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Abstract: DNA’s molecular recognition properties have made it one of the most widely used
biomacromolecular construction materials. The programmed assembly of DNA oligonucleotides
has been used to create complex 2D and 3D self-assembled architectures and to guide the assembly
of other molecules. The origins of DNA nanotechnology are rooted in the goal of assembling DNA
molecules into designed periodic arrays, i.e., crystals. Here, we highlight several DNA crystal
structures, the progress made in designing DNA crystals, and look at the current prospects and future
directions of DNA crystals in nanotechnology.
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1. Introduction

The DNA double helical structure has become an iconic symbol, both in science and in popular
culture, due in part to the elegance and simplicity of the helical double arrangement of DNA strands.
This simplicity is also reflected in the immediately recognizable relationship between the double
helical structure and DNA’s role in genetic information storage. The original determination of the
double helical DNA structure was itself deeply rooted in the exploration of another class of structures
that have fascinated humans for millennia: crystals. This fascination comes in part because of the
crystal shape, or habit, which is a consequence of the periodic nature of crystals as first suggested
by René Just Haüy (1743–1822). From an analytical perspective, crystalline substances are attractive
because their periodicity allows the structure of their component molecules to be established through
X-ray diffraction. Though small molecule crystallography was already an established discipline in
the 1950s, it was at the dawn of macromolecular crystallography that Franklin and Gosling collected
their early diffraction images of microcrystalline DNA fibers [1]. These diffraction images enabled
Crick and Watson to develop a model for the helical repeat structure of duplex DNA that ultimately
initiated the development of molecular biology [2]. Not long after, the maturation of macromolecular
crystallography began to reveal the structural and functional details of proteins, but nucleic acid crystal
structures were largely limited to relatively simple dinucleoside phosphate structures [3], primarily
owing to the expense of longer oligonucleotides of discrete sequences needed for crystallization.
It was not until the development of low-cost chemical DNA synthesis by Caruthers and colleagues [4]
that facile automated synthesis of longer oligonucleotides with designed sequences was possible.
This in turn opened the door for the determination of DNA crystal structures [5–7]. DNA crystal
structures are responsible for a great deal of our knowledge about the diversity of DNA structure,
its sequence-dependent heterogeneity [8,9], and how it interacts with other biological molecules to
express the information stored in its molecular structure/sequence [10,11].

Much as the discovery of the DNA duplex structure was linked with the exploration of crystals,
DNA crystals are inextricably linked with the field of DNA nanotechnology. Even before the term
“nanotechnology” had been coined, it was suggested that DNA could be used as a material to organize
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matter. It was originally proposed that DNA could be used as a programmable construction material
for rationally designed branched junctions that could be assembled to form periodic three-dimensional
crystals [12]. The crystals could serve as porous scaffolds to orient and position guest molecules,
such as proteins, at specific positions (Figure 1), effectively making the guest an integral part of the
crystal lattice. A scaffold for crystallizing proteins could provide a unique method for overcoming the
macromolecular crystallization bottleneck and enable rapid structure determination, thereby enhancing
and accelerating the structure-based drug design pipeline. The ability to position guest molecules in
3D would enable many applications beyond the original notion of a crystallization scaffold. 3D DNA
crystals have also been envisioned as information storage devices [13], as zeolite-like materials capable
of macromolecular separations [14], and/or catalysis with appropriate functionalization [15].
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Any number of materials could be suitable for constructing molecular scaffolding materials. In 
one example, crystalline metal complexes have been effectively used as “crystal sponges” to 
determine small molecule crystal structures [16] and metal-organic frameworks have been used to 
house protein enzymes [17]. However, DNA has a number of features that make it an ideal material 
for designing scaffolds that could be applied in many different circumstances. First and most 
uniquely, DNA is a programmable molecule. Base pairing provides specificity to inter- or 
intramolecular interactions that allows single strands of DNA to form structurally well-designed 
higher order assemblies. Second, the interaction between these single stranded sticky ends leads to a 
predictable local structure—the Watson-Crick duplex—when programmed via complementary base 
pairs [18]. Sequence-specific structural variations that can lead to deviations in the Watson-Crick 
duplex [19,20], and a number of non-canonical DNA base pairing motifs that can compete with 
Watson-Crick base pairing [21–24], can be mitigated by careful sequence selection. Third, the 
association between DNA strands is a self-assembly process. The ability for individual strands, 
programmed by their sequences, to find complementary regions in other strands when part of a 
mixture allows for significant complexity in design. There is also a code external to the double helix, 
enabling the binding of DNA triplexes, as well as their recognition by other macromolecules [25]. 
Finally, the cost of DNA synthesis continues to drop. In 1981, “Only a highly trained and skilled 
chemist could produce a single 12-unit DNA sequence in less than 5 months.” [26] Thus, in the earliest 
days of DNA nanotechnology, the synthesis cost per DNA nucleotide was over $300, whereas today 
this cost is below $0.20 a base on a useful scale [27]. These decreased synthesis costs have allowed the 
construction of DNA assemblies from hundreds to thousands of individual strands [28,29]. 

Figure 1. A periodic DNA scaffold. This schematic imagines that DNA (purple/yellow) could be
assembled into 3D periodic arrays, or crystals, to which guest molecules such as proteins (green)
could be tethered. The guest molecule would then be part of the crystal lattice, allowing its molecular
structure to be determined by X-ray diffraction. This idea sparked the field of DNA nanotechnology.

Any number of materials could be suitable for constructing molecular scaffolding materials.
In one example, crystalline metal complexes have been effectively used as “crystal sponges” to
determine small molecule crystal structures [16] and metal-organic frameworks have been used to
house protein enzymes [17]. However, DNA has a number of features that make it an ideal material
for designing scaffolds that could be applied in many different circumstances. First and most uniquely,
DNA is a programmable molecule. Base pairing provides specificity to inter- or intramolecular
interactions that allows single strands of DNA to form structurally well-designed higher order
assemblies. Second, the interaction between these single stranded sticky ends leads to a predictable
local structure—the Watson-Crick duplex—when programmed via complementary base pairs [18].
Sequence-specific structural variations that can lead to deviations in the Watson-Crick duplex [19,20],
and a number of non-canonical DNA base pairing motifs that can compete with Watson-Crick base
pairing [21–24], can be mitigated by careful sequence selection. Third, the association between DNA
strands is a self-assembly process. The ability for individual strands, programmed by their sequences,
to find complementary regions in other strands when part of a mixture allows for significant complexity
in design. There is also a code external to the double helix, enabling the binding of DNA triplexes,
as well as their recognition by other macromolecules [25]. Finally, the cost of DNA synthesis continues
to drop. In 1981, “Only a highly trained and skilled chemist could produce a single 12-unit DNA
sequence in less than 5 months.” [26] Thus, in the earliest days of DNA nanotechnology, the synthesis
cost per DNA nucleotide was over $300, whereas today this cost is below $0.20 a base on a useful
scale [27]. These decreased synthesis costs have allowed the construction of DNA assemblies from
hundreds to thousands of individual strands [28,29].
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One of the inherent design principles of DNA nanotechnology is that on short length-scales (well
below the persistence length), the DNA duplex behaves as a linear, fairly-rigid rod [30]. Constructing
branching structures of sufficient rigidity and uniformity to connect these duplexes is the central
challenge of DNA crystal design. The need to understand more thoroughly how DNA behaved in
multi-arm junctions was directly responsible for the broadening of the DNA nanotechnology landscape.
The first such attempts were the construction of geometric objects, with DNA duplexes as edges [31,32].
While successful, these constructs highlighted the “floppiness” of the junctions that connected the
duplex edge as one of the major challenges in using DNA as a building material. Robust motifs, like
the DX and TX motifs [33,34] based on multiple reciprocal exchanges of strands between antiparallel
DNA duplexes, were found to enhance DNA rigidity [35,36], and led to the construction of DNA tiled
arrays [37] and a host of 2D periodic and discrete assemblies, DNA nanotubes [38], the use of DNA tiles
for logical computation [39], and to the development of dynamic DNA machines and circuits [40–42].
The field saw an explosion in 2005 with the development of DNA origami [43] leading to a new and
powerful method for creating diverse 2D and 3D DNA nanostructures with over 7000 nt pairs. More
recently, DNA brick assemblies [28,44] have been utilized to create many types of arrangements from
a starting set of numerous short DNA strands. Both origami and brick structures are largely used
without strand purification, making them attractive to a large audience of non-chemists (physicists,
computer scientists, engineers and materials-scientists), but this feature renders them unlikely as
components for 3D crystal formation. Finally, the versatility of DNA as a construction material has
also allowed it to become an important player in different areas of material science. DNA has been
used as the connective material for the construction of crystalline nanoparticle arrays [45,46]. DNA
hydrogels offer a number of remarkable properties with wide-ranging application [47].

The wonderful diversity of discrete DNA structures created through planar tile motifs, DNA
origami, and DNA brick methods have clearly demonstrated the power of DNA as a self-assembling
construction material, but they have also shifted emphasis from the initial motivations of the field.
Further, there are several significant differences between these types of nanoscale assemblies of
large, single objects and the assembly of robust 3D DNA crystals. It is the programmed cooperative
interactions between many DNA strands with distinct sequences that facilitates nucleation and
stabilizes these nanoassemblies [48]. For 3D DNA crystals, the crystal contacts are by their nature
isomorphous, meaning there is much less room for subtle structural heterogeneity. In addition, the key
feature of a crystal to be used for diffraction purposes is not its stability, but its resolution, i.e., the extent
of its scattering. Resolution and scattering power are not direct functions of the thermodynamic stability
of the crystalline contacts as a whole, but on the homogeneity of the crystal components and other
features that are not well understood. Thus, the notion of constructing porous 3D DNA crystals with
sufficient uniformity to study their structures by X-ray diffraction has proved to be quite distinct from
its progeny.

There are over 1000 examples of “naked” DNA crystal structures deposited in the Nucleic
Acid Database (NDB) [49], representing a wide array of DNA sequences and structures. In this
review, we restrict our view to those DNA crystal structures with features that lend themselves
toward nanotechnology applications based on several specific criteria. First, these DNA lattices
show continuous hydrogen bonding. In this case, “continuous” refers to crystal packing interactions
between strands that result in any DNA molecule in any unit cell of the crystal being reachable
from any starting point by tracing through the sugar-phosphate backbone or through nucleobase
hydrogen bonding interactions. Surprisingly, very few DNA crystal structures in the NDB meet this
criterion, with a majority relying on end-to-end base stacking interactions between duplex segments,
or groove-to-groove interactions to facilitate crystal packing. Non-hydrogen-bonding contacts certainly
have the potential to be another parameter used in designing and optimizing DNA crystals, but as of
now their programmability is not well understood in most cases. Second, the one thing in common
with nearly all of the proposed applications of DNA crystals is the positioning of guest molecules.
Therefore, the crystals must contain sufficient solvent space in the form of channels or pockets to
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allow guest incorporation. The geometry and volume of the solvent space dictate what type of guest
molecules (e.g., small molecules or macromolecules) can be incorporated, but densely packed DNA
would make the inclusion of guest molecules—either before or after crystallization—significantly more
difficult. There are two different classes of DNA lattices present in the NDB that meet these criteria.

2. Tensegrity Triangle Crystals

The first fully designed 3D DNA crystal lattice was based on a three-fold symmetric structural
motif known as the tensegrity triangle [50,51]. The motif is characterized by the helix axes of each of
the triangle edges extending in linearly independent directions (Figure 2a). This provides an inherent
3D geometry that can be extended into a periodic structure by end-to-end translation of the motif
along each linear direction. To replicate the full motif structure with DNA, seven strands are required
(Figure 2b,c), although they are often three-fold symmetrized using three strands in a 3:3:1 ratio. First,
a central strand (black) containing three repeating 7 nt segments base paired with three identical
edge strands (green) to form the central three-fold symmetric triangle with a single nick site. These
pairing interactions occur between the central 7 nt of the 21 nt edge strands, leaving 7 free nt on either
side. These 7 nt extensions occur where two edges cross, and they are held together and oriented by
the addition of three cross-over strands (blue) that form four-arm branched junctions at the triangle
vertices. While this motif could be robustly assembled in solution, the programmability for these
motifs to assemble together and form a larger periodic structure is dependent on 2 nt “sticky ends”
present at the 5' ends of both cross-over and duplex strands (Figure 2b, red outline). These nucleotides
direct the assembly of the independently folding triangle motifs into a higher order periodic structure
and provide continuous connectivity within the lattice.
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for the guests to occupy. As part of their design, the tensegrity triangle crystals contain rhombohedral 
solvent pockets of ~200 nm3 (Figure 3). These solvent spaces are connected, effectively generating a 
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When considered as a macroscopic object, the lattice arrangement creates a highly porous crystal. 
Figure 4a–c shows several different lattice views that create discernible solvent channels  
(when viewed in projection) running through the entire crystal.  

 

Figure 2. The tensegrity triangle motif. (a) Cylindrical representation of a tensegrity triangle,
highlighting the three independent linear directions of the cylinders; (b) One example of three-fold
symmetrized DNA tensegrity triangle. The central strand is in black, the edge strands are in green,
and the cross-over strands in blue. 2 nt sticky ends are outlined in red; (c) The single DNA tensegrity
triangle motif described by the crystal structure (PDBID: 3GBI). Strands are colored as in (b) and yellow
cylinders connect the helix ends to show the three independent linear directions that multiple motifs
extend into a 3D lattice.

As described above, nearly all of the proposed applications of DNA crystals involve placement of
guest molecules relative to the DNA, and this requires the crystals to have adequate solvent space for
the guests to occupy. As part of their design, the tensegrity triangle crystals contain rhombohedral
solvent pockets of ~200 nm3 (Figure 3). These solvent spaces are connected, effectively generating
a series of solvent channels that run through the crystal along each of the triangle edges (Figure 4a).
When considered as a macroscopic object, the lattice arrangement creates a highly porous crystal.
Figure 4a–c shows several different lattice views that create discernible solvent channels (when viewed
in projection) running through the entire crystal.
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complexity of the components, while maintaining programmability. This was demonstrated by the 
construction of crystals with two different triangles in the crystal’s asymmetric unit [52]. The duplex 
regions of the two triangles contained different sequences, and the sticky ends were programmed to 
enable the two motifs to assemble through an alternating pattern. As designed, the cell constants of 
these crystals now contained 1/3 of each of the two triangles in the asymmetric unit, and two complete 
tensegrity triangles in the unit cell. Significantly, the increased complexity of the unit cell contents 
allows increased diversity of the placement of guest molecules (see below). The tensegrity triangle 
described in Figures 2–4 is a two-turn variety, with each triangle edge containing the 21 nucleotides 
of two turns of B-form duplex. However, the ability to program turn length based on the number of 
base pairs per arm provides another method for altering the unit cell dimensions and tuning the 
crystal properties. Both three- and four-turn tensegrity triangle crystals have been assembled into 
crystals [51]. While these crystals only diffract to 5.5 Å (modified from [51]) and 10–14 Å resolution, 
respectively, they clearly influence the properties of the unit cell, most notably the solvent content. The 
three-turn would contain solvent channels with ~568 nm3, while the four-turn crystals have channels of 
850–1100 nm3. 

An interesting rule of thumb arose in another context, but the tensegrity triangle  
(which precedes it) obeys the rule. At one juncture, attempts were made to make 2D crystals of DNA 
origami. The first attempts used the same strategy as employed in the first 2D DX crystals [37], 
wherein all the helix axes were parallel. The origami crystals that were formed were extremely 
narrow (<10 tiles), although quite long. Wenyan Liu, working on the problem, recognized that the 
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Figure 4. Solvent channels. The tensegrity triangle crystals form multiple solvent channels that run
through the crystal in multiple directions. (a) Solvent channels that run along each helical axis of the
motif; (b,c) Two other channels that run through the crystal.

The robust design of the tensegrity triangle crystals has allowed the construction of several other
types of DNA lattices. One of the advantages of this construct is the ability to increase the overall
complexity of the components, while maintaining programmability. This was demonstrated by the
construction of crystals with two different triangles in the crystal’s asymmetric unit [52]. The duplex
regions of the two triangles contained different sequences, and the sticky ends were programmed to
enable the two motifs to assemble through an alternating pattern. As designed, the cell constants of
these crystals now contained 1/3 of each of the two triangles in the asymmetric unit, and two complete
tensegrity triangles in the unit cell. Significantly, the increased complexity of the unit cell contents
allows increased diversity of the placement of guest molecules (see below). The tensegrity triangle
described in Figures 2–4 is a two-turn variety, with each triangle edge containing the 21 nucleotides
of two turns of B-form duplex. However, the ability to program turn length based on the number
of base pairs per arm provides another method for altering the unit cell dimensions and tuning the
crystal properties. Both three- and four-turn tensegrity triangle crystals have been assembled into
crystals [51]. While these crystals only diffract to 5.5 Å (modified from [51]) and 10–14 Å resolution,
respectively, they clearly influence the properties of the unit cell, most notably the solvent content.
The three-turn would contain solvent channels with ~568 nm3, while the four-turn crystals have
channels of 850–1100 nm3.

An interesting rule of thumb arose in another context, but the tensegrity triangle (which
precedes it) obeys the rule. At one juncture, attempts were made to make 2D crystals of DNA origami.
The first attempts used the same strategy as employed in the first 2D DX crystals [37], wherein all the
helix axes were parallel. The origami crystals that were formed were extremely narrow (<10 tiles),
although quite long. Wenyan Liu, working on the problem, recognized that the long direction was
the direction of the helix axes: He designed a cross-shaped origami tile that yielded roughly isotropic
crystals in 2D; hence, the notion that DNA crystals seem better if their helix axes span the dimensions
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of the crystal is known as Wenyan Liu’s Rule [53]. It is worth pointing out that one of us (NCS) has
tried numerous motifs that ought to form 3D crystals, but which contain parallel helix axes. These
included TX motifs with non-integral twists between two TXs, as well as 6-helix bundles. 3D crystals
were often obtained, but no diffraction was observed, thus vindicating Wenyan Liu’s rule. The rule is
an empirical observation and the basis of this design principle remains unknown.

3. DNA 13-Mer Crystals with Non-Canonical Base Pairs

The tensegrity triangle crystals described above were the result of many trials and years of
dedicated work to identify an assembly motif that gave crystals that diffracted usable resolution.
However, the first description of a continuous 3D DNA crystal came several years earlier [54]. In this
case, the crystals were not initially designed, but were instead the serendipitous product of an attempt
to construct a lattice from both DNA and protein components. The DNA 13-mer, GGACAGATGGGAG
was used as one strand in a two member, four-way junction motif that was based on the RNA strand
in a DNA-RNA hybrid four-way junction [55]. The longer partner strand of this motif (originally
described as an in vitro evolved DNA enzyme) was biotinylated, with the goal of assembling a periodic
DNA/protein lattice built from DNA four-way junctions and tetrameric streptavidin. Despite having
regions of complete complementarity to its partner strand, the 13-mer crystallized independently from
the mixture through self-pairing interactions. Remarkably, the only crystallization requirement was
the addition of Mg2+.

In this lattice, every DNA strand is identical, with the crystallographic symmetry resulting in each
strand forming base pairs with three other strands to form two distinct structural regions (Figure 5a).
The first structural region is composed of self-pairing between nucleotides 4 and 9 of two 13-mers
to form an anti-parallel B-form double helix containing two central G-A non-canonical pairs. The
second structural region is formed through base pairing between G1-A3 of one strand and G10-A12 of
another to form a parallel-stranded GGA-GGA motif. This region, denoted the homopurine junction,
forms two distinct G-G base pairs (G1(syn)-G10(anti)), G2(anti)-G11(anti)), and one A-A base pair
(A3-A12) (Figure 5b). G13 is disordered in the structure, and is not necessary for crystallization. It is
the homopurine junction region of this crystal that is critical for connecting the short B-form duplex
regions into a continuously hydrogen-bonded DNA network.
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Figure 5. The DNA 13-mer lattice with non-canonical base pairs. (a) Secondary structure of base
pairing interactions. Four identical strands are colored differently. Dashes indicate Watson-Crick base
pairs, and circles indicate non-canonical base pairs. G13 is disordered in the crystal structure and is
not shown; (b) The three unique non-canonical base pairs of the homopurine junction. Black dashes
indicate hydrogen bonding.

The organization of the crystal lattice can be viewed as layers of coaxially stacked duplexes
separated by 20 Å of solvent space. Each of these parallel arrays is rotated by 120◦ with respect to the
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flanking layers down the 64 screw axis. Each layer is continuously hydrogen bonded to the flanking
layers through the homopurine junctions which simultaneously serve to bridge the coaxially stacked
duplex regions within each layer. Similar to the tensegrity triangle crystal, this geometric layout also
results in the lattice having extensive solvent pockets. The overall solvent content of nearly 70% of
the unit cell volume (59,483 Å3 of solvent in a 88,334 Å3 cell) is a result of solvent channels that run
both down the six-fold axis, and along each of the helical layers perpendicular to the six-fold axis
(Figure 6a,b)
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This crystal structure provides an example of DNA’s structural plasticity in the absence of
Watson-Crick interactions. Alternate DNA structures are now beginning to be a useful tool for DNA
nanotechnology applications [54–60]. However, these have been primarily limited to well-understood
motifs, such as G-quadruplex and DNA i-motifs, where the structure can be predicted from a
combination of sequence and environmental conditions. It is the lack of predictability that significantly
limits the use of non-canonical motifs as junctions for DNA assembly. There is mounting evidence that
the GGA-GGA parallel motif is such a predictable motif. It has been observed in solution [61], and
it is structurally related to another well-studied parallel-stranded motif known as π-DNA [62,63].
Finally, though this initial DNA crystal was not the product of deliberate design, the resulting
structure enabled the construction of a number of derivative DNA lattices using the interactions
of the homopurine junction.

The first derivative of the 13-mer lattice was the creation of a fully self-complementary duplex
region by removing the central G-A base pairs (Figure 5a). Converting these to G-C base pairs
resulted in crystals with isomorphous unit cell parameters and overall crystal structure [64]. Testing
all 64 possible self-complementary sequences in the duplex region showed that the combination of the
GGA-GGA parallel motif and self-complementary duplex segments was a robust design, with over
20 different sequences yielding crystals. Thirteen of these were solved to resolutions better than 2.3 Å.
This study allowed the examination of the role of the sequence in crystal self-assembly. There was a
clear selection against the G4-C9 base pair, and a strong selection for the A5-T8 base pair in the duplex
region, suggesting that base pairing identities can have a large impact on crystallizability in certain
contexts. Because these crystals were isomorphous, it was also possible to construct “mixed” single
crystals containing more than one oligonucleotide sequence [64].

The 13-mer DNA crystals has also served as a template for the design of a 3D DNA crystal with
expanded solvent channels. The addition of 10 or 11 nucleotides between the duplex region and
the 3' GGA motif was designed to extend the duplex region by one turn on either side (Figure 7a).
In this design, a second strand was required to pair with the expansion region [54]. This construct
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crystallized under the same conditions as the DNA 13-mer (only requiring the addition of Mg2+), but
only diffracted to ~5 Å resolution. This diffraction was sufficient to confirm the predicted unit cell
symmetry and constants, and a model of the lattice structure showed the solvent channels down the
six-fold symmetry axis expanded substantially, going from channels of ~2 nm in diameter (Figure 6a)
to channels of ~9 nm in diameter (Figure 7b). The channels perpendicular to the six-fold axis were also
expanded (Figure 7c). Though the structure could not be definitively solved at low-resolution, atomic
force microscopy of the crystal surface reinforced both the cell dimensions and the presence of solvent
channels [65] (Figure 7b,c).
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AFM images confirmed the presence of the solvent channels and unit cell dimensions, along with low
resolution diffraction [65]. Scale bars are 20 nm.

4. Lessons for DNA Crystal Design

The two types of DNA crystal lattice described above arise from very different types of interactions
and geometries, but there are observed commonalities between the structures and their assembly.
First, and not surprisingly, both structures require multi-cations for crystallization. These cation
concentrations, including the relative amount and identity of mono- and divalent cations, is one of
the main environmental conditions that requires optimization of nucleic acid crystallization [66,67].
Appropriate cation concentrations are necessary to shield the charge of the polyanionic DNA
backbone to promote crystal assembly, while sub-optimal concentrations will not crystallize or result
in aggregation. In both of these cases, metallic cations are apparently necessary for both crystal
formation and stability, and this is likely an inherent property of most DNA crystals that might require
crosslinking or otherwise affect their utility in applications where high salt concentrations may not
be desirable.

A second common feature of the two structures is that the motifs that provide continuity to the
base pairing interactions between crystallizing units (the sticky ends of the tensegrity triangle and the
homopurine junction of the 13-mer lattice) are relatively short. This may be a significant feature that
facilitates crystal assembly into macroscale objects, and supports the idea that not all interactions that
could “pre-organize” the components are beneficial for crystal assembly. For the tensegrity triangle
motif, many different sticky end lengths were assessed [68], but those crystals of two-turn triangles
with the 1 and 2 nt sticky ends diffracted to the highest resolution. This is contrary to the simple
interpretation that longer sticky ends would provide more cohesive connectivity between triangle
units through more favorable thermodynamics. The importance of the shortness of the sticky ends is
that they facilitate reversibility; the useful presence of phosphates [69] is likely to have a similar origin.
For the 13-mer lattice, the homopurine junction length could not be altered, but in the final structure
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G1 is rotated about the glycosidic bond to adopt the less common syn orientation (Figure 5b). Attempts
to pre-organize G1 into the syn orientation using an 8-amino dG substitution resulted in 13-mers that
crystallized extremely rapidly (in minutes) at typical DNA concentrations upon the addition of Mg2+,
but they formed primarily microcrystal clusters that diffracted poorly (PJP, unpublished). These results
suggest that the desire to design components that pre-organize stable lattice contacts can in some cases
be detrimental to crystal assembly. There may be a variety of different reasons for this in both cases.
The argument can be made that the short sticky ends in the tensegrity triangle allow reversibility that
can help avoid kinetic traps during crystal nucleation or growth. In the 13-mer case, it appears the
G1 syn pre-organization alters crystal nucleation, perhaps by reducing the activation free energy of
nucleation at the expense of crystal growth [70].

Another feature common between the two types of lattice is the impact expansion has on the
diffraction limit. The three- and four-turn tensegrity triangle crystals (~5.5 Å with LNA additions, and
~10 Å, respectively) and the expanded non-canonical crystals diffract poorly relative to the shorter
versions. There are likely a number of factors that contribute to the decreased resolution, but one
thing these constructs all have in common is an increase in solvent content. This phenomenon is
emphasized in the 20 Å resolution found in the 3D tensegrity triangle crystals when the edges are
8-turn DX molecules (NCS, unpublished). The longer helices used in these constructs result in greater
separation between strands and ultimately larger solvent spaces. While this type of expansion may be
desirable, for example, as a scaffold for proteins, there is a strong negative correlation between solvent
content and diffraction limits in macromolecular crystals [71]. For some applications, these decreased
resolution limits may not be an important issue, but for use as a macromolecular scaffold for structure
determination, it is significant. Indeed, one of the significant challenges for future applications that
rely on x-ray diffraction and structure determination will be to mitigate the effects of increased solvent.

5. DNA Crystal Applications

Though the goal of using DNA crystals as a scaffold for protein crystallization has yet to be
achieved, the DNA crystal lattices described here have already begun to push toward this goal, while
revealing other potential applications. The first example of integrating proteins, albeit non-specifically,
within a 3D DNA crystal was the demonstration that the expanded non-canonical lattice could
function as a macromolecule sieve [14]. The 9 nm diameter solvent channels running down the
six-fold symmetry axis of these crystals were capable of absorbing proteins up to ~45 kDa, with the
amount of absorbed protein inversely proportional to its molecular weight. Selective absorption
was demonstrated using a fluorescent protein mixture. 28 kDa green-fluorescent protein could be
visualized throughout the interior of the crystal, while a 280 kDa red-fluorescent protein was excluded
from the crystal.

The ability to incorporate proteins into the expanded non-canonical lattice suggested the
possibility of constructing solid-state biocatalysts by encapsulation of protein enzymes. As a
proof-of-concept, RNase A was encapsulated within the DNA crystal and used to cleave a
fluorescently-quenched dinucleotide substrate [15]. RNase A provided a convenient model system,
as a potent protein inhibitor of RNase A could be used in large excess due to its being too large to
enter the crystal. Thus, any observed enzyme activity occurred in the crystal solvent channels. These
enzyme-infused crystals were capable of multiple rounds of catalysis following washing to remove
substrate and product.

Several examples of specific guest molecule placement have been demonstrated with the tensegrity
triangle crystals. As one way of assessing that the crystals with two triangles in the asymmetric unit
contained both constructs, different color fluorescent dyes were linked covalently to each construct [52].
Crystals grown with one cyan labeled triangle and the other unlabeled triangle produced distinctly
cyan crystals, and the opposite combination using a red dye produced red crystals. Strikingly, crystals
grown from a mixture of the two labeled constructs yielded purple crystals, consistent with the
co-incorporation of the dyes. The relatively low diffraction limit (5 Å), the three-fold averaging of
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the dyes within the crystal, and the flexible organic linker prevented their observation in the electron
density. However, the site-specific placement of small molecules into DNA crystals is a first step
toward the reaching the goal of using DNA crystals as molecular scaffolds.

6. Future Directions and Applications

There has been a push to expand the types, and thus the applications of DNA crystals by
incorporating different guest molecules. One potential application that has already been explored
with DNA origami constructs is as a drug delivery vehicle. Anti-cancer drugs, such as doxorubicin,
can be intercalated into DNA origami designs and used to improve drug efficacy in cell culture
models [72,73]. DNA crystals may be suitable for similar use, but with the potential of drugs beyond
just small molecule intercalators. The ability to house proteins, including antibody-based drugs [74],
would provide a new type of use for DNA crystals. Shielding these types of drugs in a biomolecular
scaffold could enhance biological compatibility and improve drug efficacy. However, macroscopic
DNA crystals have yet to be tested in delivery applications. Future work in this area will require
understanding how DNA crystals (either macroscopic or nanoscale) interact with cells, similar to the
developing body of work with other DNA constructs [75].

One challenge for any nucleic acid construct in these types of applications is longevity in
biological environments. In some cases, DNA nanoconstructs seem to have an inherent resistance
to nucleases [76,77], though others show extreme sensitivity in tissue culture mediums [78]. Several
different methods for enhancing the durability of nanoscale DNA constructs have been explored [79,80].
Studies on DNA crystals have been limited, but both intrinsic design and extrinsic approaches have
been explored. The salt stability of the triangle crystals has been enhanced through the conversion
of an interconnecting duplex arm into a triplex by the addition of appropriately designed single
strands [81]. The addition of the triplex-forming strand enhances the stability of crystals in low
salt, and provides an alternative method for the introduction of guest molecules, for example,
by the incorporation of fluorescent dyes [82]. Triplex formation has also been used to introduce
photo-crosslinkers site-specifically to the triangle crystals. When activated by UV exposure, these
crosslinks enhance crystal thermostability (Figure 8a) [83]. Non-specific chemical crosslinking has been
shown to be an effective way of enhancing 13-mer crystal durability under a number of conditions. The
bis-alkylating reagent nornitrogen mustard formed multiple interstrand crosslinks within the crystals,
leading to significantly enhanced thermostability (Figure 8b), tolerance in low cation environments,
and decreased nuclease sensitivity [84].
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Figure 8. Crosslinking enhances DNA crystal thermostability. (a) Site-specific introduction of photo
crosslinking groups to the tensegrity triangle crystals through triplex formation enhances crystal
stability in a UV-dependent manner; (b) Comparison of 13-mer DNA crystals with and without
nornitrogen mustard crosslinking following incubation at 33 ◦C at the specified times.
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The last decade has seen significant advances in the design, characterization, and application of
DNA crystals. It is now routine to produce robust DNA crystals from specific motifs, and there continue
to be advances in RNA crystal design [85]. Both the conventional Watson-Crick paired tensegrity
triangle and the novel parallel GGA-GGA motif can be used to produce crystalline arrangements, and
new designs and motifs will further expand the exploration of DNA crystals. There are at least two
key routes to pursue now: improving the diffracting capability of large-solvent-content variants of
these crystals, and putting interesting guests inside them. It should be clear that larger units of these
motifs can also be used (e.g., the whole rhombohedron in the case of the tensegrity triangle), so that
complex guests and diverse guests can be included in the crystals. As DNA nanotechnology goes back
to its roots, we expect the next decade to provide even more excitement in this area than was provided
by the last one.
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