
binocular triangulation are analyzed in Equations (6)–(8):

X´pxl´cx
le f tq

X “
Z´ f

Z

ñ X “ Zpxl´cx
le f tq

f

(6)

T´pxl´cx
le f tq´pcx

right´xrq
T “

Z´ f
Z

ñ Z “ f T
pxl´xrq´pcx le f t´cxrightq

(7)

Y´pyl´cy
le f tq

Y “
Z´ f

Z

ñ Y “ Zpyl´cy
le f tq

f

(8)

where (xl , yl), (xr, yr), (cle f t
x , cle f t

y ), and (cright
x , cright

y ) are corrected through the above steps.
In Equation (7), T is the distance between the binocular cameras’ centers. At the same time, the
obstacle’s depth, width, and height can also be obtained by the binocular vision for target detection.



Sensors 2016, 16, 848 9 of 24

Sensors 2016, 16, 848 8 of 24 

 

where lR  is the rotation matrix of left camera and Rr is the rotation matrix of right camera. lT  is 
the translation vector of left camera and rT  is the translation vector of right camera. sR  and sT  
can be calculated using Equations (3)–(5). 

3.1.2. Binocular Stereo Rectification and Stereo Correspondence 

When the binocular camera images are obtained, the next steps are to rectify binocular stereo 
and establish stereo correspondence. Stereo rectification is used to remove the distortions and turn 
the stereo binocular images into a standard aligned form utilizing the calibration results. This is an 
important step for calculating the disparity of binocular images for vehicle reversing. Open Source 
Computer Vision Library (OpenCV) [53] is introduced to rectify the binocular images. 

For binocular stereo rectification and stereo correspondence, the parameters are defined as follows: 

sR : the segment which is used to obtain the minimization of reprojection distortion 

lR  and rR : the rotation matrices 

lM  and rM : intrinsic matrices. 

After finding the correspondence points, the disparity can easily be calculated. Disparity 
optimization algorithm is also used to remove bad matching points. 

After stereo rectification and correspondence, we compute the disparity of the binocular 
images. The disparities of different targets that have a different distance to the binocular cameras 
usually contain the edge information of the targets, which can be used for separating targets from 
others. This important characteristic can be used for target recognition and tracking. 

The disparity is usually affected by the noise of light and shelter. We must take measures to 
decrease the noise to obtain the edge information successfully. In our paper, some operations, such 
as dilation, erosion, and image binarization, are used to settle this problem. After that, there are still 
regions with a small area that is the noise, so we choose the largest region as the target to track. In 
order to gain the location of the target, the external rectangle of the target can be obtained. As a 
result, we can also get the location of the external rectangle. The four points of the rectangle are the  
initial location of the particle filter. Of course, the target chosen by binocular stereo vision is the 
particle template. 

3.1.3. Binocular Triangulation 

After binocular stereo rectification and correspondence, binocular triangulation is used to 
compute the position of a target in 3D space. A binocular stereo model is shown in Figure 6. The 
theorems of binocular triangulation are analyzed in Equations (6)–(8): 

 

Figure 6. Binocular triangulation model.  Figure 6. Binocular triangulation model.

3.2. Obstacle Detection Based on Ultrasonic Range Finders

An ultrasonic sensor is used to find the range of a target by means of capturing the reflected
ultrasonic wave. An ultrasonic wave is a mechanical vibration at a frequency higher than the sound
wave. It is used widely for the high frequency, the short wave length, the lower diffraction, and
especially the good direction. However, the range of this sensor is limited to 0–10 m. In our proposed
system, two ultrasonic range finders are installed on the rear board for the distance of an obstacle and
the instantaneous information. The ultrasonic range finder, KS109, is shown in Figure 4.

4. Target Recognition and Tracking Based on Information Fusion and the Improved
Particle Filter

The information fusion algorithm using an adaptive Kalman filter is employed to process the data
obtained from binocular vision and ultrasonic sensors of the same obstacle at the same time. It improves
the robustness of the sensors. Then the improved particle filter based on low-rank representation tracks
the main obstacles. The low-rank representation is used to optimize an objective particle template that
has the smallest L-1 norm. This optimization improves the tracking performance. The structure of the
proposed algorithm for information fusion and tracking is shown in Figure 7.
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where ( lx , ly ), ( rx , ry ), ( left
xc , left

yc ), and ( right
xc , right

yc ) are corrected through the above steps. In 
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4.1. Data Fusion Based on Adaptive Kalman Filter

4.1.1. The Basic Principle and Structure of Adaptive Kalman Filter

In the model of a Kalman filter, we use one stochastic differential equation,

Xpkq “ AXpk´ 1q ` BUpkq `Wpkq (9)

where X(k) represents the state of the system in moment k and U(k) is the control quality of the
current state. A and B are the parameters of the system, which vary in different systems. W(k) is the
processing noise.
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Therefore, we can describe the measurement by:

Zpkq “ HXpkq `Vpkq (10)

where Z(k) represents the measurement, H is the parameter of the measuring system, and V(k) is the
noise in measuring. Based on the model of the Kalman filter, the current state can be estimated based
on the previous state. It is described as:

Xpk|k´ 1q “ AXpk´ 1|k´ 1q ` BUpkq (11)

where X(k|k ´ 1) is the estimation based on the previous state and X(k ´ 1|k ´ 1) is the optimal result
of the previous state. After updating the system, the covariance can be updated using Equation (12).
We use P to represent the covariance:

Ppk|k´ 1q “ APpk´ 1|u k´ 1qA1 `Q (12)

where covariance P(k|k ´ 1) corresponds to X(k|k ´ 1), P(k ´ 1|k ´ 1) corresponds to X(k ´ 1|k ´ 1),
A1 is the transpose of A, and Q represents the variance of the system. We can have the optimal value
X(k|k) using the measurement of the system and the predicted value:

Xpk|kq “ Xpk|k´ 1q
`KgpkqpZpkq ´ HXpk|k´ 1qq

(13)

where Kg is the Kalman gain obtained by

Kgpkq “ Ppk|k´ 1qH1{pHPpk|k´ 1qH1 ` Rq (14)

In order to update the system constantly, the covariance updates through

Ppk|k´ 1q “ pI ´ KgpkqHqPpk|k´ 1q (15)

where I is the identity matrix. Equations (11)–(15) are the basic frame of the Kalman filter.

4.1.2. Information Fusion Based on Federal Kalman Filter

In this paper, a federated Kalman filter is used for multi-sensor information fusion as in
Figure 8. An adaptive federal filter is a decentralized scheme to distribute dynamic information.
The dynamic information has two parts, information about the state equation and information about
the observation equation.
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As shown in Figure 8, the output xipτq and covariance Pipτq of the sub-filters in federal filter
fusion are local estimations based on the measurement of the subsystem. The outputs, Xpτq and Ppτq,
determined by all the subsystems of the filter, are the optimal estimation. Their relationship can be
described as follows:

Ppτq “ r
ÿ

N,M
i P´1

i pτqs
´1

(16)
_
Xpτq “

ÿ

N,M
i“1 P´1

i pτq
_
xipτq (17)

After fusing, the main filter distributes the information to each sub-filter. The principle of
allocation can be described as:

P´1pτqXpτq “
ÿ

N,M
i“1 P´1

i pτqxipτq (18)

P´1
i pτq “ βiP

´1pτq (19)

Q´1
i pτq “ βiQ

´1pτq (20)

xi “ Xpτq (21)

The parameter βi which is shown above, should meet the following requirement:

ÿ

N,M
i“1 βi “ 1 i “ 1, 2, . . . , N, M (22)

Actually, we used four real sensors in our proposed multi-sensor system, including binocular
cameras and two ultrasonic rangefinders. The above equations should be changed according to the
state equation and measuring equation of the system.

4.2. Target Tracking Based on the Modified Particle Filter

4.2.1. Introduction of Particle Filter

Framework: A particle filter based on the Monte Carlo method is widely used in many fields.
We can get the state probability using the following steps:

ppxk|y1:k´1q “

ż

ppxk|xk´1qppxk´1|y1:k´1qdxk´1 (23)

ppxk|y1:kq “
ppyk|xkqppxk|y1:k´1q

ppyk|y1:k´1q
(24)

where xk is a state variable at time k and yk is an observation of xk, and ppxk|y1:k´1q is a normalizing
constant in Equation (25):

ppyk|y1:k´1q “

ż

ppyk|xkqppxk|y1:k´1qdxk (25)

By spreading N samples at time k {xki, i = 1, ..., N }~importance distribution q(x) with the weights
{wki, i = 1, ..., N }, the weight is approximated in the following:

wi
k9wi

k´1
ppyk|xi

kqppx
i
k|x

i
k´1q

qpxk|x1:k´1, y1:kq
(26)

A maximal approximate optical state is given by the following:

x˚k “ argmax
xk

i
ppxk

i|y1:kq (27)

Model: xk contains the affine transformation parameters that convert the obstacle region to a fixed
size rectangle. Parameters in xk are independently drawn from a Gaussian distribution around xk´1.
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yk is the transformed image and is stretched into columns of the obstacle region with a constant size
by using xk. For details about the particle filter, please refer to the literature [5].

4.2.2. Introduction of Low-Rank Representation and Principal Component Analysis

As in many practical applications, the given data matrix D is low rank or approximately low rank.
In order to restore the low-rank structure of matrix D, matrix D is decomposed into two unknown
matrices, X and E, as in D = X + E. X is low rank, as shown in Figure 9.

D “ X` E (28)

minX,E rankpXq ` γ||E||0 s.t D “ X` E, (29)

where ||E||0 is the number of the nonzero elements. Because this is a non-deterministic polynomial, it
needs convex optimization. The formula turns to

minX,E ||X||˚ ` λ||E||1 s.t.D “ X` E, (30)

where ||X||˚ is the trace nor, and the sum of the singular value of the matrix; ||E||1 is the L1 norm
and the sum of the absolute value of the element, and λ is the weight of the formulation. In this way,
we convert the problem of searching for the rank of the matrix into searching for the trace norm of
the matrix.
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In the process of mathematical optimization, the Lagrange multiplier method is one of the
optimization methods that can help with finding the extremum of a multivariate function bounded by
one or more variables. The Augmented Lagrange Multiplier (ALM) algorithm also makes use of the
multiplier method. The target function is:

min
D,X,E

lpD, X, Eq “ min
D,X,E

||X||˚ ` λ||E||1

`TR
 

YT pD´ X´ Eq
(

`
µ
2 ||D´ X´ E||2F

, (31)

where || ˚ ||F is the Frobenius norm. The iterative process of the algorithm is shown in Algorithm 1.

Algorithm 1 Algorithm of low rank representation

Input
Initialization: E0 “ Y0 “ 0, k “ 0
Procedure

While ||D´ X´ E||F ą 10´7||D||F do
Xk`1 “ G1{µpD´ Ek ´Yk{µq

Ek`1 “ Eλ{µpD´ Xk`1 ´Yk{µq

Yk`1 “ Yk ` µpD´ Ek`1 ´ Xk`1q

k “ k` 1
End while

Output X,E
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In the process of iteration, the main computation is a singular value decomposition (SVD). In order
to improve the speed of the system, we use IALM in our paper.

4.2.3. Low Rank Representation for Obstacle Recognition and Tracking

As shown in Figure 7, we introduce low-rank representation into the particle filter to improve the
tracking performance.

The target template set D “ rd1, d2 . . . , dns, D P Rmˆn is defined to have n target templates
and m dimensions of the matrix. There are k candidate targets generated based on the framework of
particle filter. They are defined as:

X “ tx1, x2, . . . , xku , X P Rmˆk (32)

If we combine each particle of the candidate targets X P Rmˆk with target template D P Rmˆn one
by one to form a new matrix Yi P Rmˆpn`1q, we have

Y “ rD, xis (33)

Then, we can make use of principle component analysis:

minZ,E rankpZiq ` γ||Ei||0 s.t.Yi “ Zi ` Ei (34)

which is a low-rank matrix obtained after the computation. It can be considered as a matrix that
consists of the unchangeable data of the target.

Zi “ rD1, xi
1s (35)

where Y “ rD, xis is an observation that can be decomposed into a low-rank matrix Zi P Rmˆpn`1q and
a noise matrix Ei P Rmˆpn`1q. For the element of the candidate template set X “ tx1, x2, . . . , xku, it will
be a zero matrix. Based on the theory described above, Equation (34) can be changed to:

minZ,E ||Yi||˚ ` λ||E||1 s.t. Yi “ Zi ` Ei (36)

In this case, Zi is a low-rank matrix. However, we mainly concentrate on the noise matrix Ei,
because the last column of matrix Ei is smaller if the target template set D gets closer to the target.
We define the last column of Ei as ei, which represents the difference between the target of the current
frame and the sample set. The optimal objective is to have the smallest L-1 norm. Actually, ei can
be considered as the difference in the process of tracking of the shelter, and the change of the light.
We chose particles having the smallest difference compared with target templates in the candidate set,
as shown in Figure 10. The chosen particle has the smallest that is the most desirable particle. It shows
that this kind of algorithm can successfully track the target when the vehicle is reversing.
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5. Vehicle Speed Control Strategy

In this section, we use the vehicle reversing speed control algorithm as in [5] to keep the vehicle
in a safety speed. This makes the reversing control safer and more reliable. Table 1 shows strategies
of ECU under different conditions for vehicle reversing safety. The fuzzy rules in [5] and Table 1
are presented to show the feasibility. The system is enabled to take control of the electronic throttle
opening and automatic braking to avoid collisions. The prototype shown in Figure 11 makes reversing
control more reliable [5].

Table 1. Various judgments of ECU under different conditions.

Distance
Acceleration Pedal ECU Judgments

Dramatic Accelerate Emergency Braking

>10 m Normal Slow Down to 18 km/h
10 m–5 m Normal Warning & Slow Down to 10 km/h
5 m–2.5 m Normal Warning & Slow Down to 6 km/h

2.5 m–0.4 m Normal Warning & Slow Down to 2 km/h
<0.4 m Normal Braking to Zero
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6. Simulation and Validation 

In this section, experiments have been done to confirm the effectiveness of the system. As 
shown in Figure 12, a real vehicle reversing experimental environment is used. The ultrasonic 
sensors work under the control of Arduino chips and the binocular cameras are operated by a laptop 
under the environment of Microsoft Visual. 

There are three parts to our experiment, as shown in Figure 11a. The first part is a multi-sensor 
that perceives the environment of the vehicle. The vision information is obtained from binocular 
cameras and the distance information from ultrasonic sensors. The second part is target recognition 
and tracking using information fusion and low rank with particle filter. Simulation and tests about 
reversing speed control are the third part. 
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vehicle reversing speed control system.

6. Simulation and Validation

In this section, experiments have been done to confirm the effectiveness of the system. As shown
in Figure 12, a real vehicle reversing experimental environment is used. The ultrasonic sensors work
under the control of Arduino chips and the binocular cameras are operated by a laptop under the
environment of Microsoft Visual.

There are three parts to our experiment, as shown in Figure 11a. The first part is a multi-sensor
that perceives the environment of the vehicle. The vision information is obtained from binocular
cameras and the distance information from ultrasonic sensors. The second part is target recognition
and tracking using information fusion and low rank with particle filter. Simulation and tests about
reversing speed control are the third part.
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Figure 12. Experimental setup. (a) Experimental prototype; (b) multi-sensor in proposed system;  
(c) experimental vehicle; (d) test preparation; (e) test preparation; (f) binocular camera images;  
(g) obstacle detection using ultrasonic range finders; (h) tests using a homemade vehicle; (i) tests 
using a homemade vehicle. 

Figure 12 shows the real experimental environment for testing the system. The algorithm was 
tested on video sequences captured by the binocular cameras, as shown in Figure 12b, where the 
binocular cameras were manufactured at our lab. This system has been field-tested on the test 
vehicle in Figure 12c. Figure 12d–g illustrate the experiments on binocular camera images and 
obstacle detection using ultrasonic range finders. As shown in Figure 12h,i, in our experiments a 
homemade experimental vehicle is designed to test our system without traffic risk 

The ultrasonic sensors and binocular cameras work simultaneously. Ultrasonic sensors are first 
used to detect whether there is an obstacle within 0–10 m or not. The binocular cameras capture the 
visual information at the back of a vehicle at the same time. If an obstacle exists, the system will 
start to target the obstacle and compute the distance to it based on the binocular stereo vison. After 
that, the initial location of the target is sent to the particle filter. Finally, the system controls the 
speed based on target tracking and information fusion. 

6.1. Experimental Results of Binocular Vision 

The distance to an obstacle is tested by using the 3D reconstruction of binocular vision, mainly 
for the depth of the obstacle. Firstly, we use a Matlab box to have the parameters of the binocular 
cameras, which are then installed into Microsoft Visual for the calibration of images captured from 
the right and left cameras. The results of calibration are shown in Figure 13. We can see that the 
images are calibrated properly. 
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Figure 12. Experimental setup. (a) Experimental prototype; (b) multi-sensor in proposed system;
(c) experimental vehicle; (d) test preparation; (e) test preparation; (f) binocular camera images;
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Figure 12 shows the real experimental environment for testing the system. The algorithm was
tested on video sequences captured by the binocular cameras, as shown in Figure 12b, where the
binocular cameras were manufactured at our lab. This system has been field-tested on the test vehicle
in Figure 12c. Figure 12d–g illustrate the experiments on binocular camera images and obstacle
detection using ultrasonic range finders. As shown in Figure 12h,i, in our experiments a homemade
experimental vehicle is designed to test our system without traffic risk

The ultrasonic sensors and binocular cameras work simultaneously. Ultrasonic sensors are first
used to detect whether there is an obstacle within 0–10 m or not. The binocular cameras capture the
visual information at the back of a vehicle at the same time. If an obstacle exists, the system will start
to target the obstacle and compute the distance to it based on the binocular stereo vison. After that, the
initial location of the target is sent to the particle filter. Finally, the system controls the speed based on
target tracking and information fusion.

6.1. Experimental Results of Binocular Vision

The distance to an obstacle is tested by using the 3D reconstruction of binocular vision, mainly for
the depth of the obstacle. Firstly, we use a Matlab box to have the parameters of the binocular cameras,
which are then installed into Microsoft Visual for the calibration of images captured from the right
and left cameras. The results of calibration are shown in Figure 13. We can see that the images are
calibrated properly.
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After the calibration process, stereo rectification and stereo correspondence are made to acquire
the disparity of the images. As shown in Figure 14a, the distance to obstacles is obtained from the
disparity. In addition, the disparity is used to detect the obstacle. The external rectangle corresponds
to the target, as shown in Figure 14b, and the objects are successfully detected. After the disparity of
the target, we can calculate the distance to an obstacle based on Equation (6). Here, the distance to
an obstacle based on binocular vision is shown in Figure 15. The obstacle detection results at different
distances are shown in Figure 16a–d. In Figure 16a, the obstacle distance is about 3.5 m away, and from
the detection results it can be seen that the obstacle is well detected. Figure 16b, c show the detection
results when the obstacle is about 4.0 m and 5.0 m away, respectively. We can see that the obstacles
are well detected. We chose the largest region as the target to track. In Figure 16d, the obstacle is
about 6.0 m away, and from the detection results we can see that the obstacle is also well detected.
This shows the validity of the proposed binocular vision obstacle detection module.
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6.2. Information Fusion Based on an Adaptive Kalman Filter 

In the previous step, we get different results related to the same obstacle from the two 
ultrasonic sensors and binocular cameras. Because the obstacle data is obtained from four sensors.  
So it must be processed properly. The results of information fusion based on an adaptive Kalman 
filter using binocular cameras and two ultrasonic sensors are shown in Figures 17 to 19 at 1.0, 1.5, 
and 2.0 m. The proposed information fusion algorithm has better performance when the system is 
influenced by the environment or other factors greatly. 
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6.2. Information Fusion Based on an Adaptive Kalman Filter

In the previous step, we get different results related to the same obstacle from the two ultrasonic
sensors and binocular cameras. Because the obstacle data is obtained from four sensors. So it must
be processed properly. The results of information fusion based on an adaptive Kalman filter using
binocular cameras and two ultrasonic sensors are shown in Figures 17–19 at 1.0, 1.5, and 2.0 m.
The proposed information fusion algorithm has better performance when the system is influenced by
the environment or other factors greatly.
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After the information fusion and target detection, using low-rank representation, the 
framework of the particle filter tracks and identifies obstacles like human or animal bodies and 
vehicles, as shown in Figure 20. The proposed algorithm can track any object in various light 
intensity as well as in the shadows of other objects. In Figure 20, we tried to track and recognize a 
vehicle, where the target is marked as the green rectangle. It can be seen that even when the vehicle 
is in the shadows, the target can be well tracked and recognized. Figure 21 shows the tracking 
results for a human based on a particle filter using low-rank representation, where the human is 
well targeted. Figure 22 shows a contrast experiment wherein we tried to track and recognize the 
man on the left in an object’s shadow. From the results, we can see that the selected target is well 
tracked and recognized successfully. 
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Figure 19. The results of information fusion based on an adaptive Kalman filter using binocular
cameras and two ultrasonic sensors at 2.0 m.

6.3. Target Recognition and Tracking Based on the Modified Particle Filter

After the information fusion and target detection, using low-rank representation, the framework
of the particle filter tracks and identifies obstacles like human or animal bodies and vehicles, as shown
in Figure 20. The proposed algorithm can track any object in various light intensity as well as in the
shadows of other objects. In Figure 20, we tried to track and recognize a vehicle, where the target
is marked as the green rectangle. It can be seen that even when the vehicle is in the shadows, the
target can be well tracked and recognized. Figure 21 shows the tracking results for a human based
on a particle filter using low-rank representation, where the human is well targeted. Figure 22 shows
a contrast experiment wherein we tried to track and recognize the man on the left in an object’s shadow.
From the results, we can see that the selected target is well tracked and recognized successfully.
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In order to prove the effectiveness of the system, an experiment about the fps (frames per 
second) has been done on a computer equipped with an Intel i3-4150 processer at 3.5 GHz and 4 GB 
memory in the MATLAB 2012a environment. The comparison of fps between our proposed 
algorithm and the algorithm in the literature [41] is shown in Table 2. As we can see from this table, 
we use the same video taken by other researchers but with different algorithms. When the number is 
set to 30, the result of our proposed algorithm can get to 148.1246, about 7 to 8 times that of the 
algorithm used by other researchers. While we increase the number of frames, it still keeps the  
same trend. These results indicate that the proposed method shows better performance in  
obstacle tracking. 
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Figure 22. Tracking results based on a particle filter using low-rank representation under
a sheltered object.

In order to prove the effectiveness of the system, an experiment about the fps (frames per second)
has been done on a computer equipped with an Intel i3-4150 processer at 3.5 GHz and 4 GB memory
in the MATLAB 2012a environment. The comparison of fps between our proposed algorithm and the
algorithm in the literature [41] is shown in Table 2. As we can see from this table, we use the same
video taken by other researchers but with different algorithms. When the number is set to 30, the
result of our proposed algorithm can get to 148.1246, about 7 to 8 times that of the algorithm used by
other researchers. While we increase the number of frames, it still keeps the same trend. These results
indicate that the proposed method shows better performance in obstacle tracking.



Sensors 2016, 16, 848 20 of 24

Table 2. Comparison of the algorithms.

Number of Frames Algorithm Offered in [32] (fps) Our Proposed Tracking Algorithm (fps)

30 20.0259 148.1246
60 18.0466 134.7846
90 18.3450 139.8128
120 19.5366 143.6594
150 16.7561 148.9651
180 15.3057 140.2364
210 15.3494 149.3074

On the other hand, we have counted the tracking rate based on the 200 frames of the same video in
which the light changes a lot using four videos offered by other researchers and captured by ourselves.
Table 3 shows the results of the tracking. As shown in Table 3, the proposed algorithm in our paper
can also reach good performance.

Table 3. Tracking accuracy of the algorithms.

Video Algorithm Offered in [32] Our Proposed Tracking Algorithm

Car4 100% 100%
Car2 100% 100%

Walking 100% 100%
Video captured by ourselves (without shelter) 95% 96%

6.4. Experimental Results of Vehicle Speed Control Based on Multi-Sensor Environmental Perception

Figure 23 shows the simulation results of vehicle reversing control according to the rule of Table 1.
When the vehicle is reversing, the multi-sensor’s environmental perception module starts to detect
and track rear obstacles to get the obstacle’s distance information in real time. In the simulation, a man
suddenly appears 15 m behind the vehicle, but the driver keeps reversing the vehicle at 18 km/h
without noticing him. In order to avoid a collision, the speed of the vehicle must be restricted according
to the obstacle distance, as Figure 23 shows.
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Figure 23. Simulation results of the proposed vehicle reversing speed control. (a) Relationship 
between speed and time; (b) Relationship between distance and time.  

As shown in Figure 23a,b, when the distance between the vehicle and the man is about 10 m, by 
obstacle detection and tracking, the vehicle begins to slow down from 18 km/h to 10 km/h. When the 
distance between the vehicle and the man decreases to 5 m, the vehicle automatically slows down to 
6 km/h. When the driver continues to reverse the vehicle to 2.5 m away from the pedestrian, the 
vehicle speed drops to 2 km/h. Finally, when the distance is less than 0.4 m, the vehicle automatically 
begins to brake to zero to prevent a reversing accident. So with the assistant of the multi-sensors 
environmental perception using low-rank representation and particle filter, the driver can operate 
the automobile more safely and stably to prevent reversing accident. 

7. Conclusions 

In this paper, we present a novel multi-sensor environmental perception method using 
low-rank representation and a particle filter for vehicle reversing safety. The proposed system 
consists of four main steps, namely multi-sensor environmental perception, target recognition, 
target tracking, and vehicle reversing speed control modules. The final system simulation and 
practical testing results demonstrate the validity of the proposed multi-sensor environmental 
perception method using low-rank representation and a particle filter for vehicle reversing safety. 
This system has been tested on a DODGE SUV and a homemade vehicle. The theoretical analysis 
and practical experiments show that the proposed system not only has better performance in 
obstacle tracking and recognition, but also enhances the vehicle’s reversing control. The information 
fusion and particle filter tracking improve the accuracy of measurements and rear object tracking. 
The effectiveness of our system is one of the key factors for the active safety system; it can help 
reduce drivers’ work and tiredness and, accordingly, decrease traffic accidents.  
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Figure 23. Simulation results of the proposed vehicle reversing speed control. (a) Relationship between
speed and time; (b) Relationship between distance and time.

As shown in Figure 23a,b, when the distance between the vehicle and the man is about 10 m, by
obstacle detection and tracking, the vehicle begins to slow down from 18 km/h to 10 km/h. When
the distance between the vehicle and the man decreases to 5 m, the vehicle automatically slows down
to 6 km/h. When the driver continues to reverse the vehicle to 2.5 m away from the pedestrian, the
vehicle speed drops to 2 km/h. Finally, when the distance is less than 0.4 m, the vehicle automatically
begins to brake to zero to prevent a reversing accident. So with the assistant of the multi-sensors
environmental perception using low-rank representation and particle filter, the driver can operate the
automobile more safely and stably to prevent reversing accident.

7. Conclusions

In this paper, we present a novel multi-sensor environmental perception method using low-rank
representation and a particle filter for vehicle reversing safety. The proposed system consists of
four main steps, namely multi-sensor environmental perception, target recognition, target tracking,
and vehicle reversing speed control modules. The final system simulation and practical testing
results demonstrate the validity of the proposed multi-sensor environmental perception method using
low-rank representation and a particle filter for vehicle reversing safety. This system has been tested on
a DODGE SUV and a homemade vehicle. The theoretical analysis and practical experiments show that
the proposed system not only has better performance in obstacle tracking and recognition, but also
enhances the vehicle’s reversing control. The information fusion and particle filter tracking improve
the accuracy of measurements and rear object tracking. The effectiveness of our system is one of the
key factors for the active safety system; it can help reduce drivers’ work and tiredness and, accordingly,
decrease traffic accidents.
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