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Abstract: Accurate and timely mapping of paddy rice is vital for food security and environmental
sustainability. This study evaluates the utility of temporal features extracted from coarse resolution
data for object-based paddy rice classification of fine resolution data. The coarse resolution vegetation
index data is first fused with the fine resolution data to generate the time series fine resolution
data. Temporal features are extracted from the fused data and added with the multi-spectral data to
improve the classification accuracy. Temporal features provided the crop growth information, while
multi-spectral data provided the pattern variation of paddy rice. The achieved overall classification
accuracy and kappa coefficient were 84.37% and 0.68, respectively. The results indicate that the use of
temporal features improved the overall classification accuracy of a single-date multi-spectral image
by 18.75% from 65.62% to 84.37%. The minimum sensitivity (MS) of the paddy rice classification
has also been improved. The comparison showed that the mapped paddy area was analogous to
the agricultural statistics at the district level. This work also highlighted the importance of feature
selection to achieve higher classification accuracies. These results demonstrate the potential of the
combined use of temporal and spectral features for accurate paddy rice classification.

Keywords: paddy rice mapping; object-based; fusion; classification, HJ-1A/B; temporal features;
Assam

1. Introduction

Rice is the principal food for nearly 50% of the world’s seven billion people, mostly in Asia,
Africa and Latin America [1]. Paddy rice covers more than 12% of global cropland areas [2], and
it consumes about 24%–30% of the world’s developed fresh water resources [3]. Rice is the largest
water-consuming crop and is cultivated primarily in constantly flooded fields. Therefore, future
expansion of the fields may lead to water shortage and ecosystem disturbance [3]. Rice cultivation can
contribute to climate change [4] as the flooded paddy fields are responsible for 10% of human-induced
methane (CH4) [5], or 20% of total agricultural CH4 emissions [5]. Paddy fields have also been
identified as a transmission medium of highly pathogenic avian influenza virus H5N1 [6]. Increasing
urbanization, rising global temperature, industrialization, and changing precipitation patterns are
affecting the land and water resources of rice production [7]. Therefore, it is important to monitor and
map the paddy rice fields for the assessment of food security, efficient water resources management,
environmental sustainability, and controlling the transmission of influenza viruses.

Remote sensing has been proved to be an effective tool for mapping the paddy rice fields,
employing easily available optical and synthetic aperture radar (SAR) images [8–12]. Recently,
significant efforts have been carried out towards the mapping of paddy rice using the time series

Sensors 2017, 17, 10; doi:10.3390/s17010010 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 10 2 of 17

data [13–16]. A variety of techniques have been used for paddy rice mapping such as supervised
classification [17,18], a thresholding based method [19–21], phenology based mapping [13,22] and
a subtraction based method [23,24]. However, a number of limitations exist with these methods.
For example, supervised classification requires training samples for each year, and incorrect samples
often lead to unexpected results. Thresholding requires appropriate selection of threshold values and
subjectivity remains in the classification results due to the intra-class variability. Phenology based
mapping needs continuous and long time series, which is a challenge for a large area. A subtraction
based method mandatorily requires a shortwave infrared band (SWIR) to calculate land surface water
index (LSWI). However, SWIR is not available in many satellite sensors such as WorldView-2, Chinese
HJ-1A/B, ZY-3 MUX and GF-1 WFV. Additionally, all of these methods underperform where the rice
fields are fragmented.

Earlier studies have revealed the importance of considering pixel-level spectral heterogeneity
and parcel sizes to the classification processes [25]. However, traditional pixel-based classification
methods are unable to incorporate this information, which limits their application mainly in the
regions where crop fields are fragmented with high spectral variability. Object-based image analysis
(OBIA) can address these issues considering the spatial location and context of homogenous pixels [26].
Segmentation, the initial step in OBIA, is the grouping of pixels to form the internally uniform
homogeneous objects [27]. These objects generate textural and geometric information in addition
to spectral information, which helps conduct more efficient and improved classification [28,29].
This approach is particularly useful where the crop fields are fragmented and relatively small in size.

Fine resolution paddy rice maps are usually generated from a single or a few images obtained
during growing season. Recently, researchers have been attracted by the fine resolution mapping of
paddy rice, especially using the time series Landsat data [15,16,23]. The temporal or phenological
information contained in the time series has been obviously useful for paddy rice mapping [30].
However, the requirement of intensive data processing makes these approaches limited in small
regions. Additionally, due to the frequent cloud cover and long revisit cycle (16-days for Landsat),
it is difficult to obtain a dense time series. Thus, rice mapping using a time series is usually focused
on coarser resolution data [21,31]. The combined use of fine and coarse resolution images potentially
increases the data availability for better tracking of crop phenology and efficient paddy rice mapping.
Therefore, it has a great potential to improve paddy rice classification if temporal features of coarse
resolution data are used in classifying finer resolution data.

The main challenge is how to extract the temporal features from time series coarser resolution
data to be used for fine resolution spectral features for improved classification. Blending or fusion of
coarse and fine spatial resolution images have been proved to be a feasible solution for the issue [32,33].
Many studies utilized fused time series vegetation index datasets for cropland mapping and phenology
studies [34,35]. However, fused datasets are rarely utilized to improve paddy rice classification of
fine resolution data. The main objective of this study is to evaluate the potential of temporal features
extracted from fused time series datasets for OBIA based paddy rice classification.

2. Study Area

The study area is located in northeast India, centered at 26◦23’ N and 91◦09’ E (Figure 1).
The selected site includes five districts of Assam state with an area about 14,000 km2. The region is a
flood plain of the Brahmaputra and Barak rivers. It has a tropical monsoon climate with high rainfall
and humidity. The average annual precipitation and the temperature are approximately 3000 mm and
23 ◦C, respectively. Rice, as the primary crop of the region, is cultivated not only in the plains but also
in the hill slopes. Rice is occupying 25 million hectares in the region, which accounts for 71% of the
total cultivated area [36]. Based on the usage of water, rice is cultivated in a variety of environmental
conditions in the region. The most common cultivation types include: (a) rainfed lowland; (b) irrigated;
(c) flood-prone and (d) upland. The region has primarily two rice growing periods: rabi or summer
(March–July) and kharif or winter (June–December). In kharif season, rice is cultivated widely due to
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the abundant rain and the favorable temperature. During rabi season, rice is cultivated in the areas
where the irrigation facilities are available. This study considers only the kharif season paddy rice for
the mapping.
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Figure 1. Location map of study site in Assam, India. The background image is a HJ-1A false color
composite (red: NIR band, green: Red band, blue: Green band) of 5 December 2014.

3. Dataset and Pre-Processing

3.1. MODIS NDVI Data

The Moderate resolution imaging spectroradiometer (MODIS) (MOD13Q1, Collection 5) Normalized
difference vegetation index (NDVI) dataset covering the study area from April 2014–March 2015
(Table 1) were acquired from the Land Processes Distributed Active Achieve Center (LP DAAC) [37].
The dataset is a 16-day composite and 250-m spatial resolution. The time series MODIS NDVI
contains a significant amount of noise due to cloud contamination, aerosol and atmospheric effect [38].
The Savitzky–Golay (S–G) smoothing filter [38] was applied to remove the noise from the time series
MODIS NDVI data. It is essential to remove the noise for the further use of the time series, particularly
for the accurate extraction of temporal features [39]. An image based S–G filter was implemented
in the IDL programming language for the purpose. The S–G filter smoothed the data by applying
a locally adaptive moving window with a polynomial least square regression fit for approximating
the noisy data. The filter well preserved the heights and widths of time series curve. In Figure 2, the
original and smoothed NDVI are shown for an agriculture landscape. Finally, the smoothed dataset
was re-projected to UTM, Zone 46N and resampled at 30-m spatial resolution by the Nearest Neighbor
method. The resampled dataset was further used as an input to the image fusion process.

Sensors 2017, 17, 10  3 of 17 

 

in the areas where the irrigation facilities are available. This study considers only the kharif season 
paddy rice for the mapping. 

 

Figure 1. Location map of study site in Assam, India. The background image is a HJ-1A false color 
composite (red: NIR band, green: Red band, blue: Green band) of 5 December 2014.  

3. Dataset and Pre-Processing 

3.1. MODIS NDVI Data 

The Moderate resolution imaging spectroradiometer (MODIS) (MOD13Q1, Collection 5) 
Normalized difference vegetation index (NDVI) dataset covering the study area from April 2014–
March 2015 (Table 1) were acquired from the Land Processes Distributed Active Achieve Center (LP 
DAAC) [37]. The dataset is a 16-day composite and 250-m spatial resolution. The time series MODIS 
NDVI contains a significant amount of noise due to cloud contamination, aerosol and atmospheric 
effect [38]. The Savitzky–Golay (S–G) smoothing filter [38] was applied to remove the noise from the 
time series MODIS NDVI data. It is essential to remove the noise for the further use of the time series, 
particularly for the accurate extraction of temporal features [39]. An image based S–G filter was 
implemented in the IDL programming language for the purpose. The S–G filter smoothed the data 
by applying a locally adaptive moving window with a polynomial least square regression fit for 
approximating the noisy data. The filter well preserved the heights and widths of time series curve. 
In Figure 2, the original and smoothed NDVI are shown for an agriculture landscape. Finally, the 
smoothed dataset was re-projected to UTM, Zone 46N and resampled at 30-m spatial resolution by 
the Nearest Neighbor method. The resampled dataset was further used as an input to the image 
fusion process.  

 
Figure 2. Raw and smoothed time series NDVI for a randomly selected pixel of an agriculture 
landscape. 

Figure 2. Raw and smoothed time series NDVI for a randomly selected pixel of an agriculture landscape.



Sensors 2017, 17, 10 4 of 17

3.2. HJ-1A/B Data

The Chinese HJ-1A/B is a sun-synchronous earth observation satellite on board with two
Charge-coupled device (CCD) sensors. The sensors acquire the data with 30-m spatial resolution at
nadir angle using four spectral bands ranging from visible to near-infra red wavelengths. The satellite
provides rapid coverage of grounds with a four-day repeat cycle. The dataset was downloaded from
the China Center for Resources Satellite Data and Application, CRESDA [40] (Table 1). The downloaded
dataset was of good quality with less than 10% cloud cover. The technical specification of the dataset
is provided in Table 2. The following pre-processing procedures were performed on the datasets:
(a) radiometric calibration using the calibration coefficient provided by CRESDA [40]; (b) atmospheric
correction using the FLAASH model available at ENVI; (c) geometric correction; (d) removing of bad
observations including thin clouds and shadows by using the modified neighborhood similar pixel
interpolation (NSPI) approach [41]; and (e) mosaicking and clipping in the extent of the study area.

Table 1. Data sets used in the study.

Satellite Sensor Acquisition Time
(dd-mm-yyyy)

Paddy Rice
Phenology Stage

HJ-1A CCD2 22-10-2014 Heading
HJ-1A CCD1 05-12-2014 Ripening
HJ-1B CCD1 09-03-2015 Planting

MODIS Terra 07-04-2014 to 22-03-2015 Sowing–Harvesting

Table 2. Technical specifications of HJ-1A/B.

Satellite Sensor Bands Spectral
Range (µm)

Spatial
Resolution (m)

Swath
Width (km)

Revisit
Period (day)

HJ-1 A/B CCD 1 0.43–0.52 30 360 4
2 0.52–0.60
3 0.63–0.69
4 0.76–0.90

3.3. Field Data

To assist the accuracy assessment of the paddy rice map, an extensive field survey was carried out
in May 2015. A detailed survey route map was designed according to the recent road maps as available
in the fine resolution Bing images [42]. The data was collected using a GPS-video-GIS instrument
(GVG) developed by Wu and Li [43]. The GVG instrument was installed on a vehicle travelling along
the designed routes. The camera integrated with the GVG snaps photos at a specified time interval and
the GPS receiver records the geo-location of each photo [43]. A distance of about 400 km was travelled
along the designed routes collecting more than 1800 ground points (see Figure 1). Each photo collected
by the GVG survey was visually interpreted using the GVG visual interpretation Graphical User
Interface (GUI) and assigned respective land use land cover (LULC) classes to the photos. The collected
photos include the paddy fields and major LULC classes. All of the field photographs will be shared to
the user community by the ‘Global Geo-Referenced Field Photo Library’ a web-based data portal open
to the public, researchers and stakeholders [44].

3.4. Ground Reference Data Generation

A ground reference map was created by analyzing the following auxiliary data sets: (a) LULC
of 2013–2014 at the scale of 1:250,000 and 1:10,000 available at the Bhuvan geo-portal [45]; (b) field
surveyed data of 2015 and (c) high resolution images from Bing Maps. These datasets were analyzed
using the open source geographic information system QGIS [46], and all of the rice fields of 2014–2015
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were created by digitizing manually. The ground reference map assisted in sample selection for training
the classifiers and accuracy assessment.

3.5. Available Agriculture Statistics Data

Agriculture statistics data for the year 2012–2013 was obtained from the Director of Economics and
Statistics, Government of Assam [47]. The dataset provides the estimation of cropped area, yield and
production of major crops at the district level. To validate the paddy rice map, the derived rice area was
compared to the agriculture statistics data. During the time of this research, the latest government’s
statistics data were not available, and, therefore, the research relied only on the 2012–2013 dataset.
There were no significant interannual variabilities of temperature and rainfall between the year of
2012–2013 (statistics year) and 2014–2015 (mapping year). Therefore, the differences in the paddy rice
areas in these years were attributed only to the farmer’s decisions and the local weather conditions.

4. Methods

4.1. General Overview of Procedure

Figure 3 presents the workflow of the methodology. At first, all of the remote sensing datasets
were pre-processed so that datasets are of good quality. The pre-processing includes smoothing of the
time series MODIS NDVI data using the S–G filter, atmospheric and geometric correction of the HJ
CCD data. Second, the MODIS NDVI dataset was fused with the HJ CCD derived NDVI data using the
enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) [33]. Third, temporal
features were extracted from the fused time series NDVI data. Fourth, the HJ CCD imageries were
segmented for the OBIA based paddy rice classification and the temporal features were combined
with the segmented images. Fifth, the segmented images were classified using the two decision tree
classifiers: classification and regression tree (CART) [48] and C4.5 [49]. Finally, accuracy assessment
was performed to evaluate the utility of temporal features extracted from fused time series for OBIA
based paddy rice classification of fine resolution data.
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4.2. Fusion of Time Series MODIS NDVI and HJ CCD NDVI

ESTARFM [33] was selected to fuse the high temporal resolution MODIS NDVI and the
high spatial resolution HJ CCD NDVI. ESTARFM is an enhanced spatial and temporal adaptive
reflectance fusion model, originally developed for the fusion of MODIS and Landsat data for complex
heterogeneous regions. The ESTARFM method calculates the pixel values based upon the spectral
similarity between the fine and the coarse resolution pixels. The ESTARFM algorithm observed the
reflectance trend between two time points and applied the spectral unmixing technique for better
prediction of reflectance changes in heterogeneous landscape [33]. In this study, two pairs of HJ CCD
and MODIS images acquired at T1 and T2 days, as well as a MODIS image on the prediction day (PT)
between the date of image pairs, were used for the fusion as shown in Figure 4. The pre-processed
MODIS NDVI time series dataset was reprojected and resampled to the HJ CCD resolution and extent
using the MODIS Reprojection Tool (MRT), and used the two datasets as an input to the ESTARFM
fusion. In the fusion process, the HJ CCD image pairs nearest to the date of MODIS images were
selected in order to minimize the fusion uncertainty. The fine resolution HJ CCD images acquired at
the three key growing stages (planting, heading and ripening) of paddy rice were used to capture
the reflectance changes caused by phenology. The fusion generated the time series NDVI at 30-m
spatial resolution at 16-day time intervals. Figure 5 shows an actual and fused NDVI image. Many
previous studies demonstrated that the fusion model generates accurate synthetic images [34,50–53];
these studies also demonstrated that the fusion generated time series is usually a reasonable choice for
the studies of vegetation and seasonality [34,50–53].
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4.3. Temporal Feature Extraction and Ranking

A set of temporal features was extracted from the fused NDVI time series data (Table 3).
The temporal features characterize the seasonal photosynthetic activity and phenological patterns
of plants [54]. Each crop type has distinctive temporal features. Therefore, they are helpful for crop
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classification. The maximum, the minimum, the mean and the standard deviation values were directly
calculated from the stack of the time series. The base NDVI value (BV), the amplitude (Amp), the
left derivative (LD), the right derivative (RD), the large seasonal integral (LI) and the small seasonal
integral (SI) were calculated by fitting the NDVI time series to the asymmetric Gaussian function [55].
The BV is related to soil conditions, LD and RD are the greening and browning rate of vegetation,
respectively, LI are related to vegetation production over the growing season and SI is an indicator of
seasonally active vegetation production for a growing season.

The optimal features were evaluated and selected by the ReliefF algorithm [56] to reduce the data
redundancy, inter correlation, computational complexity and classification uncertainty. The ReliefF
algorithm estimates the quality of the features by ranking them according to the distances between
the nearest instances, characteristics of data including the multiclass problems, incompleteness
and noise [56]. The ranks of the features evaluated by ReliefF are provided in Table 4. The top
ten best-ranked features were further composited with the HJ CCD spectral data for paddy rice
classification. The composited dataset contains spectral information from the HJ CCD data as well as
plant phenological information from the temporal features.

Table 3. Feature definitions and their relationships to vegetation.

Features Definition Relations to Vegetation

Maximum value The largest NDVI value of the time series Seasonal highest greenness value
Minimum value The smallest NDVI value of the time series Seasonal lowest greenness value

Mean value The mean NDVI value of the time series Mean greenness level

Standard deviation value The standard deviation value of NDVI
time series Standard deviation of greenness level

Base NDVI value (BV) The average of the left and right minimum
value of fitted function Soil background conditions

Amplitude (Amp) The difference between the maximum and the
base NDVI value Seasonal range of greenness variation

Left derivative (LD)
The ratio of the difference between the left
20% and 80% levels to the corresponding

time difference
Rate of greening and vegetation growth

Right derivative (RD)
The ratio of the difference between the right

20% and 80% levels to the corresponding
time difference

Rate of browning and senescence

Large seasonal
integral (LI)

The sum of the representative function with a
positive fit during the growing season

Vegetation production over the
growing season

Small seasonal
integral (SI)

The sum of the difference between the fitted
function and the base level during the

growing season

Seasonally active vegetation production
over the growing season

23 NDVI layers Fused time series NDVI of one year Seasonal variation of greenness over a year

4.4. Image Segmentation for OBIA

The first step of an object-based image analysis is image segmentation. The optimal spatial
units for our classification are the parcels cropped with rice. The parcels can be optimally generated
as an object or segment by applying the image segmentation methods. The image segmentation
method divides the image into small objects with certain homogeneity criteria and add additional
spectral, spatial and textural information to it [26]. The multi-resolution segmentation [57] algorithm
implemented in eCognition [27] was used for the purpose. The blue, green, red and near-infrared (NIR)
bands of HJ CCD images were utilized for the segmentation. In the multi-resolution segmentation,
scale parameter is a key factor for obtaining the best segmentation results. To estimate the optimum
scale parameter, local variance (LV) of object heterogeneity was used as a measure [58]. The image was
segmented repeatedly with multiple scales in a bottom-up manner, and the LV was calculated for each
scale. Then, a graph was constructed by plotting the LV values against all of the scale parameters to
investigate the changes in object heterogeneity. The thresholds in the amount of change of LV (ROC)
value indicates the most appropriate scale parameter for the image.
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In this study, the images were segmented at 50 different scale levels from 1 to 50 by the bottom-up
approach using the multi-resolution segmentation method. The shape and compactness was kept
at 0.1 and 0.7, respectively. The plotted graph between the LV and the ROC is shown in Figure 6.
As noticed from the figure, the estimated scale parameter is 25, where the LV changes abruptly. Visually,
the segmented objects had comparable matching with the actual field sizes. After the segmentation,
the mean value of all the selected features were calculated and assigned to each object.
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4.5. Classification Methods

Two classification algorithms C4.5 and classification and regression tree (CART) were employed.
C4.5 is a decision tree algorithm developed by Quinlan [49]. C4.5 classifies each object by constructing
decision tree based on the training dataset. To construct the tree, the algorithm splits the datasets
into two subsets based on the highest normalized gain, and this process repeats on each subset
until all the attributes belong to the same class [59]. The algorithm was operated inside the WEKA
machine learning tool [60]. During the classification, a pruning process was used using a nested 5-fold
cross-validation to achieve the optimize classification accuracies by reducing over-fitting.

For comparison purposes, CART was also applied to classify the same dataset. CART is a statistical
analysis based decision tree classifier widely used in remote sensing applications [61]. The tree
structure of CART is determined by recursively splitting the data by threshold until ending points or
terminal nodes are achieved [62]. The tree prune was conducted based on a 5-fold cross-validation
process. CART was implemented using WEKA.

4.6. Training and Validation Sample Selection

Segmented image objects were selected as training as well as validation samples for the C4.5 and
the CART classifiers. The samples were randomly collected using the ‘select samples’ tool provided
in eCognition with the assistance of reference data and the knowledge of actual field situations.
The sample objects were distributed uniformly representing the entire study site. A total of 200 pure
samples were collected. Out of the total samples, 70% was used as training samples while the remaining
30% was used for the classification accuracy assessment.

4.7. Accuracy Assessment

Accuracy assessment was conducted by the confusion matrix and the kappa coefficient values [63].
The classified maps were compared to a set of randomly collected reference samples [63]. The image
objects were selected as the sampling units, as this helps to assess the classification accuracy as well as
the segmentation efficiency [59]. Subsequently, overall accuracy, minimum sensitivity (MS) and kappa
coefficient were calculated to validate the classification results [63,64]. MS measures the accuracy of
individual class objects. In this study, MS represents the accuracy of paddy rice crops. The details,
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discussion and justification of MS can be found in [65]. Additionally, our satellite-derived paddy areas
were compared to the agriculture statistics data to assist the validation.

5. Results

5.1. Temporal Feature Analysis and Selection

Table 4 presents the rank of the top 15 features, where the larger the rank value, the more important
feature is. Interestingly, five extracted temporal features were selected in the top 15, indicating the
importance of temporal features in specific crop classification. The NDVI layers were selected from the
two time windows: January–April and July–December. The time windows were coincided with the
two paddy rice growing periods (kharif and rabi) of the region. This suggests that the phenological
trajectory is crucial for differentiating paddy rice.

Table 4. Top 15 features ranked by their importance for classification.

No. Features Rank

1 Standard Deviation value 0.09315
2 NDVI-2015017 0.08965
3 NDVI-2015065 0.08347
4 NDVI-2014113 0.07607
5 NDVI-2014193 0.07595
6 NDVI-2014337 0.07456
7 NDVI-2014257 0.07451
8 LI 0.07302
9 Minimum value 0.07166
10 NDVI-2015001 0.07054
11 NDVI-2015081 0.07015
12 Mean value 0.07004
13 NDVI-2014209 0.07003
14 Maximum value 0.06843
15 NDVI-2014225 0.06827

5.2. Classification Results of the Proposed and the Traditional Approaches

The paddy rice areas were classified using the four combinations keeping the single-date October
spectral image (OI) as a baseline for comparison. The combinations were: (1) (OI); (2) OI+ all temporal
features; (3) OI+ best-selected temporal features; and (4) temporal spectral images. The classification
was conducted using two tree based classifiers: C4.5 and CART. Classification results revealed that
the paddy fields were primarily distributed in the plain areas over the region (Figures 7 and 8).
The classification results of combined spectral image with temporal features (combinations 2 and 3)
were more accurate than using only the spectral image (combination 1). When using only the spectral
image (combination 1), some objects were not classified as a paddy rice due to the similarity in spectral
characteristics of paddy rice to the other land cover classes. On the other hand, when using the temporal
features with the spectral image, the paddy rice was better discriminated from the other crops that have
similar spectral properties to that of the paddy rice. The temporal features represented the seasonal
variation of crops that helped with better classification, as seasonal characteristics differ according to
crop types. Some confusion was observed in identifying paddy rice in grassland-dominated areas when
using only the spectral image. However, inclusion of temporal features in the classification process
removed this confusion and increased the classification accuracy. The classification of best-selected
temporal features (combination 3) yielded more accurate results than using all the candidate temporal
features. The feature selection strategy reduced the data redundancy and contributed to the improved
results. The best classification result was obtained when multi-temporal spectral images (combination
4) were used. Although fragmented landscape impacted the classification accuracy, the presented
OBIA minimized it by considering the pixel dissimilarity for the same class.
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5.3. Classification Accuracies

Classification accuracies of the composite images were shown in Table 5. A set of temporal features
and multiple spectral images were explored in this study for paddy rice classification. As the baseline
for benchmarking the temporal feature based classification, the single-date October spectral image
(OI) with the C4.5 classifier yielded overall classification accuracy of 65.62% and a kappa coefficient
of 0.33. The corresponding MS of the paddy rice was 57.70. Compared to the single-date OI image,
the OI+ all temporal features with the C4.5 classifier achieved a significantly improved classification
with the overall classification accuracy increased from 65.62% to 81.25%, and the kappa coefficient
increased from 0.33 to 0.61. The classification of OI+ best-selected temporal features provided more
accurate results than the single date OI and the OI+ all temporal features. The overall accuracy
and kappa coefficient for the OI+ best-selected temporal features were 84.37% and 0.68, respectively.
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The classification of temporal spectral images outperformed all other composites when using the
C4.5, yielding an overall accuracy of 90.62% and kappa coefficient of 0.81. The increment of the
overall accuracies and the kappa coefficient were equal to 15.63%–18.75% and 0.28–0.35, respectively,
when adding the temporal features to the OI image. In the case of the CART algorithm, the highest
accuracy (87.50%) was obtained from the OI+ best-selected temporal features. For all the cases,
corresponding MS was increased by the use of temporal features. The results from both the C4.5 and
CART demonstrated the improvement in classification accuracies due to the use of temporal features.

Table 5. Classification accuracies of four composites.

Strategy
C4.5 CART

CCR (%) Kappa
Coefficient

Paddy Rice
MS (%) CCR (%) Kappa

Coefficient
Paddy Rice
MS (%)

Single-date spectral image of
October (OI) 65.62 0.33 57.70 56.25 0.14 52.40

OI+ all temporal features 81.25 0.61 90.90 81.25 0.61 90.90
OI+ best-selected temporal features 84.37 0.68 81.30 87.50 0.75 82.40
Temporal spectral images 90.62 0.81 87.50 78.12 0.55 78.60

5.4. Comparison to Available Agriculture Statistics Data

To further validate the results, we compared the derived paddy rice areas of 2014 to the statistics
reported data of 2012 to determine how accurately we captured the paddy field extent (Table 6).
The derived paddy areas were from the classification results of OI+ best-selected temporal features
by the C4.5 classifier. The comparison shows that satellite-derived paddy rice areas agree with the
government reported statistics data, supporting the proposed approach for mapping total rice area
(Figure 9). However, underestimation was observed obviously due to the comparison of different
years’ datasets and the inability of identifying small paddy fields with the 30-m spatial resolution
satellite data.Sensors 2017, 17, 10  12 of 17 
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Table 6. Comparison between the derived paddy rice area and the agricultural statistics. The derived
paddy area corresponds to the result of OI+ best-selected temporal features with the C4.5 classifier of
Figure 7.

Districts
Derived Paddy Area

(2014–2015)
Agriculture Statistics

(2012–2013)

(Thousand Hectares) (Thousand Hectares)

Barpeta 70.83 72.94
Bongaigaon 39.50 48.85

Goalpara 41.91 57.61
Kamrup 96.70 101.52
Nalbari 69.16 70.13

Total 318.10 351.05

6. Discussion

Crop type discrimination using remote sensing has never been easy [66,67]. The one of the main
reasons behind this is the spectral variability within the same crop due to the variable crop development
schedule, influence of local weather and management practices [68]. Therefore, it is essential to consider
multi-temporal observation representing crop phenology for accurate classification [67,69]. This study
proposed a paddy rice classification approach that integrates temporal features from fused time
series NDVI with the fine resolution spectral data. The temporal features contained the crop growth
information, which represents crop phenology. Different crops have their specific phenology behavior,
thus use of temporal features increase the effectiveness of paddy rice classification by providing the key
crop growth stages. From the results, it was noticed that the classification uncertainties were minimized
in paddy rice, grasslands and other crops when temporal features were used. Dense grasslands and
some other crops have spectral properties similar to the paddy rice, but they have distinct phenology
characteristics. The proposed approach showed its capability of efficient paddy rice classification in
heterogeneous landscapes where several types of crops and grasslands are cohabited.

The OBIA approach proved to be robust for paddy rice classification. The OBIA considers
groups of pixels for classification that minimize the variability of the same fields and lead to accurate
identification of field boundaries. The OBIA showed advantages in the classification of fragmented
paddy fields. The croplands are generally fragmented in the region [70]. The minimum parcel size
of paddy fields in the study area was approximately 110 m × 110 m, similar to that of the statistics
report [71]. This study demonstrated that OBIA based classification of HJ CCD images effectively
identifies the fragmented and relatively small paddy fields.

The integration of MODIS and HJ CCD demonstrated advantages for paddy rice mapping.
No single satellite sensor provides a dense time series at high spatial resolution due to the long revisit
cycles and presence of cloud and snow [72]. The issue becomes more serious for rice growing regions
in humid tropical climates, where cloud contamination is very frequent [73]. To increase the temporal
frequency at higher spatial resolution, high temporal information MODIS was integrated with the high
spatial information HJ CCD using a fusion process. This study demonstrated how to utilize a limited
number of fine resolution images for the classification improvement by fusion process. The study
showed that temporal features extracted from the fused dataset of MODIS and HJ CCD improved
the classification of fine resolution spectral data. The launch of GF-1, Landsat 8 and Sentinel 2 has
further increased the temporal frequency of 30-m spatial resolution data available for the fusion
process. The proposed approach has great potential for large scale paddy rice mapping at 30-m spatial
resolution integrating multi-source remote sensing data.

The 250-m MODIS NDVI time series was enhanced to 30-m spatial resolution by the ESTARFM
fusion process. For the fusion, three fine resolution HJ CCD NDVI images were used as a base image.
The base images covered the complete growing season of the paddy rice. Therefore, accuracy of the
fused time series was not significantly decreased despite only three base images. Ideally, if more base
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images are used, higher fidelity is expected for the predicated finer resolution NDVI. The used base
images were from the planting, heading and the ripening time of the paddy season that helped the
ESTARFM to track the phenological changes in order to keep the actual trend of the fused time series.
Adopting the index-then-blend [74] approach, the ESTARFM was directly applied to the NDVI time
series, thereby producing a more accurate fused time series. This study demonstrated the usefulness
of a few fine resolution images for the improved paddy rice classification by fusing the coarse and fine
resolution data.

In this study, an approach has been demonstrated for paddy rice mapping. Generally, the paddy
rice mapping algorithm based on optical images are categorized into three subgroups. The first category
utilizes a single clear sky satellite image to perform statistically based unsupervised classification,
supervised classification, or visual interpretation of the images in order to manually map the paddy
rice areas [75–77]. The second category considers multi-temporal images to perform parametric or
non-parametric based supervised classification [22,68]. The third category uses time series images for
phenology and pixel based paddy rice mapping (PPPM) [19,31]. For the first two categories, various
outcomes are expected when using varying training samples from different times or regions. It is often
difficult to reuse the classifier rules and the parameters of these methods due to the existing spectral
heterogeneity in different regions and time. On the other hand, the PPPM based algorithms of the
third category are less affected by the aforementioned problems. The presented approach in this study
belongs to the third category. The presented approach utilized the temporal features extracted from
the fused NDVI time series. The temporal features represent phenology that helps make paddy rice
classification more efficient. The widely used PPM based algorithm primarily requires a shortwave
infrared band (SWIR) to calculate the water index, which is not available in many satellite sensors.
Alternatively, the proposed approach extracts the temporal information from the time series coarse
resolution images and integrated them with the fine resolution spectral features for effective mapping.

There are several potential factors that affected the results of the proposed approach. First, the
temporal features are only the statistical values of time series NDVI. Other features such as start of
season, end of season, and end and length of season may be included in temporal features. Second, the
resolution difference between the MODIS (250-m) and the HJ CCD (30-m) may cause some uncertainties
in the results. Although the MODIS images were enhanced by using fine resolution HJ CCD images,
the fusion process may increase some uncertainty. Third, mixed pixels were not completely removed.
Some paddy fields were very small for detection with the 30-m resolution of the HJ CCD.

7. Conclusions

This study proposed an OBIA based paddy rice mapping approach that integrates temporal
features of coarse resolution data with the spectral features of fine resolution data. The method’s
application in northeast India revealed its efficiency, with an overall accuracy of 84.37%. The results
indicated that the temporal features extracted from coarse resolution time series significantly improves
the classification of the spectral data. Quantitatively, for a single spectral image, classification accuracy
increased up to 18.75% from the use of temporal features. The estimated paddy areas were analogous
to the agricultural statistics data with an underestimated value. The proposed approach can also be
used for other crop type identification through changes in training datasets. The proposed approach
has great potential in regional paddy rice mapping of fine resolution remote sensing data and more
accuracy is expected, especially in homogeneous landscapes.

Future work could be conducted on: (1) investigating the effectiveness of temporal features for
fractional paddy rice mapping in order to address the sub-pixel problem; (2) investigating the texture
and geometric features for paddy rice mapping and (3) investigating other classification techniques
(e.g., random forest, neural networks) or other additional indicators that may enable better paddy
rice classification.
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