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Abstract: The optimal dispatching model for a stand-alone microgrid (MG) is of great importance
to its operation reliability and economy. This paper aims at addressing the difficulties in improving
the operational economy and maintaining the power balance under uncertain load demand
and renewable generation, which could be even worse in such abnormal conditions as storms
or abnormally low or high temperatures. A new two-time scale multi-objective optimization
model, including day-ahead cursory scheduling and real-time scheduling for finer adjustments,
is proposed to optimize the operational cost, load shedding compensation and environmental benefit
of stand-alone MG through controllable load (CL) and multi-distributed generations (DGs). The main
novelty of the proposed model is that the synergetic response of CL and energy storage system (ESS)
in real-time scheduling offset the operation uncertainty quickly. And the improved dispatch strategy
for combined cooling-heating-power (CCHP) enhanced the system economy while the comfort is
guaranteed. An improved algorithm, Search Improvement Process-Chaotic Optimization-Particle
Swarm Optimization-Elite Retention Strategy (SIP-CO-PSO-ERS) algorithm with strong searching
capability and fast convergence speed, was presented to deal with the problem brought by the
increased errors between actual renewable generation and load and prior predictions. Four typical
scenarios are designed according to the combinations of day types (work day or weekend) and
weather categories (sunny or rainy) to verify the performance of the presented dispatch strategy.
The simulation results show that the proposed two-time scale model and SIP-CO-PSO-ERS algorithm
exhibit better performance in adaptability, convergence speed and search ability than conventional
methods for the stand-alone MG’s operation.

Keywords: stand-alone MG; SIP-CO-PSO-ERS; two-time scale optimized model; improved CCHP
dispatch strategy; multi-scenario; economic dispatch
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1. Introduction

Owing to the great pressure of the global energy crisis and environmental pollution [1], much
effort has been devoted to integrating different kinds of distributed generations (DGs) into microgrids
(MGs) in order to reduce carbon emissions and improve power quality [2]. MGs could operate in
grid-connected or islanded mode, managing all kinds of DGs effectively [3]. This is an ideal way
to realize local coordination control and optimized operation of multi-DGs, including micro-gas
turbines (MTs), diesel engines (DEs), fuel cells (FCs), photovoltaics (PVs), wind turbines (WTs), small
hydropower and some energy storage devices such as flywheels, super capacitors and accumulators [4].
Most of the existing MGs are designed to work primarily under on-grid mode, excluding emergency
situations [5]. However, the impact of hybrid renewable energy sources (HRES) to power system
should be paid much attention. Researches such as the unsymmetrical faults [6], improvement of
transient stability [7], ground fault current [8] were conducted for MG and they are beneficial to the
application of renewable energies. On the other hand, more and more attention is drawn to study the
stand-alone MG for its capability to supply power economically in some other particular applications,
such as MGs for islands or remote areas without power grids [9,10].

For a small but important power system like MG, the problems of voltage balance [11], fault
current limit and power system stability are also very important. All in all, the power quality [12]
must be guaranteed through a series means such as storage coordination [13], dynamic control [14]
or demand response (DR) [15]. Fortunately, all these operation requirements could be included into
the optimized operation model as constraints. In order to take full advantages of stand-alone MGs
and promote their popularization, researchers around the world have devoted momentous efforts
to the optimal operation of stand-alone MGs [16]. However, the uncertainty of renewable power
generation because of weather conditions [17–19] and load demand challenges the economic operation
a lot. Because of the uncertainty, the predicted data of renewable energy and demand is subject
to errors, which negatively affect the optimized generation schedules and operation plans [20,21].
As a result, the economic operation cannot be realized and even the power balance would be broken
in extreme conditions such as storms, abnormally high or low temperatures, or part damage of
distribution facilities.

To mitigate the impact of uncertainty on optimized operation, energy storage devices were
introduced to ensure the safety and reliability of the MG with consideration of their lifetime
characteristics [22]. However, the advantage of fast responses for batteries was not used to its full extent
and the environmental benefit was not included in the optimization objective. Secondly, the stochastic
scheduling method was applied in the MG’s optimized operation to decrease the unfavorable effects
brought by the uncertainty [23–25]. To a certain degree, the impacts of uncertainty were impaired
by transferring the optimal operation into a deterministic optimization problem with a large number
of stochastic scenarios. However, the fundamental issue of uncertainty was not resolved because
the stochastic method merely dealt with the problem by considering more scenarios while no one
could take all scenarios into account due to the complexity of the environment. Another trouble was
that the computed burden increased accordingly. Thirdly, with the development of DR, the demand
side has been proved an effective tool to improve system reliability and maintain power balance by
responding to the dispatch information [26–28]. The applications of DR strategies may help to settle the
intermittency of renewable resources by devoting to the balance between energy supply and demand,
thus minimizing the operation costs and providing a more reliable grid management [29]. Although
DR was considered in studies such as [30–32], the expense for DR was not taken into account and the
constraints for DR were not described in the optimized model.

To address these problems and realize the optimized operation of stand-alone MG, this paper
establishes a multi-objective optimized model for a stand-alone MG, consisting of PV, WT, FC, DE,
MT and an energy storage system (ESS) based on the coordinated operation among sources-load-ESS
and an improved dispatch strategy of the MT’s CCHP operation mode. It should be pointed that
multi-types of micro sources and ESS are considered at the same time so as to improve the stability



Energies 2017, 10, 1936 3 of 23

and flexibility of stand-alone MG by providing various choices to satisfy the power balance and
coping with emergency circumstances. And the installation cost increase of this structure is following
therefore. Controllable load (CL) is taken into account as DR resources to improve the reliability.
The optimized model is divided into two-time scales in order to deal with the uncertainty of load
demand and renewable power generation. The first time scale model is day-ahead optimization,
which is to seek a global optimal solution for all the generation resources, CL and ESS, based on the
day-ahead predicted data. The renewable integration could be further optimized if storage systems
are coupled with DR in order to enlarge load-shifting capacity [33,34]. Therefore, the coordinating
operation of ESS and CL are introduced into the second time scale model, called real-time optimization,
to adjust the optimized schedule considering the real-time weather condition and demand based on
the day-ahead scheduling.

In terms of the optimization solution, various algorithms are developed recently, such as basic
particle swarm optimization (PSO) [35], ε-constraint method [36] and non-dominated sorting genetic
algorithm II (NSGA-II) [37]. All these algorithms achieved relatively good result in the setting of
MGs and models. However, the performance needs to be further studied when it comes to different
scenarios. PSO is a stochastic and population-based evolutionary algorithm and has gained popularity
in the optimized operation of MGs due to its superiorities of having few constraints on fitness function,
simple principle, easy coding and rapid convergence speed [38]. However, when major fluctuations
occur in the base data of optimized model resulting from different scenarios during stand-alone MG’s
optimized operation, two problems would appear in PSO algorithm: (i) the local and global search
ability is not good enough to find an excellent solution in a relatively short time; (ii) the premature
phenomenon would occur due to the loss of population diversity in the later iterations. Moreover,
conditions could be worse especially for the model with complex variables and intricate scenarios [39].
Chaotic optimization (CO) has a strong local search capability profiting from the characteristics of
randomness, ergodicity and inherent regularity [40] which would be effective to the optimization
problem with many variables and the nature of chaos could also decrease the impact that comes from
renewable energy or load uncertainty. In addition, an adequate elite retention strategy (ERS) could
further improve the solution quality, as well as the convergence speed, even under the inconstant
conditions [41]. In order to solve the problems of poor search ability and premature in PSO, this paper
introduces a duel-step modification (search improvement process and CO) and ERS into PSO to present
a Search Improvement Process-Chaotic Optimization-Particle Swarm Optimization-Elite Retention
Strategy (SIP-CO-PSO-ERS). SIP-CO-PSO-ERS was applied to solve the day-ahead scheduling model,
while linear programming was used to deal with the real-time scheduling model due to the simplicity
of its model which contains fewer decision variables and constraints.

The main contributions of this paper can be summarized as follows:

• A new two-time scale multi-objective optimization model which aims to optimize the operation
cost, load cut compensation and environmental benefit of stand-alone MGs that consists of electric,
thermal and cooling energy styles based on CL and multi-DGs; the synergetic response of CL
and ESS (battery in this paper) in real-time scheduling offsets the operation uncertainty quickly,
and the improved dispatch strategy for CCHP enhances the system economy, guaranteeing
comfort feel;

• A duel-step modification and ERS are introduced into PSO to present SIP-CO-PSO-ERS, which
has a strong search capability and fast convergence speed; four typical scenarios are designed
according to diverse situations to verify the adaptation of SIP-CO-PSO-ERS and proposed
optimized model.

This paper focuses on the achievement of the presented points and is organized as follows.
Section 2 gives descriptions of the two-time scale model. Section 3 gives a detail explanation of the
proposed SIP-CO-PSO-ERS method. Simulation is given in Section 4 to illustrate the advantages and
validity of the proposed algorithm and model. Section 5 gives a conclusion.
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2. Optimization Model

2.1. The CCHP Model and Improved Dispatch Strategy

2.1.1. The CCHP Model of MT

Generally, the efficiency of MTs’ working in electricity generation is 30% with full load, or 10~15%
with half load. It is very inefficient, letting much heat energy go to waste. Actually, the efficiency
could increase to more than 80% if the remaining heat energy is reused by CCHP operation mode [42].
CCHP is composed of a generation module and a heat recovery module, and the latter is further split
into an absorption chiller (APC) and a heat-exchanging system (HES). The generation, APC and HES
modules export electricity, cold and heat energy, respectively. The structure is shown in Figure 1.
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The cost model adopted in this paper for MT is expressed by (1) and the mathematical description
of heat recovery module is expressed by Equations (2)–(4):

CMT = Cnl ×
PMT × ∆t

ηMT
(1)

QMT =
PMT × ∆t

ηMT
(1− ηMT − ηl) (2)

QH = QMT × ηH.REC × ξH (3)

QC = QMT × ηC.REC × ξC (4)

where CMT represents the fuel cost of the MT in the operation time; Cnl stands for the natural gas
price; PMT is the electricity energy produced by the MT, and ηMT represents MT’s efficiency; ∆t is
the dispatch interval time, and it is 1 h in this paper; QMT is the residual heat of exhaust air after
power generation; ηl represents the heat loss factor of the CCHP system; QH and QC represent the
heating and cooling capacity generated from the residual heat of exhaust; ηH.REC and ηC.REC are the
heat and cooling efficiency, respectively. ξH and ξC stand for the heating and refrigeration coefficient
respectively. For detailed information about PV, WT, FC, DE and ESS, please refer to [43–45].

2.1.2. Improved CCHP Dispatch Strategy

In general, MT is designed to operate in CCHP mode. The electric power generated by MT is only
decided by the whole MG’s thermal or cooling load. On this occasion, the electric power output of MT
is converted from a decision variable to a constant value which is related to the thermal or cooling
load only. Consequently, the optimization model for MG is simplified and the effect devoted by MT
to operation performance is weakened. Based on the fact that little variation (5% in this paper) in
environmental parameters will not have great impacts on people’s comfort fell, an improved dispatch
strategy for CCHP was presented, as shown in Figure 2 (taking the case of thermal load for example).
The basic electric power is determined by MG’s thermal load, while the upper limit rises 5% and the
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lower limit declines 5% due to the variation margin of indoor environmental parameters. Intuitively,
the columns in Figure 2 stand for the adjustable range of an MT’s electric power generation.
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Figure 2. Adjustable range of an MT’s electric power generation.

2.2. Overview of Studied Stand-Alone MG

Figure 3 shows the MG studied in this paper with ESS, FC, PV, WT, MT and DE. Storage battery
(SB) is selected as ESS in this paper. In this system, improved dispatch strategy for CCHP was applied.
Various types of micro sources and ESS are integrated together in the MG because the operation
reliability is the first issue especially for a stand-alone MG which lacks the support from utility grid.
As a result, the installation cost is not the most important in some cases such as independent islands or
scientific surveys in remote areas. And multi-types of generations could improve the operation stability
and reliability. The objective is to get the optimal output combination of DGs and realize optimized
operation under the conditions of renewable energy and demand uncertainty. A two-time scale model,
consisting of day-ahead scheduling and real-time scheduling, is established for the optimal operation
of the stand-alone MG.
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Figure 3. The structure of stand-alone MG.

All the controllable DGs and CLs are dispatched in the day-ahead scheduling on the basis of 24-h
forecasted output of WT and PV, while only ESS and CL are dispatched in the real-time because of
their fast response speed, and MT or WT was assistant dispatch means at the same time. The overall
optimized process is shown in Figure 4.
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Day-ahead scheduling provides the rough dispatch scheme while the real-time scheduling makes
small adjustments based on the results of day-ahead scheduling to smooth out the actual fluctuations of
load and renewable energy relative to predicted data, reducing the disadvantageous impacts. It should
be noted that the battery will be charged only in the first time scale.
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2.3. The Day-Ahead Scheduling Optimized Model

The first time scale optimization is the day-ahead scheduling, which dispatches the primary
outputs of PV, WT, MT, FC, DE, ESS and load control quantity (LCQ) in this paper. For stand-alone
MGs, the key operation objective is to keep the power balance within the MG. Consequently, it’s better
to have more energy supply than load demand rather than less. Considering that the response speed
of the battery is fast [46], it will be charged only in this stage, so that in the second time scale, it has
enough electricity to discharge rapidly to track the load fluctuation over the predicted data and weaken
the influence from predicted errors.

2.3.1. Objective Function in Day-Ahead Scheduling

MG’s optimized operation is a multi-objective and multi-constraint minimization optimization
problem. This paper adopts the daily 24-h scheduling model in which the load and renewable
energy output are supposed to be constant in each dispatch period. The objective function includes
three sub-goals which aim to minimize the operation and maintenance cost (OMC) of different DGs,
pollutant disposal expense and load control compensation (LCC). The established multi-objective
optimization model is:

min F(t)⇒ [F1(t), F2(t), F3(t)] (5)

where F1(t) is the OMC of the whole MG; F2(t) represents the pollutant disposal cost, and F3(t) is the
LCC of MG. In this paper, all the subgoals are transformed into cost values and the multi-objective
model could be converted into a single objective model:

min f (t) = min[F1(t) + F2(t) + F3(t)] (6)

The proposed model is applied to provide a 24-h scheduling scheme of various DGs to minimize
the total cost while satisfying the electricity, thermal and cooling load of MG.

(1) Operation and Maintenance Cost (OMC)
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The OMCs of micro sources are usually proportional to their power outputs. Supposing that the
renewable power generations (WT and PV) have little OMC, then the sub-objective of OMC can be
expressed by:

F1(t) =
N

∑
i=1

(Ci(Pt
i ) + KiPt

i ∆t) + KH Pt
H∆t + KCPt

C∆t (7)

where Pi
t and Ci(Pi

t) are the generation output and fuel cost of micro source i in the t-th dispatch
period. Ki, KH, KC are the maintenance factor of micro source i, HES and AC modules. PH

t and PC
t

represent the heat power generated by HES and the cooling power generated by AC, respectively.

(2) Pollutant Disposal Cost

MT, DE and FC would release NOX, CO2, SO2 and other pollutants into air during generation.
And the emission coefficients of pollutant disposal are different for diverse generation units and
different impacts on the environment as well [47]. In this paper, the pollutant disposal cost was
considered by Equation (8):

F2(t) =
N

∑
i=1

M

∑
k=1

αk × Eik × Pt
i × ∆t (8)

where Eik is the released quantity of pollutant k when micro source i lets out unit power; N is the
number of generation units while M is the number of pollutant types. αk is the conversion coefficient
for various pollutant (NOX, CO2, SO2).

(3) Load Control Compensation (LCC)

To take the advantage of demand side management and improve the operation reliability, CL
was considered, which could also act as an auxiliary resource to MG’s power balance. The LCC is
corresponding to the reliability cost of the MG. It’s difficult to calculate the reliability cost strictly
in theory. Generally, it’s given by the product of expected energy not supplied (EENS) and unit
interruption cost (UIC). In this paper, the EENS was representative by LCQ which took the whole
MG’s operation economy and reliability into account, and the corresponding compensatory costs were
calculated as follows:

F3(t) = pt
D × Pt

cut (9)

where pD
t is the UIC of MG and Pcut

t is the LCQ.

2.3.2. Operation Constraints in Day-Ahead Scheduling

In terms of MG’s optimized operation, constraints like security, reliability and power
balance must be guaranteed [48]. These constraints can be divided into equality constraints and
inequality constraints.

(1) Power Balance Constraint:
K

∑
i=1

Pi = PL − Pcut (10)

QH = QHL (11)

QC = QCL (12)

where Pi is the output of generation unit i; PL and Pcut are the load demand and load control
power, respectively. QHL and QCL represent the thermal and cooling load independently; QH and
QC are the thermal and cooling power supplied by micro sources.

(2) Output Constraint:
Pimin ≤ Pt

i ≤ Pimax (13)

where Pimin and Pimax are the minimum and maximum power output of generation unit i.
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(3) Ramp Up/Down Rate Constraint:

Pt
i − Pt−1

i ≤ Rup∆t (14)

Pt−1
i − Pt

i ≤ Rdown∆t (15)

where Rup and Rdown are the ramp up/down rate of micro source i. Pi
t and Pi

t−1 represent the
output of micro source i in the current and last dispatch interval.

(4) Battery Operation Constraint:

SSOC.min < SSOC < SSOC.max (16)

− KCQBηSBC ≤ Pt
SB ≤ KDQBηSBD (17)

where SSOC.min and SSOC.max are the minimum and maximum state of charge (SOC) for the battery.
KC and KD are the maximum charging/discharging proportion in a dispatch interval, while PSB

t

is the battery’s power output in the t-th period. ηSBC and ηSBD represent the charge/discharge
efficiency. QB represents the capacity of battery.

(5) Load Control Constraint:
Pt

cut ≤ Pcut.max (18)

where Pcut
t is the LCQ in the t-th dispatch interval and Pcut.max is the load control upper limit

of MG.

(6) MT’s Electric Output Constraint:

0.95PE,MT ≤ PE,MT ≤ 1.05PE,MT (19)

where PE,MT is the electric output of MT.

2.4. The Real-Time Scheduling Optimized Model

The second time scale optimization is the real-time scheduling which further adjusts the battery
discharge and load control to realize the power balance in real time. The coordinated operation of ESS
and CL is put forward to reduce the impact of renewable energy and demand uncertainty, making the
best of their fast response characteristic. A unified prediction error percentage (UPEP) is defined to
describe the difference between the actual and predicted load demand:

∆E% =
(∆PE − ∆PPV − ∆PWT − ∆PMT)

PRe
× 100% (20)

∆H% =
∆H
HRe
× 100% (21)

∆C% =
∆C
CRe
× 100% (22)

where ∆E%, ∆H% and ∆C% are the UPEP of electric, heat and cooling load demands, respectively. PRe,
HRe and CRe represent the predicted electric, heat and cooling load demands. ∆PE, ∆H and ∆C are the
differences of actual and predicted electric, heat and cooling load demands. ∆PPV, ∆PWT and ∆PMT
stand for the differences between actual and predicted electric outputs of PV, WT and MT, respectively.
∆E%, ∆H% and ∆C% are the error quantization of predicted data.
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2.4.1. Objective Function in Real-Time Scheduling

In this stage, the decision variables have decreased and the model has become simpler.
The dispatch objects are mainly CL and battery, which can respond rapidly to eliminate the errors in the
last scheduling and realize optimal economy, while WT and MT remain auxiliary means. The objectives
consist of OMC and LCC; the model can also be converted into single-objective optimization.

(1) OMC Adjustment in Real-time Operation:

F4(t) =
(
KESPt

ES + KMT∆Pt
MT + KH∆Pt

H + KC∆Pt
C + CMT

(
∆Pt

MT
))
× ∆t (23)

where KES and KMT are the maintenance factors of ESS and MT. PES
t is the charge/discharge

quantity of ESS. ∆PMT
t, ∆PH

t and ∆PC
t are the output adjustments of MT between two time

scales, predicted error of heat and cooling load demand, respectively. CMT(∆PMT
t) stands for the

change of fuel cost change for MT.

(2) LCC Adjustment in Real-time Operation:

F5(t) = pt
D × ∆Pt

cut (24)

where ∆Pcut
t is the LCQ differences between two time scales.

2.4.2. Operation Constraints in Real-Time Scheduling

In this time scale, constraints (1), (4), (5) and (6) in the day-ahead scheduling model will
be satisfied.

3. SIP-CO-PSO-ERS Algorithm

For a multi-objective optimization problem, the best condition is to find the absolute optimal
solution. However, subgoals are usually contradictory with each other and it’s impossible to find a
common solution that makes all the sub-goals achieve optimal values at the same time. Therefore, the
multi-objective model is transformed into a weighted single-objective model to optimize the whole
system’s operation cost. Considering that the model of the first time scale has been converted into
single-objective optimization model, this paper proposes SIP-CO-PSO-ERS to solve the day-ahead
scheduling model. Fewer decision variables and constraints simplify the model in the second time
scale. Linear programming in MATLAB/Optimization Tool (R2011B, MathWorks, Natick, MA, USA)
was conducted to solve the real-time scheduling model.

3.1. Basic PSO Algorithm

PSO is a meta-heuristic intelligent algorithm on the basis of population search [49].
The individuals of population update their velocity vectors according to their own speed, individual
optimal solution pbest and population optimal solution gbest to converge to global optimal solution
during all the iterations. The velocity and position for particle i at moment t are updated as follows:

vi,j(t + 1) = wvi,j(t) + c1r1
(

pi,j − xi,j(t)
)
+ c2r2

(
pg,j − xi,j(t)

)
(25)

xi,j(t + 1) = xi,j(t) + vi,j(t + 1), j = 1, 2 . . . . . . d (26)

where w is the inertia weight for PSO; c1 and c2 are both learning factors; r1 and r2 are random numbers
between 0 and 1; d is the dimension of the optimization problem; pi,j and pg,j represent the individual
and population optimal solution. vi,j(t) and vi,j(t + 1) are the velocity vectors for particle i in the j-th
dimension at moment t and t + 1; accordingly, xi,j(t) and xi,j(t + 1) are the position vectors for particle i
in the j-th dimension at moment t and t + 1.
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Due to the full use of individuals’ and group’s experience, the PSO algorithm is able to approach
the optimal solution with a relatively high convergence efficiency [50]. Because of the consideration of
CL and multi-scenarios, more decision variables, constraints, and intricate data for variable scenarios
complicate the optimization model. Therefore, the PSO exhibits the problems of premature, poor
local and global search ability when solving the optimized operation model of stand-alone MG [51].
Specially, a fall into the local optimum because of the oscillation around certain local optimums with
inappropriate step lengths would occur. In addition, the convergence speed is slow in later iterations
because the optimum search goes beyond the constraints easily when there is great fluctuation in
predicted data from different scenarios, causing the process to repeat several times until the constraints
are all satisfied. However, the MG’s day-ahead optimized scheduling requires not only a faster solution
speed to meet the dispatch timeliness, but also an excellent search performance to satisfy dispatch
accuracy. Reasonable modification must be developed to improve the properties of basic PSO. In this
paper, a dual-step modification consisting of SIP and CO is introduced into PSO as well as ERS.

3.2. Search Improvement Process (SIP)

Considering that a local optimum cannot take full advantages of different DGs for a stand-alone
MG in economy and environmental protection, the total ability of PSO in both global and local
optimizing must be improved. SIP was conducted on all the particles during the optimization to
improve the global search ability for PSO. The global search ability improvement of proposed SIP is
based on [52]:

(1) Increasing the population’s diversity by mutations and cross operations.
(2) Promoting all the particles to move toward the best promising local or global individuals.

After the update of both velocity and position vectors for particle i, a modified process was carried
out as follows:

(1) Find out the best individual Xbest and the worst individual Xworst through the calculation of
fitness function.

(2) For each particle i, two particles Xm and Xn are selected from the particle swarm randomly such
that m 6= n 6= i, then the following two particles are generated by cross style:

X1
cross = Xi + ∆× (Xm − Xn) (27)

X2
cross = X1

cross + ∆× (Xbest − Xworst) (28)

where ∆ is a random number between 0 and 1, X1
cross and X2

cross are two new particles obtained
by cross.

(3) A mutation process is implemented after the cross to get five new particles, and the j-th
dimensions of X1

muta, X2
muta, X3

muta, X4
muta and X5

muta are obtained by:

X1
muta,j = λ1 × Xbest + λ2 × Xworst (29)

X2
muta,j =

{
Xbest,j i f k1 ≥ k2

Xi,j i f k1 < k2
(30)

X3
muta,j =

{
Xbest,j i f k3 ≥ k4

X1
cross,j i f k3 < k4

(31)

X4
muta,j =

{
Xbest,j i f k5 ≥ k6

X2
cross,j i f k5 < k6

(32)
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X5
muta,j =

{
X1

cross,j i f k7 ≥ k8

X2
cross,j i f k7 < k8

(33)

where k1, k2, . . . , k8, λ1 and λ2 are all random numbers range from 0 to 1; Equation λ1 + λ2 = 1
is satisfied.

(4) Then the best particle among X1
muta, X2

muta, X3
muta, X4

muta and X5
muta is selected by fitness values

to compare with Xi. If it is better than Xi, replace Xi with the selected particle; otherwise, Xi will
remain in the initial position. After SIP, CO will be conducted.

3.3. Chaotic Optimization (CO)

The ergodicity and randomness characteristics of chaos could realize local deep search [53]. Better
local optimized ability is achieved by searching the space near superior individuals. The basic principle
for chaotic optimization-particle swarm optimization (CO-PSO) to strength the local search ability is
mapping the chaotic variables into the optimized variables’ space linearly. For a given optimization
target, the search process is corresponding to the traversal process of chaotic orbit. The steps of chaotic
search in this paper are indicated as:

(1) Suppose k = 0, and map the decision variables xj
k, j = 1, 2 . . . d into chaotic variables sj

k between
0~1 for every dimension of the solution. xmax,j and xmin,j are the upper and lower search bounds
of the j-th dimension:

sk
j =

xk
j − xmin,j

xk
j − xmax,j

, j = 1, 2 . . . . . . d (34)

(2) Calculate the chaotic variables of the next iteration:

sk+1
j = 4× sk

j

(
1− sk

j

)
, j = 1, 2 . . . . . . d (35)

(3) Convert the chaotic variables sj
k+1 into decision variable xj

k+1 by the following formula:

xk+1
j = xmin,j + sk+1

j
(
xmax,j − xmin,j

)
, j = 1, 2 . . . . . . d (36)

(4) Assess the new obtained solution by xj
k+1. Make a decision by different result: if the new obtained

solution is better than the initial one or the chaotic search has reached the maximum iteration,
the new obtained solution will be the final result of chaotic search; otherwise, set k = k + 1 and
turn to Step 2.

In this paper, the first 20% of the best particles during each iteration are chaotic searched in
order to further excavate the adaptability of excellent particles and improve the local search ability of
optimization algorithm.

3.4. Elite Retention Strategy (ERS)

The premature of an optimization algorithm is caused by the loss of population diversity, which
is due to the population’s pattern simplification in later iteration. It is an obstacle to find the global
optimal solution during the stand-alone MG’s optimized operation. ERS is a procedure to preserve
the optimal individuals, or a part of excellent individuals during each iteration, and replace the
worst individuals at the beginning of next iteration. The ERS could avoid the loss of better solutions
generated during each iteration and maximize the advantages of superior individuals. That is to
say, poor solutions will be superseded as soon as possible. In addition, the population diversity is
guaranteed because of the reservation of initial particles at the beginning of each iteration as well as the
connection between two generations. Through this process, the premature phenomena will be impaired
and the convergence speed is accelerated. In this paper, ERS is integrated into basic PSO algorithm.
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Specifically, the top 10% of the best individuals are reserved at the beginning of each iteration. Then the
last 10% of the population in next-generation individuals will be replaced correspondingly.

3.5. Detailed Procedures of SIP-CO-PSO-ERS

Figure 5 exhibits the structure of presented algorithm and the detailed procedures of
SIP-CO-PSO-ERS in this paper are given as follows:

(1) Initialize the position and velocity of each particle in the population.
(2) Assess the fitness of each particle by objective function calculation.
(3) Preserve current particles’ positions and fitness values into pbest of each particle; preserve the

position and fitness value of the optimal individual in current population into gbest.
(4) Save the top 10% of the best individuals whose fitness values are the best.
(5) Execute the SIP on all particles.
(6) Evaluate the fitness of each particle and search the top 20% of best individuals with CO; update

pbest and gbest of the whole population.
(7) If the solution has reached the required search accuracy or the maximum iteration, stop the

chaotic search and export the result, otherwise, turn to step 8.
(8) Update the position and speed of each particle; evaluate all particles’ fitness values and replace

the last 10% individuals with the worst fitness by the best individuals preserved in step 4, then
turn to step 3.
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3.6. The Limitations of Proposed SIP-CO-PSO-ERS

SIP-CO-PSO-ERS has many advantages such as better adaptability, fast convergence speed and
excellent search ability. However, limitations are also existed, as follows:

(1) SIP-CO-PSO-ERS consists of different procedure modules due to the algorithm integration. As a
result, it’s really hard work for programmers to write the program correctly. Any errors in the
code would lead to a wrong operational result. More time should be spent on the programming
so as to ensure the correct code;

(2) The particles that are generated randomly increase the operation time to some extent. When the
proposed model and SIP-CO-PSO-ERS are applied in a specific MG, initial values of particles
could be given according to MG’s historical operation states so as to decrease the iteration
numbers and operation time.
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3.7. The Framework of Stand-Alone MG’s Optimized Operation

Figure 6 shows the integrated framework of this study about the optimized operation for proposed
stand-alone MG in detail. The final dispatch scheme is obtained by the results of day-ahead and
real-time scheduling models.Energies 2017, 10, 1936 13 of 23 
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4. Simulation Analysis

4.1. Description of the Stand-Alone MG system

The stand-alone MG adopted in this paper is shown in Figure 3. The battery’s parameters are
as follows [54]: the self-discharge rate is 0.14%, charge/discharge efficiency is 92%, minimum SOC
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is 20%, total capacity is 50 kWh while the lower limit is assuming as the initial SOC. The efficiency
of convertors is assumed to be 95%. Rated power of PV and WT is assumed to be 250 kW and
300 kW, respectively. The proportion of CL is assumed as 10%. Other parameters of different DGs
are summarized in Table 1. Table 2 lists the disposal cost for different kinds of pollutants and the
respective pollutant emission factors of MT, DE and FC [55,56]. The simulation in this paper takes
winter for example, so thermal load (TL) is included except electric load (EL).

Table 1. Parameters setting of various DGs.

Type Pe (kW) Pmax/Pmin (kW) Rup/Rdown (kW/min) K ($/kWh)

DE 150 180/10 20 0.01258
FC 130 160/10 10 0.00419
MT 100 125/10 10 0.00587
ESS 25 - - 0.01241

Table 2. Pollutant disposal cost and emission factors.

Type Disposal Cost ($/lb) DE(lb/kWh) FC (lb/kWh) MT (lb/kWh)

NOx 4.2 2.18 × 10−2 3 × 10−5 4.4 × 10−4

SO2 0.99 4.54 × 10−4 6 × 10−6 8 × 10−6

CO2 0.014 1.432 × 10−3 1.078 × 10−3 1.596 × 10−3

4.2. Results Analysis

In order to analyze and compare the optimized dispatch problem in various situations and verify
the proposed model, different scenarios are designed in this paper for the stand-alone MG. Since the
load demand in work day differs from that in weekend, and the output of PVs in sunny day differs
greatly from that in rainy day, four scenarios are chosen for the designed stand-alone MG: sunny-work
day, sunny-weekend, rainy-work day and rainy-weekend scenario. The predicted load demand and
renewable power generation in different scenarios are displayed in Figure 7.
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Figure 7. The load demand and predicted renewable power generations in four scenarios for MG.

Figure 7 shows clearly that the output of renewable generations in sunny days and rainy days is
quite different: the overall output of renewable energy in sunny days is larger, and peak time intervals
are concentrated in 11:00~15:00. Because of the weakness of solar radiation in rainy days, the PV’s
power output is very low. As a result, the main output of renewable energy is wind power under these
conditions. The load change is closely related to the activities of people. Based on the fact that the
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main load type in a stand-alone MG is from residents, the EL demand of weekends is obviously higher
than that of work days, while the thermal load demand performs a relatively little fluctuation between
work days and weekends.

4.2.1. The Day-Ahead Scheduling Results

SIP-CO-PSO-ERS was used to solve the day-ahead scheduling model. For the algorithm,
the iteration numbers of CO and PSO are set as 10 and 200 respectively. The particles’ number
is 30, inertia weight is 0.5, and the learning factors are both 2. PV modules are under the control of
a maximum power point tracking (MPPT) strategy. When the total electric output of PV, WT and
MT (ordering power by heat, OPBH) is higher than the load demand, and the battery has reached
the upper limit of capacity, WT is adjusted to track the load demand. Otherwise the WT modules
are also under the control of MPPT. Figure 8 shows the optimized results of the first time scale in
different scenarios.
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Figure 8. The optimized results in each period for four scenarios in the first time scale.

The model takes consideration of load control in a stand-alone MG. The simulation results
in Figure 8 show that the load control which is corresponding to LCQ column of the figure is
inconspicuous in sunny-work day and rainy-work day scenarios because of the low demand
and sufficient energy supply. In contrast, load control effect is apparent in sunny-weekend and
rainy-weekend scenarios and concentrated in two periods (noon and night) of a day. Compared with
Figure 7, it’s obvious that the load control mainly takes place in the periods with inadequate renewable
outputs relative to the load demand. For a stand-alone MG, other DGs like DE, MT and FC must be
started to maintain the power balance if the reneable energy is insufficient. When the LCC is lower
than the generation cost of DGs, the system will cut off part of unimportant load to maximize the
operational economy. In addition, load control is more common in rainy-weekend scenario than
sunny-weekend scenario, because the low PV output in rainy-weekend scenario further expands the
difference between renewable energy output and load demand. In case of emergency, load control is
not only a measure to improve the system economy, but also an auxiliary resource to maintain stability
and power balance for stand-alone MG.

The SOC variation of battery is related to whether the sum of renewable energy and basic output
(decided by thermal load demand) of MT is higher than EL demand. If the condition is satisfied, the
battery will be charged. For instance, in rainy-weekend scenario, the EL demand is relatively high
and PV output is low, which results in the EL demand being higher than the sum of renewable energy
and MT’s basic output after 8:00; accordingly, there is no redundant electric power for the battery to
charge in these periods. And the SOC of battery will decrease slowly because of the self-discharge
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effect. However, before 8:00, the conditions are opposite and the battery is charged. If the battery is
being charged, it indicates that the power of the whole system is surplus. Therefore, the outputs of DE
and FC are 0, which is consistent with the actual situation.

Figure 8 also indicates that the FC was preferential dispatched than DE within a certain range,
because the model considers the economic and environmental benefits. And FC is more eco-friendly
than DE according to Table 2. Based on the optimized model, 24-h’soperation costs of four scenarios
for each day in the first time scale scheduling are shown in Figure 9.Energies 2017, 10, 1936 16 of 23 
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Figure 9. Total operation costs of four scenarios in the first time scale.

If the sum of renewable energy and MT’s basic output is higher or close to EL demand, the total
operation cost will be low. For example, in sunny-work day, the sum output of WT, PV and MT is
higher than EL demand from 7:00 to 18:00; accordingly, the operation costs in these periods are very
low. Only WT, PV and MT are running in the whole system when battery’s SOC reaches the upper
limit. The MG tracks the EL change by adjusting WT’s output. When the EL demand is greater than
the sum of renewable energy and MT’s basic output, the cost increases due to the expenses generated
by other DGs. Comparing the four scenarios, it could be found that the costs of sunny-weekend and
rainy-weekend are signally higher than that of work day scenarios. That’s due to the higher load
demand on weekend scenarios. On the other hand, the cost of rainy-weekend is higher than that of
sunny-weekend because of the lower PV output during rainy days.

This paper proposes an improved dispatch strategy for CCHP operation mode under the condition
where the essential load demand is not influenced. The electric output of MT is variable from 95~105%
of the basic electric demand ordered by the thermal load. To verify the effectiveness of the improved
strategy, simulation with the same conditions except CCHP’s strategy of four scenarios was carried
out. Table 3 shows the results of operation costs.

Table 3. Comparison of CCHP’s improved and general strategy.

Scenario Sunny-Workday Sunny-Weekend Rainy-Work Day Rainy-Weekend

Improved Strategy ($) 45.694 543.358 48.067 845.266
Traditional Strategy ($) 47.207 581.512 50.153 901.072

Cost Decrease (%) 3.21 6.56 4.16 6.19
Load Demand (kW) 1201.761 1268.601 1201.761 1268.601
Actual Output (kW) 1164.591 1280.596 1160.254 1263.831

Demand Deviation (%) 3.09 -0.95 3.45 0.38

From the table, it is evident that the MG’s economic and environmental benefits are improved in all
the scenarios without destroying the comfort feel and primary demand. For example, in rainy-weekend
scenario, the total operation cost decreased 6.19% at the expense of 0.38% load variation. And the
improved CCHP strategy was obviously more effective in weekend scenarios, because the adjustment
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margin of iterative optimization was more extensive as a result of higher electric demand during
the weekend.

4.2.2. The Real-Time Scheduling Results

The real-time scheduling model mainly dispatches the CL and ESS to overcome the errors between
actual data and predicted data for load demand and renewable energy. The error of EL demand and
renewable energy is uniformly expressed by the UPEP, which represents the total electricity variation.
Fluctuations of EL and thermal load are simulated by Monte-Carlo simulation and the model is solved
by linear programming in the MATLAB Optimization Tool. Table 4 exhibits the simulation results
of ∆E% and ∆H% by Monte-Carlo simulation, while Figure 10 shows the optimized results in four
scenarios including the adjustment quantity (AQ) of the battery, the CL, and the cost variation.

Table 4. Comparison of improved and traditional strategy for CCHP.

Interval
Sunny-Work Day Sunny-Weekend Rainy-Work Day Rainy-Weekend
∆E/% ∆H/% ∆E/% ∆H/% ∆E/% ∆H/% ∆E/% ∆H/%

1, 2, 3 −1, 2, −5 −3, 2, 2 2, 2, 3 −2, 2, 1 5, 4, −1 −3, 1, 3 3, −2, −2 −2, 3, 3
4, 5, 6 5, −1, 3 2, 2, 3 −4, 5, −1 −3, −2, −3 −5, 1, 4 −2, 3, −1 5, −1, −3 −3, 1, 3
7, 8, 9 −5, −3, −4 2, 3, 3 −3, −1, −1 2, −1, 2 4, 2, 4 −2, 3, −2 4, 2, −5 1, −2, 1

10, 11, 12 −5, −3, 3 −2, −3, 2 4, −2, 3 1, 1, −1 −5, 3, 5 −2, 2, 2 4, 5, 1 −3, 2, −2
13, 14, 15 −3, −2, −1 −3, 3, 2 5, −3, 2 3, −1, 3 3, 5, 3 −2, −2, −2 −4, 5, −5 1, −2, 3
16, 17, 18 −2, 3, −5 −1, 1, −2 2, 4, −5 −3, −3, 2 5, −3, 1 −1, −1, −3 1, 1, −5 2, −2, −1
19, 20, 21 −4, 3, 5 2, −1, 3 −4, −1, −4 2, 2, 1 1, −2, 1 2, 2, −1 −5, 2, 4 3, 1, 1
22, 23, 24 5, 5, −1 −2, 2, 3 3, −1, −3 1, −1, −3 −5, −2, 3 1, −2, 1 −3, 3, 4 −1, 2, −2
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Figure 10. The scheduling results of four different scenarios in the second time scale.

Based on the results in the first time scale, Figure 10 reveals the minor adjustments of battery
and CL, which aims to track the actual demand variation. Positive values of the battery represents
discharge state while negative values stand for charge state. The positive adjustment of CL corresponds
to a LCQ increase while the negative adjustment represents LCQ decrease. It can be seen that the
cost variation primarily depends on the CL adjustment because the cost of battery is low. The battery
is dispatched first when the actual demand is higher than predicted demand due to the economy.
On the other hand, CL is adjusted prior than the battery when the predicted demand is higher than
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actual demand. For instance, during the 14th period of rainy-weekend scenario, the ∆E% was 5%
and the ∆H% was −2%. According to the optimized objective, the battery discharged 16.732 kW first
and then the CL cut 2.157 kW, because the battery had reached the lower limit of capacity. In the 9th
period of sunny-work day scenario, the ∆E% was −4% and the ∆H% was 3%. Noticing that the LCQ
of this period in the first time scale was 0, so the battery was charged instead of the LCQ decreased.
Otherwise, LCQ would decrease first and if it was reduced to 0, the battery would charge.

4.2.3. Algorithm Evaluation

To compare the effectiveness of different optimization algorithms, PSO, CO-PSO and
SIP-CO-PSO-ERS are used to solve the same model under rainy-weekend scenario in the first time
scale. The averaged costs and convergence time for 20 trials are given in Table 5.

Table 5. Statistics of 20 operating results for three different optimization algorithms.

Algorithms Total Cost Average Convergence Time/s
Average Value/$ Standard Deviation /$

PSO 859.677 1.984 176.49
CO-PSO 852.142 1.501 142.91

SIP-CO-PSO-ERS 845.373 0.361 104.43

According to Table 5, it can be found that SIP-CO-PSO-ERS provided the lowest average total
operation cost over the 20 trials, which reveals a better searching and convergence performance. This is
because ERS combined with the dual-step modification was able to excavate the best individuals,
improving the global and local search ability for optimization algorithm. The lowest standard
deviation of the SIP-CO-PSO-ERS indicates that the algorithm was stable and strongly robust.
The SIP-CO-PSO-ERS also had some superiority on convergence speed due to the adoption of ERS.

Figure 11 shows the iterative process of three algorithms in the first period of sunny-work day
scenario. From the figure, values of the objective function of all the algorithms decrease gradually
along the iteration, which indicates that the algorithms searched in a favorable direction and finally
reached a stable value. However, the SIP-CO-PSO-ERS can converge to a better solution much faster
because of the introduction of dual-step modification and the ERS, which made full use of the “survival
of the fittest” principle under the premise of population diversity.
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5. Conclusions

In this paper, a comprehensive optimized operation model is presented for a stand-alone MG.
It’s of great significance to keep the power balance and decrease the operation cost especially for
stand-alone MG. The MG was composed of PV, WT, MT, DE, FC and ESS with the consideration of
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CL. A two-time scale multi-objective optimization model was developed based on MT’s CCHP mode.
The dual-step modification and ERS were combined into the PSO to strengthen the global and local
search ability as well as improve the convergence speed. An enhanced dispatch strategy for CCHP
and the proposed SIP-CO-PSO-ERS algorithm were applied to solve the model in the first time scale
with related constraints. The presented SIP-CO-PSO-ERS effectively deal with the stand-alone MG’s
optimized operation of different scenarios and the improved CCHP strategy significantly enhances the
economic and environmental benefits. SIP-CO-PSO-ERS improved the operation economy with about
1.66% average cost decrease and robustness with better standard deviation than general algorithms.
In addition, the average convergence time has also decreased about 40.83% compared with PSO which
is common used in MG’s optimization solution. In other words, it will promote the application of
renewable energies in some degree. The coordinated operation of ESS and CL reduced the impact of
renewable energy and demand uncertainty effectively in real-time scheduling. After the optimized
dispatch, the MG achieves economic operation while the load demands are satisfied. For this paper,
the data observation for one day is 24. More detailed time density will be considered in the future to
improve the real-time dispatch precision. And effective DR control and coordination schemes which
could deal with the simultaneous existence of multiple DR techniques in the same MG are required to
be contained in the optimization model in the future.
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Nomenclature

DGs Distributed generations MGs Microgrids
MTs Micro-gas turbines DEs Diesel engines
FCs Fuel cells PVs Photovoltics
WTs Wind turbines DR Demand response
ESS Energy storage system CL Controllable load
PSO Particle swarm optimization CO Chaotic optimization
ERS Elite retention strategy SIP Search improvement process
APC Absorption chiller HES Heat-exchanging system
CMT The fuel cost of MT Cnl The natural gas price
PMT Electricity energy produced by MT ηMT Efficiency of MT
∆t Dispatch interval time QMT Residual heat of exhaust air
ηl Heat loss factor of CCHP system QH Heating capacity by exhaust
QC Cooling capacity by exhaust ηH.REC Heat efficiency
ηC.REC Cooling efficiency ξH,ξC Heating and refrigeration coefficient
SB Storage battery LCQ Load control quantity
OMC Operation and maintenance cost LCC Load control compensation
F1(t) OMC of the whole MG F2(t) Pollutant disposal cost
F3(t) LCC of MG Pi

t Generation output of micro source i
Ci(Pi

t) Fuel cost of micro source i Ki Maintenance factor of micro source i
KH Maintenance factor of HES module KC Maintenance factor of AC modules
PH

t Heat power generated by HES PC
t Cooling power generated by AC
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Eik Released quantity of pollutant k N The number of generation units
M The number of pollutant types αk Conversion coefficient for pollutant
EENS Expected energy not supplied UIC Unit interruption cost
pD

t The UIC of MG Pcut
t The LCQ of MG

Pi Output of generation unit i PL The electric load demand
Pcut The load control power QHL, QCL Thermal and cooling load demand
QH, QC Supplied thermal and cooling power Pimin Minimum output of generation unit i
Pimax Maximum output of generation unit i Rup,Rdown Ramp up/down rate of micro source i
Pi

t Output of micro source i at time t Pi
t−1 Output of micro source i at time t-1

SSOC.min Minimum SOC for battery SSOC.max Maximum SOC of battery
SOC State of charge KC Maximum charging proportion
KD Maximum discharging proportion PSB

t The output power of battery at time t
ηSBC,ηSBD The charging/discharging efficiency QB Capacity of battery
Pcut

t The LCQ in the t-th dispatch interval Pcut.max Load control upper limit of MG
PE,MT The electric output of MT UPEP Unified prediction error percentage
∆E% The UPEP of electric load demand ∆H% The UPEP of thermal load demand
∆C% The UPEP of cooling load demand PRe Predicted electric load demand
HRe Predicted thermal load demand CRe Predicted cooling load demand
∆PE Difference of actual and predicted EL ∆H Difference of actual and predicted TL

∆C Difference of actual and predicted CL ∆PPV
Difference of actual and predicted electric
output of PV

∆PWT
Difference of actual and predicted electric
output of WT

∆PMT
Difference of actual and predicted electric
output of MT

KES, KMT Maintenance factors of ESS and MT PES
t Charge/discharge quantity of EES

∆PMT
t Output adjustments of MT ∆PH

t Predicted error of heat load demand
∆PC

t Predicted error of cooling load demand CMT(∆PMT
t) The fuel cost change of MT

∆Pcut
t LCQ difference of two time scales pbest The individual optimal solution

gbest The population optimal solution w The inertia weight
c1, c2 Learning factors r1, r2 Random numbers between 0 and 1
d Dimension of the optimization model pi,j Individual optimal solution

pg,j Population optimal solution vi,j(t)
Velocity vectors for particle i in the j-th
dimension at moment t

vi,j(t+1)
Velocity vectors for particle i in the j-th
dimension at moment t + 1

xi,j(t)
Position vector for particle i in the j-th
dimension at moment t

xi,j(t+1)
Position vector for particle i in the j-th
dimension at moment t + 1

Xi The i-th solution in the population

Xbest The best individual Xworst The worst individual
Xm, Xn Selected particles randomly ∆ Random number between 0 and 1
X1

cross New particle obtained by cross X2
cross New particle obtained by cross

EL Electric load TL Thermal load
CL Cooling load MPPT Maximum power point tracking
OPBH Ordering power by heat AQ Adjustment quantity

References

1. Amrollahi, M.H.; Bathaee, S.M.T. Techno-economic optimization of hybrid photovoltaic/wind generation
together with energy storage system in a stand-alone micro-grid subjected to demand response. Appl. Energy
2017, 202, 66–77. [CrossRef]

2. Craparo, E.; Karatas, M.; Singham, D.I.; Fan, W.; Liu, J. A robust optimization approach to hybrid microgrid
operation using ensemble weather forecasts. Appl. Energy 2017, 201, 135–147. [CrossRef]

3. Huang, C.; Yue, D.; Deng, S.; Xie, J. Optimal Scheduling of Microgrid with Multiple Distributed Resources
Using Interval Optimization. Energies 2017, 10, 339. [CrossRef]

4. Ackermann, T.; Andersson, G.; Söder, L. Distributed generation: A definition. Electr. Power Syst. Res. 2001,
57, 195–204. [CrossRef]

5. Hashemi, F.; Mohammadi, M.; Kargarian, A. Islanding detection method for microgrid based on extracted
features from differential transient rate of change of frequency. IET Gener. Transm. Distrib. 2017, 11, 891–904.
[CrossRef]

6. Ou, T.-C. A novel unsymmetrical faults analysis for microgrid distribution systems. Int. J. Electr. Power
Energy Syst. 2012, 43, 1017–1024. [CrossRef]

7. Ou, T.; Lu, K.; Huang, C. Improvement of Transient Stability in a Hybrid Power Multi-System Using a
Designed NIDC (Novel Intelligent Damping Controller). Energies 2017, 10, 488. [CrossRef]

http://dx.doi.org/10.1016/j.apenergy.2017.05.116
http://dx.doi.org/10.1016/j.apenergy.2017.05.068
http://dx.doi.org/10.3390/en10030339
http://dx.doi.org/10.1016/S0378-7796(01)00101-8
http://dx.doi.org/10.1049/iet-gtd.2016.0795
http://dx.doi.org/10.1016/j.ijepes.2012.05.012
http://dx.doi.org/10.3390/en10040488


Energies 2017, 10, 1936 21 of 23

8. Ou, T.-C. Ground fault current analysis with a direct building algorithm for microgrid distribution. Int. J.
Electr. Power Energy Syst. 2013, 53, 867–875. [CrossRef]

9. Bustos, C.; Watts, D. Novel methodology for microgrids in isolated communities: Electricity cost-coverage
trade-off with 3-stage technology mix, dispatch & configuration optimizations. Appl. Energy 2017, 195,
204–221.

10. Wang, C.; Liu, Y.; Li, X.; Guo, L.; Qiao, L.; Lu, H. Energy management system for stand-alone
diesel-wind-biomass microgrid with energy storage system. Energy 2016, 97, 90–104. [CrossRef]

11. Ou, T.; Su, W.; Liu, X.; Huang, S.; Tai, T. A Modified Bird-Mating Optimization with Hill-Climbing for
Connection Decisions of Transformers. Energies 2016, 9, 671. [CrossRef]

12. Ali, M.H. Wind Energy Systems: Solutions for Power Quality and Stabilization; CRC Press–Taylor & Francis
Group: Boca Raton, FL, USA, 2012.

13. Ghasemi, A. Coordination of pumped-storage unit and irrigation system with intermittent wind generation
for intelligent energy management of an agricultural microgrid. Energy 2018, 142, 1–13. [CrossRef]

14. Ou, T.-C.; Hong, C.-M. Dynamic operation and control of microgrid hybrid power systems. Energy 2014, 66,
314–323. [CrossRef]

15. Mohseni, A.; Mortazavi, S.S.; Ghasemi, A.; Nahavandi, A.; abdi, M.T. The application of household
appliances’ flexibility by set of sequential uninterruptible energy phases model in the day-ahead planning of
a residential microgrid. Energy 2017, 139, 315–328. [CrossRef]

16. Sachs, J.; Sawodny, O. Multi-objective three stage design optimization for island microgrids. Appl. Energy
2016, 165, 789–800. [CrossRef]

17. Wang, F.; Zhen, Z.; Mi, Z.; Sun, H.; Su, S.; Yang, G. Solar irradiance feature extraction and support vector
machines based weather status pattern recognition model for short-term photovoltaic power forecasting.
Energy Build. 2015, 86, 427–438. [CrossRef]

18. Chen, Q.; Wang, F.; Hodge, B.M.; Zhang, J.; Li, Z.; Shafie-khah, M.; Catalão, J.P.S. Dynamic price vector
formation model based automatic demand response strategy for PV-assisted EV charging station. IEEE Trans.
Smart Grid. 2017, 8, 2903–2915. [CrossRef]

19. Wang, F.; Mi, Z.; Su, S.; Zhao, H. Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural
Network Using Statistical Feature Parameters. Energies 2012, 5, 1355–1370. [CrossRef]

20. Silvente, J.; Kopanos, G.M.; Pistikopoulos, E.N.; Espuña, A. A rolling horizon optimization framework for
the simultaneous energy supply and demand planning in microgrids. Appl. Energy 2015, 155, 485–501.
[CrossRef]

21. Di Piazza, M.C.; La Tona, G.; Luna, M.; Di Piazza, A. A two-stage Energy Management System for smart
buildings reducing the impact of demand uncertainty. Energy Build. 2017, 139, 1–9. [CrossRef]

22. Korkas, C.D.; Baldi, S.; Michailidis, I.; Kosmatopoulos, E.B. Occupancy-based demand response and thermal
comfort optimization in microgrids with renewable energy sources and energy storage. Appl. Energy 2016,
163, 93–104. [CrossRef]

23. Guo, L.; Liu, W.; Jiao, B.; Hong, B.; Wang, C. Multi-objective stochastic optimal planning method for
stand-alone microgrid system. IET Gener. Transm. Distrib. 2014, 8, 1263–1273. [CrossRef]

24. Li, P.; Xu, D.; Zhou, Z.; Lee, W.J.; Zhao, B. Stochastic Optimal Operation of Microgrid Based on Chaotic
Binary Particle Swarm Optimization. IEEE Trans. Smart Grid 2016, 7, 66–73. [CrossRef]

25. Talari, S.; Yazdaninejad, M.; Haghifam, M.R. Stochastic-based scheduling of the microgrid operation
including wind turbines, photovoltaic cells, energy storages and responsive loads. IET Gener. Transm. Distrib.
2015, 9, 1498–1509. [CrossRef]

26. Wang, F.; Xu, H.; Xu, T.; Li, K.; Shafie-khah, M.; Catalão, J.P.S. The values of market-based demand response
on improving power system reliability under extreme circumstances. Appl. Energy 2017, 193, 220–231.
[CrossRef]

27. Paterakis, N.G.; Erdinç, O.; Catalão, J.P.S. An overview of Demand Response: Key-elements and international
experience. Renew. Sustain. Energy Rev. 2017, 69, 871–891. [CrossRef]

28. Erdinc, O.; Paterakis, N.G.; Pappi, I.N.; Bakirtzis, A.G.; Catalão, J.P.S. A new perspective for sizing of
distributed generation and energy storage for smart households under demand response. Appl. Energy 2015,
143, 26–37. [CrossRef]

29. Pina, A.; Silva, C.; Ferrão, P. The impact of demand side management strategies in the penetration of
renewable electricity. Energy 2012, 41, 128–137. [CrossRef]

http://dx.doi.org/10.1016/j.ijepes.2013.06.005
http://dx.doi.org/10.1016/j.energy.2015.12.099
http://dx.doi.org/10.3390/en9090671
http://dx.doi.org/10.1016/j.energy.2017.09.146
http://dx.doi.org/10.1016/j.energy.2014.01.042
http://dx.doi.org/10.1016/j.energy.2017.07.149
http://dx.doi.org/10.1016/j.apenergy.2015.12.059
http://dx.doi.org/10.1016/j.enbuild.2014.10.002
http://dx.doi.org/10.1109/TSG.2017.2693121
http://dx.doi.org/10.3390/en5051355
http://dx.doi.org/10.1016/j.apenergy.2015.05.090
http://dx.doi.org/10.1016/j.enbuild.2017.01.003
http://dx.doi.org/10.1016/j.apenergy.2015.10.140
http://dx.doi.org/10.1049/iet-gtd.2013.0541
http://dx.doi.org/10.1109/TSG.2015.2431072
http://dx.doi.org/10.1049/iet-gtd.2014.0040
http://dx.doi.org/10.1016/j.apenergy.2017.01.103
http://dx.doi.org/10.1016/j.rser.2016.11.167
http://dx.doi.org/10.1016/j.apenergy.2015.01.025
http://dx.doi.org/10.1016/j.energy.2011.06.013


Energies 2017, 10, 1936 22 of 23

30. Neves, D.; Silva, C.A. Optimal electricity dispatch on isolated mini-grids using a demand response strategy
for thermal storage backup with genetic algorithms. Energy 2015, 82, 436–445. [CrossRef]

31. Zakariazadeh, A.; Jadid, S.; Siano, P. Smart microgrid energy and reserve scheduling with demand response
using stochastic optimization. Int. J. Electr. Power Energy Syst. 2014, 63, 523–533. [CrossRef]

32. Carpinelli, G.; Mottola, F.; Proto, D. Optimal scheduling of a microgrid with demand response resources.
IET Gener. Transm. Distrib. 2014, 8, 1891–1899. [CrossRef]

33. Gelazanskas, L.; Gamage, K.A.A. Demand side management in smart grid: A review and proposals for
future direction. Sustain. Cities Soc. 2014, 11, 22–30. [CrossRef]

34. Livengood, D.; Larson, R. The energy box: Locally automated optimal control of residential electricity usage.
Serv. Sci. 2009, 1, 1–16. [CrossRef]

35. Moradi, H.; Esfahanian, M.; Abtahi, A.; Zilouchian, A. Modeling a Hybrid Microgrid Using Probabilistic
Reconfiguration under System Uncertainties. Energies 2017, 10, 1430. [CrossRef]

36. Nazari-Heris, M.; Abapour, S.; Mohammadi-Ivatloo, B. Optimal economic dispatch of FC-CHP based heat
and power micro-grids. Appl. Therm. Eng. 2017, 114, 756–769. [CrossRef]

37. Farzin, H.; Fotuhi-Firuzabad, M.; Moeini-Aghtaie, M. A Stochastic Multi-Objective Framework for Optimal
Scheduling of Energy Storage Systems in Microgrids. IEEE Trans. Smart Grid 2017, 8, 117–127. [CrossRef]

38. Kerdphol, T.; Fuji, K.; Mitani, Y.; Watanabe, M.; Qudaih, Y. Optimization of a battery energy storage system
using particle swarm optimization for stand-alone microgrids. Int. J. Electr. Power Energy Syst. 2016, 81,
32–39. [CrossRef]

39. Pedrasa, M.A.A.; Spooner, T.D.; MacGill, I.F. Scheduling of demand side resources using binary particle
swarm optimization. IEEE Trans. Power Syst. 2009, 24, 1173–1181. [CrossRef]

40. You, M.; Jiang, T. New method for target identification in a foliage environment using selected bispectra
and chaos particle swarm optimization based support vector machine. IET Signal Process. 2014, 8, 76–84.
[CrossRef]

41. Ahn, C.W.; Ramakrishna, R.S. Elitism-based compact genetic algorithms. IEEE Trans. Evolut. Comput. 2003,
7, 367–385.

42. Waqar, A.; Shahbaz Tanveer, M.; Ahmad, J.; Aamir, M.; Yaqoob, M.; Anwar, F. Multi-Objective Analysis of a
CHP Plant Integrated Microgrid in Pakistan. Energies 2017, 10, 1625. [CrossRef]

43. Martinez, A.A.; Champenois, G. Eco-design optimisation of an autonomous hybrid wind-photovoltaic
system with battery storage. IET Renew. Power Gener. 2012, 6, 358–371.

44. Azmy, A.M.; Erlich, I. Online optimal management of PEMFuel cells using neural networks. IEEE Trans.
Power Deliv. 2005, 20, 1051–1058. [CrossRef]

45. Noroozian, R.; Vahedi, H. Optimal management of MicroGrid using Bacterial Foraging Algorithm.
In Proceedings of the 2010 18th Iranian Conference on Electrical Engineering, Isfahan, Iran, 11–13 May 2010;
pp. 895–900.

46. Nguyen, T.A.; Crow, M.L.; Elmore, A.C. Optimal Sizing of a Vanadium Redox Battery System for Microgrid
Systems. IEEE Trans. Sustain. Energy 2015, 6, 729–737. [CrossRef]

47. Mohamed, F.A.; Koivo, H.N. System modelling and online optimal management of MicroGrid using Mesh
Adaptive Direct Search. Int. J. Electr. Power Energy Syst. 2010, 32, 398–407. [CrossRef]

48. Parisio, A.; Rikos, E.; Tzamalis, G.; Glielmo, L. Use of model predictive control for experimental microgrid
optimization. Appl. Energy 2014, 115, 37–46. [CrossRef]

49. Delgarm, N.; Sajadi, B.; Kowsary, F.; Delgarm, S. Multi-objective optimization of the building energy
performance: A simulation-based approach by means of particle swarm optimization (PSO). Appl. Energy
2016, 170, 293–303. [CrossRef]

50. Sadeghzadeh, H.; Ehyaei, M.A.; Rosen, M.A. Techno-economic optimization of a shell and tube heat
exchanger by genetic and particle swarm algorithms. Energy Convers. Manag. 2015, 93, 84–91. [CrossRef]

51. Tang, J.; Wang, D.; Wang, X.; Jia, H.; Wang, C.; Huang, R.; Yang, Z.; Fan, M. Study on day-ahead optimal
economic operation of active distribution networks based on Kriging model assisted particle swarm
optimization with constraint handling techniques. Appl. Energy 2017, 204, 143–162. [CrossRef]

52. Mohammadi, S.; Mozafari, B.; Solimani, S.; Niknam, T. An Adaptive Modified Firefly Optimisation Algorithm
based on Hong’s Point Estimate Method to optimal operation management in a microgrid with consideration
of uncertainties. Energy 2013, 51, 339–348. [CrossRef]

http://dx.doi.org/10.1016/j.energy.2015.01.054
http://dx.doi.org/10.1016/j.ijepes.2014.06.037
http://dx.doi.org/10.1049/iet-gtd.2013.0758
http://dx.doi.org/10.1016/j.scs.2013.11.001
http://dx.doi.org/10.1287/serv.1.1.1
http://dx.doi.org/10.3390/en10091430
http://dx.doi.org/10.1016/j.applthermaleng.2016.12.016
http://dx.doi.org/10.1109/TSG.2016.2598678
http://dx.doi.org/10.1016/j.ijepes.2016.02.006
http://dx.doi.org/10.1109/TPWRS.2009.2021219
http://dx.doi.org/10.1049/iet-spr.2012.0389
http://dx.doi.org/10.3390/en10101625
http://dx.doi.org/10.1109/TPWRD.2004.833893
http://dx.doi.org/10.1109/TSTE.2015.2404780
http://dx.doi.org/10.1016/j.ijepes.2009.11.003
http://dx.doi.org/10.1016/j.apenergy.2013.10.027
http://dx.doi.org/10.1016/j.apenergy.2016.02.141
http://dx.doi.org/10.1016/j.enconman.2015.01.007
http://dx.doi.org/10.1016/j.apenergy.2017.06.053
http://dx.doi.org/10.1016/j.energy.2012.12.013


Energies 2017, 10, 1936 23 of 23

53. Zhou, Q.; Zhang, W.; Cash, S.; Olatunbosun, O.; Xu, H.; Lu, G. Intelligent sizing of a series hybrid electric
power-train system based on Chaos-enhanced accelerated particle swarm optimization. Appl. Energy 2017,
189, 588–601. [CrossRef]

54. Diaf, S.; Diaf, D.; Belhamel, M.; Haddadi, M.; Louche, A. A methodology for optimal sizing of autonomous
hybrid PV/wind system. Energy Policy 2007, 35, 5708–5718. [CrossRef]

55. Pipattanasomporn, M.; Willingham, M.; Rahman, S. Implications of on-site distributed generation for
commercial/industrial facilities. IEEE Trans. Power Syst. 2005, 20, 206–212. [CrossRef]

56. Bernow, S.; Marron, D. Valuation of Environmental Externalities for Energy Planning and Operations; Tellus
Institute Report 90-SB01; Tellus Institute: Boston, MA, USA, 1990.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.apenergy.2016.12.074
http://dx.doi.org/10.1016/j.enpol.2007.06.020
http://dx.doi.org/10.1109/TPWRS.2004.841233
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Optimization Model 
	The CCHP Model and Improved Dispatch Strategy 
	The CCHP Model of MT 
	Improved CCHP Dispatch Strategy 

	Overview of Studied Stand-Alone MG 
	The Day-Ahead Scheduling Optimized Model 
	Objective Function in Day-Ahead Scheduling 
	Operation Constraints in Day-Ahead Scheduling 

	The Real-Time Scheduling Optimized Model 
	Objective Function in Real-Time Scheduling 
	Operation Constraints in Real-Time Scheduling 


	SIP-CO-PSO-ERS Algorithm 
	Basic PSO Algorithm 
	Search Improvement Process (SIP) 
	Chaotic Optimization (CO) 
	Elite Retention Strategy (ERS) 
	Detailed Procedures of SIP-CO-PSO-ERS 
	The Limitations of Proposed SIP-CO-PSO-ERS 
	The Framework of Stand-Alone MG’s Optimized Operation 

	Simulation Analysis 
	Description of the Stand-Alone MG system 
	Results Analysis 
	The Day-Ahead Scheduling Results 
	The Real-Time Scheduling Results 
	Algorithm Evaluation 


	Conclusions 

