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Abstract: Data aggregation has been considered as an effective way to decrease the data to be
transferred in sensor networks. Particularly for wearable sensor systems, smaller battery has less
energy, which makes energy conservation in data transmission more important. Nevertheless,
wearable sensor systems usually have features like frequently dynamic changes of topologies and
data over a large range, of which current aggregating methods can’t adapt to the demand. In this
paper, we study the system composed of many wearable devices with sensors, such as the network
of a tactical unit, and introduce an energy consumption-balanced method of data aggregation,
named LDA-RT. In the proposed method, we develop a query algorithm based on the idea of
‘happened-before’ to construct a dynamic and energy-balancing routing tree. We also present a
distributed data aggregating and sorting algorithm to execute top-k query and decrease the data
that must be transferred among wearable devices. Combining these algorithms, LDA-RT tries to
balance the energy consumptions for prolonging the lifetime of wearable sensor systems. Results of
evaluation indicate that LDA-RT performs well in constructing routing trees and energy balances. It
also outperforms the filter-based top-k monitoring approach in energy consumption, load balance,
and the network’s lifetime, especially for highly dynamic data sources.
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1. Introduction

Wearable sensor systems consist of devices with one or many sensor nodes. Each sensor node
is usually equipped with a low-speed microprocessor, limited memory, and a radio transceiver and
receiver [1–3]. In real world, these wearable sensor systems usually form a wireless sensor network
to transfer collected data. With the development of technologies, wearable sensor systems are used
extensively in civilian and military fields, such as monitoring the environment and habitats, tracking
objects, transferring data within a tactical unit in battlefield, detecting fires, and controlling traffic.
Since the data generated in thus system is very large and dense, it is difficult to determine how to
collect data in different environments. In many cases, people have only focused on a part of observed
objects (for instance, the maximum or minimum values). Therefore, how to process a query and collect
needed data in wearable sensor systems has become the subject of extensive and in-depth research and
learning [4–10]. In general, the capabilities of communication, computing power, storage capacities,
and battery lifetime of wearable devices are very limited. So, power consumption is still a major issue
in wearable sensor systems and wireless sensor networks [11–16].

Unlike the traditional sense of sensor systems, wearable sensor systems usually form networks
with dynamic topology and generate data over a large range. Clearly, the existing data-window
filter and tree-based routing path methods can’t achieve good performance in these networks. First,
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tree-based routing algorithms, such as the directed diffusion algorithm, use sensor node’s level or
distance from base station as the metric to construct data transmission path. Although the shortest
path tree can be achieved, a relatively fixed path still leads to imbalances in energy consumption and
is not suitable for networks with dynamic topology. Second, window-based algorithms also result in
additional communication overhead when the filter is updating, especially when the measured data of
sensor nodes change frequently over a large range. This is just the general circumstance in wearable
sensor systems.

Regarding these issues, we introduce a novel top-k query paradigm. Unlike directed diffusion
scheme, the proposed method utilizes the ‘happened-before’ relation of received messages, which is a
concept used in distributed system and means one event happening before another [17], to determine
which paths should be used, and constructs, on demand, a dynamic routing tree that considers the
remaining energy, processing load, and the time drift of sensor nodes to avoid overconsumption of
energy. This is specially designed for dynamic topology of wearable sensor systems. In order to
reduce in-network traffic, each sensor node executes a data aggregation algorithm to merge the data
measured by itself and transmitted from its children. Then, the base station extracts the top-k result
after collecting all the messages. The data aggregation algorithm is a distributed sorting and query
scheme that restricts the data-merging process inside sensor nodes and makes it possible for every
node to send only one message during data-reporting procedure. Though wearable sensor systems
are the considered network environment, the proposed methods could also be used in other wireless
sensor networks.

We implement the proposed methods and algorithms over data link layer directly in the network
simulation environment and test the performance from various aspects. We also compare the proposed
method with filter and tree-based top-k monitoring methods with respect to the lifetime of network
and the balance of energy consumption. The obtained results indicate that the proposed method
produces a better balance of energy consumption and longer lifetime of network when there are large
changes in the range of data.

The remainder of this paper is organized as follows: Section 2 discusses the related work on
data aggregation and top-k query methods in wireless sensors networks. Section 3 presents our data
aggregation and top-k query method in details. Then, we propose an approach for constructing routing
tree. In Section 4, we evaluate the proposed method through extensive of simulations. Our conclusions
and recommendations for further work are presented in Section 5.

2. Related Work

Generally, most of the energy is consumed by communication between nodes in wireless sensor
networks, such as wearable sensor systems [11,14,18]. Therefore, minimizing the amount of traffic in
processing queries can improve the efficiency of search and save a significant amount of energy, thereby
prolonging the life of networks. Obviously, energy can be saved if the amount of data requested during
a query could be minimized. Such query is called top-k query [5], which is considered as a kind of
data aggregation methods. Top-k query is designed to determine the k highest (or lowest) observed
values and is a very important task in data acquisition.

The pioneering work related to top-k query is deemed to be TAG (Tiny AGgregation) [6], despite
the facts that the concept of top-k is not mentioned distinctly in it and the data grouping method
proposed by TAG is different from top-k. TAG uses a tree-based routing scheme to construct its data
aggregation data path, which is similar to directed diffusion [4]. In TAG, an in-network aggregation
technique called ‘grouping’ was presented to reduce network traffic. When a query is pushing down
through an established routing tree, an expression over one or more attributes is brought to every
sensor node. According to the expression, the reading of each sensor is placed into one group, the
groups are partitioned, and the values are aggregated in the appropriate groups when answers to
the query are flowing back. The result is that the base station can collect aggregated data directly,
and the data that each sensor node sends are reduced. However, data collecting and aggregated data
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controlling in TAG depend on time epoch, which covers all the levels of the tree. So, the depth of TAG
tree is limited. Otherwise, the time epoch of one query round would be too long. In addition, sensor
nodes near the tree’s root (usually base station) will consume more energy than other nodes [19], which
leads to an imbalance in energy consumption.

Basing on TAG routing tree, Wu et al. proposed a data query method called the Filter-Based
Monitoring Approach (FILA) [5]. Differing from the way of grouping data in TAG, FILA introduced a
data filter to each sensor node to decrease unnecessary updates. The basic assumption is that readings
of all sensor nodes will fall into a certain range, and, in most cases, the reading of a sensor node will
change only in a small interval. Thus, the range of values could be divided into several intervals
by a carefully planned schema, namely windows. For the nodes whose readings belong to top-k
result set, non-overlapping, distinct windows should be assigned to each of them. Conversely, other
nodes could share the same windows [5]. During the initial phase of data collection, the base station
queries all readings from sensor nodes and sorts them to determine the top-k result set. Then, the
base station calculates a filter window for each sensor node and sends it all nodes. At the following
data report, only the nodes whose readings change beyond the filtering window should transmit
their data to the base station. Then, the base station will re-calculate the filter settings. Apparently,
the mechanism of filtering window will reduce the amount of data transmitted markedly when the
readings of most sensor nodes in top-k result set do not go beyond their windows. Otherwise, sensor
nodes will consume additional energy to update their filters.

Myungho Yeo et al. proposed a priority-based approach called PRIM [20]. Their basic idea
was self-sorting by the value of sensor readings for collecting readings in an orderly manner. That
is, sensor nodes must determine their sequence without any centralized controls. So, the authors
proposed a data-aware, priority-assignment algorithm (DPA), which took advantage of the time slots
in TDMA frame. In PRIM, a routing tree is established using hierarchical clustering and routing
algorithms, such as LEACH [21] and HEED [22]. Based on similar thought, the authors also introduced
a sequence-aware, top-k (SAT) monitoring scheme that also makes sensor nodes determine their order
for the data-gathering phase [23].

Hang et al. studied filter-based, top-k queries and proposed three improvements, i.e., distributed
top-k queries, setting filter values, and predicting the available interval for each node by ARMA [24].
EXTOK [3] is another top-k query solution, and it considers both tree topology and filtering-based query.
Unlike other top-k query methods, EXTOK addresses the case in which the exact set of top-k values must
be retrieved, regardless of how many nodes reported it. Zhang et al. [25] studied multi-dimensional,
top-k query and used data-prediction method to establish the bi-boundary filter rule to refine data.
Silberstein et al. [26] proposed to use samples of past sensor node readings to formulate the problem
of optimizing approximate top-k queries under an energy constraint as a linear program. Threshold
Join Algorithm (TJA) [27] is an efficient, top-k query algorithm that uses a non-uniform threshold on
queried reading to minimize the redundancy of data. Babcock et al. studied the distributed, top-k
monitoring problem with a user-specified error tolerance [28]. In their approach, first, an initial top-k
set was computed. Then, the monitored nodes were installed with arithmetic constraints, which
were used to ensure the continuing accuracy of the initial top-k set to within the user-supplied error
tolerance. When a constraint is violated, it is re-computed by the coordinator (root node). Obviously, it
is just an earlier version of filter-based, top-k query method.

Inevitably, top-k query must be based on the route of wireless sensor network. So, another key
point is to determine how to construct an efficient route that will satisfy energy conservation demand
of top-k query.

TAG uses a tree-based routing approach. The base station first broadcasts a message to build the
tree of path. Nodes that receive this message will become the children of sender and will forward the
message to their neighbors. This process is repeated until every node has received the message. After
message broadcast, a tree of path will be rooted at the base station. Normally, it is a shortest-path-tree.
As mentioned above, in such a structure, nodes close to tree’s root will consume more energy and
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shorten network’s lifetime. Further, in most cases when a tree is constructed, it will have the same
structure as the preceding trees.

Directed diffusion (DD) is a data-centric dissemination protocol, i.e., all communication in DD is
for named data. This makes it possible to save energy by selecting good paths [4]. The schematic for
DD has three steps, i.e., (a) interest propagation; (b) setting up of the initial gradients, and (c) delivery
of data along a reinforced path. These steps indicate that it is possible to deliver the named data
through high-quality paths, but this requires an initial query flooded to explore paths [29]. MADD [29]
applies DD in a multi-hop environment and uses the gradient of DD to dispatch the mobile agent
(MA) [30]. The performance of MADD in the proposed gradient-based routing scheme was better than
DD in terms of energy consumption.

Sensor Protocols for Information via Negotiation (SPIN) [31] is a family of data dissemination
protocols for wireless sensor networks, including SPIN-PP, SPIN-BC, SPIN-RL, and SPIN-EC. The
protocols use meta-data negotiation to eliminate the transmission of redundant data throughout a
network. These negotiations ensure that nodes transmit data only when it is necessary, so they never
waste energy on useless transmissions. Also, the protocols use resource-adaptation to distribute
data efficiently when energy supply is limited. Because nodes are resource-aware, they reduce their
activities when their resources are low to increase their longevity. SPIN-PP is used in networks
for point-to-point communication media, and SPIN-BC is used in broadcast communication media.
SPIN-EC and SPIN-RL are modified versions of the first two protocols.

The Low Energy Adaptive Clustering Hierarchy (LEACH) [21] is representative of the clustering
structure, which partitions the sensor nodes into several clusters according to their positions in network.
During operation, LEACH reconstructs the clusters in a circle. Each process of reconstructing the
clusters is described as a ‘round’, and each round begins with a set-up phase during which the clusters
are organized, and this is followed by a steady-state phase in which the data are transferred from the
nodes to the head of cluster and to the base station. The cluster-building process has four stages, i.e.,
selecting the head of cluster, broadcasting the selection result establishing the cluster, and generating
the scheduling mechanism. After clustering, member nodes select and join a suitable cluster head. In
the steady-state phase, each member node sends the data it senses to its cluster head. The cluster head
collects and aggregates the incoming data from its member node and sends them to the base station.
Apparently, LEACH can be used to generate the path of top-k query. It can also be combined with data
aggregation algorithm to reduce the amount of data to be transmitted.

Except the above common methods, there are some new ones in literature. Mo et al. combined
network clustering with top-k query and introduced cluster-based routing for top-k querying
(CRTQ) [19]. Ref. [32] proposed a tree structure named Partial Ordered Tree (POT) to maintain
the clusters with highest readings. In POT, each node chooses a node with highest reading as its
parent, and the highest node in a local area will act as the root of POT of this area. Then, a network
is partitioned into many POTs, each of which has a root node. Essentially, POT is a routing tree
construction method based on network clustering. It builds routing tree dynamically. The weakness of
POT is that when a network has uniform readings, its performance declines evidently.

EXTOK [3] employed DST (Dominating Set Tree) [33] to construct routing tree and disseminate
the query to all nodes. Differing from dissemination by flooding in SPT (Shortest Path Tree), the idea
of DST is to ensure that ‘only the smallest possible subset of non-leaf nodes transmit the query’. DST
connects nodes named dominating nodes [34] to a tree rooted at base station. Obviously, once a DST is
constructed, the number of disseminated queries will reduce evidently. But finding dominating nodes
is an NP-hard problem, though ref. [34] proposed a distributed method. Due to the complexity of
DST construction, frequent reconstruction should be avoided. This results in a fixed routing tree used
by EXTOK.

DAS (Data Aggregation Scheduling) [35] introduced a data aggregation scheduling based on
maximal independent sets. It consists of two phases: constructing a distributed aggregation tree
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and performing distributed aggregation scheduling. In the first phase, connected dominating set is
employed, which is also the basis of DST. So, DAS faces the same problems as DST.

Many researchers have shown that the method of route used in top-k query is closely related to
the performance of query [3,5,19,23,24]. The same applies to the method of collecting data [7,15,35].

3. Local Data Aggregation Basing on Routing Tree

3.1. Problem

Consider a wireless sensor network composed of densely deployed wearable sensor devices,
each of which monitors surrounding environment and measures physical phenomena (e.g., humidity,
temperature, and residual energy) at a fixed rate determined by data gatherer. Suppose there is also
a base station set up for serving as the bridge between the network and data gatherer and energy is
supplied continuously to the base station. But, the resources (e.g., energy, communication band) of
wearable devices are strictly limited. We then focus on how sensor nodes in the network respond to a
top-k query of base station in an energy-efficient way.

Let S “ tsi : i “ 1, 2, . . . , mu be the sensor node set and R “ tri : i “ 1, 2, . . . , mu be the
corresponding reading value set of all nodes. For convenience, here we discuss maximum problem
only. The task of top-k query can be expressed in the form,

R˚ “ argmax
S˚

ÿ

rq subject to rq P R, sq P S˚ and |R˚| “ |S˚| “ k (1)

As discussed in Section 2, the aim of top-k query is to reduce energy consumption used in
data transmission. However, it is challenging to determine how to find k highest readings from all
sensor nodes distributed in a network. In addition to the filter-based method, distributed local data
aggregation is a feasible idea. So, the issue is to make a way to achieve this kind of aggregation. In
order to reach this goal, we propose a top-k query approach basing on routing tree, which includes
two parts, local data aggregation and routing tree construction, as presented below.

3.2. Local Data Aggregation

Suppose Sl is a sub-network of sensor network S. We call sκ the kernel node of Sl if

@ si P Sl , d psi, sκq ď δ, and d psκ , sτq ď δ subject to sκ P Sl , Sl Ď S (2)

where sτ is the sink node or a node in another sub-network, d ps1, s2q is the physical distance between
node s1 and node s2, and δ is the distance threshold of communication between two sensor nodes.
From another perspective, if a sub-network Sl satisfies Equation (2), sκ will be considered as the kernel
node of Sl , and all other nodes in Sl , named member node, can communicate with it. For example, in
Figure 1a,b, Node A is a kernel node with 4 member nodes. In Figure 1b Node C is also a kernel node
with 3 member nodes. If Node A and Node B are considered a sub-network, Node B is the kernel and
Node A is the member node.

Kernel node is charged with collecting all readings from its member nodes and itself and getting
R˚

l ,
ˇ

ˇR˚
l

ˇ

ˇď k defined by Equation (1), and then send R˚
l to the sink node or a node in another

sub-network, as shown in Figure 1b. We name this way Local Data Aggregation (LDA), in which
kernel node employs a variant merge sort algorithm to obtain top k readings. The basic merge sort
algorithm is as illustrated in Figure 2a. Figure 2b shows an example of LDA. In the example, Node A
is the kernel node of a sub-network illustrated by red dashes circle. When Node A obtains all readings
of the sub-network, it will calculate local top k by merge sort algorithm. And then Node A sends these
k readings to its parent Node B which is the kernel node of another sub-network. Comparing with the
whole network, Sl has relatively lesser nodes obviously. In addition, a kernel node, such as Node C in
Figure 2b, will receive no more than k readings from any of other kernel nodes. So, less data need to
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be sorted. Because kernel node uploads at most k sorted readings rather than all that it received, the
traffic in network and sorting computations can be significantly reduced, e.g., Node C in Figure 2b.
Further, unlike uploading message individually, up to k readings can be uploaded within one message,
which means that every node must send only one message to the kernel node it connects to in a query
round. It is important to balance the energy consumption of all sensor nodes in a network.

Sensors 2016, 16, 954 5 of 18 

 

3. Local Data Aggregation Basing on Routing Tree 

3.1. Problem 

Consider a wireless sensor network composed of densely deployed wearable sensor devices, 

each of which monitors surrounding environment and measures physical phenomena (e.g., 

humidity, temperature, and residual energy) at a fixed rate determined by data gatherer. Suppose 

there is also a base station set up for serving as the bridge between the network and data gatherer 

and energy is supplied continuously to the base station. But, the resources (e.g., energy, 

communication band) of wearable devices are strictly limited. We then focus on how sensor nodes in 

the network respond to a top-k query of base station in an energy-efficient way. 

Let 𝑆 = {𝑠𝑖: 𝑖 = 1,2, … , 𝑚}  be the sensor node set and 𝑅 = {𝑟𝑖: 𝑖 = 1,2, … , 𝑚}  be the 

corresponding reading value set of all nodes. For convenience, here we discuss maximum problem 

only. The task of top-k query can be expressed in the form, 

𝑅∗ = argmax
𝑆∗

∑ 𝑟𝑞   subject to 𝑟𝑞 ∈ 𝑅, 𝑠𝑞 ∈ 𝑆∗ and |𝑅∗| = |𝑆∗| = 𝑘 (1) 

As discussed in Section 2, the aim of top-k query is to reduce energy consumption used in data 

transmission. However, it is challenging to determine how to find k highest readings from all sensor 

nodes distributed in a network. In addition to the filter-based method, distributed local data 

aggregation is a feasible idea. So, the issue is to make a way to achieve this kind of aggregation. In 

order to reach this goal, we propose a top-𝑘 query approach basing on routing tree, which includes 

two parts, local data aggregation and routing tree construction, as presented below. 

3.2. Local Data Aggregation 

Suppose 𝑆𝑙 is a sub-network of sensor network 𝑆. We call 𝑠𝜅 the kernel node of 𝑆𝑙 if 

∀ 𝑠𝑖 ∈ 𝑆𝑙 , 𝑑(𝑠𝑖 , 𝑠𝜅) ≤ δ, and 𝑑(𝑠𝜅, 𝑠𝜏) ≤ 𝛿 subject to 𝑠𝜅 ∈ 𝑆𝑙 , 𝑆𝑙 ⊆ 𝑆 (2) 

where 𝑠τ  is the sink node or a node in another sub-network, 𝑑(𝑠1, 𝑠2)  is the physical distance 

between node 𝑠1  and node 𝑠2 , and 𝛿  is the distance threshold of communication between two 

sensor nodes. From another perspective, if a sub-network 𝑆𝑙  satisfies Equation (2), 𝑠𝜅  will be 

considered as the kernel node of 𝑆𝑙, and all other nodes in 𝑆𝑙, named member node, can communicate 

with it. For example, in Figure 1a,b, Node A is a kernel node with 4 member nodes. In Figure 1b Node 

C is also a kernel node with 3 member nodes. If Node A and Node B are considered a sub-network, 

Node B is the kernel and Node A is the member node. 

 

Figure 1. Kernel node and structure of LDA. (a) Single sub-network; (b) Cascaded sub-networks. 

Kernel node is charged with collecting all readings from its member nodes and itself and getting 

𝑅𝑙
∗, |𝑅𝑙

∗| ≤ 𝑘  defined by Equation (1), and then send 𝑅𝑙
∗  to the sink node or a node in another  

sub-network, as shown in Figure 1b. We name this way Local Data Aggregation (LDA), in which 

kernel node employs a variant merge sort algorithm to obtain top k readings. The basic merge sort 

algorithm is as illustrated in Figure 2a. Figure 2b shows an example of LDA. In the example, Node A 

is the kernel node of a sub-network illustrated by red dashes circle. When Node A obtains all readings 

(a) (b)

Sl

B

C
[19]

[31]

[23] [20]

[27]

A

[19]

[31]

[23] [20]

[27]

[29]

[17]

[21]

[26]

A

Figure 1. Kernel node and structure of LDA. (a) Single sub-network; (b) Cascaded sub-networks.

Sensors 2016, 16, 954 6 of 18 

 

of the sub-network, it will calculate local top k by merge sort algorithm. And then Node A sends these 

k readings to its parent Node B which is the kernel node of another sub-network. Comparing with 

the whole network, 𝑆𝑙  has relatively lesser nodes obviously. In addition, a kernel node, such as  

Node C in Figure 2b, will receive no more than k readings from any of other kernel nodes. So, less 

data need to be sorted. Because kernel node uploads at most 𝑘 sorted readings rather than all that it 

received, the traffic in network and sorting computations can be significantly reduced, e.g., Node C 

in Figure 2b. Further, unlike uploading message individually, up to k readings can be uploaded 

within one message, which means that every node must send only one message to the kernel node it 

connects to in a query round. It is important to balance the energy consumption of all sensor nodes 

in a network. 

 

Figure 2. Example of LDA algorithm. (a) Merge sort algorithm; (b) Distributed merge sort algorithm. 

The complexities of space and calculation of LDA algorithm can be reduced further when 

messages are processed one by one as opposed to processing them all at the same time. In the worst 

case, k comparisons are made to aggregate a new reading. Because the stored list of values is in an 

ordered state at all times, the worst case is rare. 

Obviously, the aggregation process is similar to the last merge step of the merge-sort  

algorithm [36]. So, its time complexity and space complexity are all O(k). If a kernel node has m child 

nodes, the time complexity will be O(mk) in the worst case performance, and the space complexity 

will still be O(k). LDA has the following characteristics, (1) distribute the sorting tasks into multiple 

nodes, which is beneficial for the balance of energy consumption; (2) restrict the maximal number of 

data in a message to k; (3) simplify the calculation of each node. 

In most applications of wireless sensor networks, the parameter k is small, and kernel node has 

only a few child nodes. So, the values of the readings can be aggregated quickly and efficiently 

through the LDA approach proposed in this section. Further, local aggregation of LDA allows most 

data to be sent only once and installs multi-data into one message, which would cause a considerable 

reduction of energy for sending data. 

3.3. Top-k Query Based on a Tree 

As shown in Figure 3, it is assumed that all of the sensor nodes in a network communicate with 

the base station through a routing tree. The construction of routing tree will be discussed in the next 

section. After the routing tree constructed, each node records its children nodes and the kernel node 

it connects to. Note that each sensor node must connect to one and only one kernel node. The number 

of children nodes in a sub-network depends on the topology of the network, and, if a sensor node 

has no children, it is considered as leaf-node. Correspondingly, a node that has children is kernel 

node. 

(a)

[19][31][23] [20][27][29] [17][21][26]

[19][31][23] [20][27] [29] [17][21][26]

[19][31] [23] [20] [27] [29] [17] [21][26]

[19] [31] [23] [20] [27] [29] [17] [21] [26]

[19][31] [23][20] [27] [29][17] [21][26]

[19] [31][23][20] [27] [29][17][21][26]

[19] [31][23][20] [27][29][17] [21] [26]

[31][27][29]

(b)

[19][31][23] [20][27]

[19][31][23] [20][27]

[19][31] [23] [20][27]

[19] [31] [23] [20] [27]

[19][31] [23] [20][27]

[31][23][27] [17]

[31][23][27]

[29][21][26]

[29][21] [26]

[29] [21] [26]

[29][21] [26]

[21][26][29]

[31][23][27]

[31][23][27]

[31][27][29][19] [31][23] [20][27]

[31][23][27]

[19][20]

A
B

C

Figure 2. Example of LDA algorithm. (a) Merge sort algorithm; (b) Distributed merge sort algorithm.

The complexities of space and calculation of LDA algorithm can be reduced further when
messages are processed one by one as opposed to processing them all at the same time. In the
worst case, k comparisons are made to aggregate a new reading. Because the stored list of values is in
an ordered state at all times, the worst case is rare.

Obviously, the aggregation process is similar to the last merge step of the merge-sort algorithm [36].
So, its time complexity and space complexity are all O(k). If a kernel node has m child nodes, the time
complexity will be O(mk) in the worst case performance, and the space complexity will still be O(k).
LDA has the following characteristics, (1) distribute the sorting tasks into multiple nodes, which is
beneficial for the balance of energy consumption; (2) restrict the maximal number of data in a message
to k; (3) simplify the calculation of each node.

In most applications of wireless sensor networks, the parameter k is small, and kernel node has
only a few child nodes. So, the values of the readings can be aggregated quickly and efficiently through
the LDA approach proposed in this section. Further, local aggregation of LDA allows most data to be
sent only once and installs multi-data into one message, which would cause a considerable reduction
of energy for sending data.

3.3. Top-k Query Based on a Tree

As shown in Figure 3, it is assumed that all of the sensor nodes in a network communicate with
the base station through a routing tree. The construction of routing tree will be discussed in the next
section. After the routing tree constructed, each node records its children nodes and the kernel node it



Sensors 2016, 16, 954 7 of 18

connects to. Note that each sensor node must connect to one and only one kernel node. The number of
children nodes in a sub-network depends on the topology of the network, and, if a sensor node has no
children, it is considered as leaf-node. Correspondingly, a node that has children is kernel node.
Sensors 2016, 16, 954 7 of 18 

 

 

Figure 3. Routing tree in a wireless sensor network. 

Initially, the base station broadcasts a query message into the network, and all of the sensor nodes 

must respond to the base station by their local readings. Every leaf-node, i.e., the border node, embeds 

its readings into a message and uploads the message to the kernel node it connects to in the routing 

tree. 

The responsibilities of kernel node are slightly more complex than other node. When receiving 

a message from a child 𝑐𝑖, first, the kernel node stores the message and then deletes 𝑐𝑖 from the list 

of its children. If the list of its children is not empty, the kernel node must store the message in 

memory and wait until another message is received. If the list is empty, which means all of the 

children have uploaded their readings, the kernel node begins to aggregate all of the messages that 

have been received by using LDA. However, if a kernel node waits for a time beyond a preset 

threshold, it also begins to aggregate the messages. Note that the aggregation process could be 

conducted along with the arrival of the message. We call this Routing Tree based Local Data 

Aggregate process LDA-RT. 

3.4. Routing Tree Construction 

To avoid unbalanced energy consumption resulting from fixed route, we introduce a method to 

construct dynamic route on demand, which is composed of two procedures, i.e., Interest Forwarding 

and Path Establishment. The two procedures are both distributed processes that occur at every sensor 

node. Therefore, they are inseparably intertwined from the view of the entire network. 

Assume that each of the sensor nodes in a network has a unique, assigned ID that is used to 

distinguish them from each other. At the beginning of a query task, first, the base station injects an 

interest message into the network. For the purpose of constructing routing tree, the base station uses 

limited power to broadcast the interest message. So, only the sensor nodes, that coverage the base 

station, can receive the interest message. The message is a query or an interrogation, which specifies 

what a user wants. 

The message is a quintuple composed of qid, sid, lts, rpw and k. Among them, qid is the unique 

identifier of this interest message, which is generated by base station and does not change in the 

current query round. Term sid represents the ID of the node that sends this message. At the moment 

of message generating, base station ID is put into sid. Term lts is the local timestamp of the message 

sender, and rpw the remaining energy, which is useless when the message sender is base station. 

Term k is the number of readings expected to retrieve in this query round. 

Consider a sensor node 𝑛𝑗 . When receiving an interest message M, 𝑛𝑗  goes into the Interest 

Forwarding procedure and decides whether to forward the message to its neighbors according to 

M.qid. If a received message is with the qid that has been received and stored in cache, the message 

will not be re-sent. Otherwise, it should be sent to all neighbors of 𝑛𝑗  after updated, i.e.,  

𝑛𝑗.ID ⇒ M.sid. The rule indicates that a sensor node must forward the interest message only once in 

a query round. 

In addition to disposing of interest message, the sensor node 𝑛𝑗 begins to run the procedure of 

Path Establishment. In most routing solutions of wireless sensor network, hops between nodes are 

used as the metric of path length. And meanwhile, the node will be chosen as the next point in the 

Figure 3. Routing tree in a wireless sensor network.

Initially, the base station broadcasts a query message into the network, and all of the sensor nodes
must respond to the base station by their local readings. Every leaf-node, i.e., the border node, embeds
its readings into a message and uploads the message to the kernel node it connects to in the routing tree.

The responsibilities of kernel node are slightly more complex than other node. When receiving
a message from a child ci, first, the kernel node stores the message and then deletes ci from the list
of its children. If the list of its children is not empty, the kernel node must store the message in
memory and wait until another message is received. If the list is empty, which means all of the children
have uploaded their readings, the kernel node begins to aggregate all of the messages that have been
received by using LDA. However, if a kernel node waits for a time beyond a preset threshold, it also
begins to aggregate the messages. Note that the aggregation process could be conducted along with
the arrival of the message. We call this Routing Tree based Local Data Aggregate process LDA-RT.

3.4. Routing Tree Construction

To avoid unbalanced energy consumption resulting from fixed route, we introduce a method to
construct dynamic route on demand, which is composed of two procedures, i.e., Interest Forwarding
and Path Establishment. The two procedures are both distributed processes that occur at every sensor
node. Therefore, they are inseparably intertwined from the view of the entire network.

Assume that each of the sensor nodes in a network has a unique, assigned ID that is used to
distinguish them from each other. At the beginning of a query task, first, the base station injects an
interest message into the network. For the purpose of constructing routing tree, the base station uses
limited power to broadcast the interest message. So, only the sensor nodes, that coverage the base
station, can receive the interest message. The message is a query or an interrogation, which specifies
what a user wants.

The message is a quintuple composed of qid, sid, lts, rpw and k. Among them, qid is the unique
identifier of this interest message, which is generated by base station and does not change in the
current query round. Term sid represents the ID of the node that sends this message. At the moment
of message generating, base station ID is put into sid. Term lts is the local timestamp of the message
sender, and rpw the remaining energy, which is useless when the message sender is base station. Term
k is the number of readings expected to retrieve in this query round.

Consider a sensor node nj. When receiving an interest message M, nj goes into the
Interest Forwarding procedure and decides whether to forward the message to its neighbors according
to M.qid. If a received message is with the qid that has been received and stored in cache, the message
will not be re-sent. Otherwise, it should be sent to all neighbors of nj after updated, i.e., nj.IDñM.sid.
The rule indicates that a sensor node must forward the interest message only once in a query round.
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In addition to disposing of interest message, the sensor node nj begins to run the procedure of
Path Establishment. In most routing solutions of wireless sensor network, hops between nodes are used
as the metric of path length. And meanwhile, the node will be chosen as the next point in the shortest
path if the message it forwarded arrives first. This will result in the same path’s being constructed at
all times, especially when there are only a few sensor nodes in a network. Assuming that all sensor
nodes in a network can keep time synchronization [37], the timestamp of the message can be used as
the basis for selecting the next point. It reflects the current load of a sensor node, and a node with a
light load should be chosen. But in a practical sense, each sensor node may stay in different status at a
given time, i.e., different local time, different time drift, and different amount of remaining energy. All
of these will affect the synchronization of time and sending messages. For utilizing the timestamp to
balance energy assumption, we use the idea of ‘happened-before’ to select the node that should appear
in the routing path.

The relationship of ‘happened-before’ with the set of events of a system (denoted: Ñ) must satisfy
three conditions [17]:

(1) If a and b are events in the same process and a comes before b, then aÑb.
(2) If a is the event of sending a message by one process and b is the event of receiving the same

message by another process, then aÑb.
(3) If aÑb and bÑc, then aÑc. Two distinct events a and b are said to be concurrent events if aÛb

and bÛa.

Making use of the ‘happened-before’ principle, we propose the following method for constructing
the routing path. The basic idea is to choose a node with more residual energy and shorter path to
base station as the kernel node. Here the shorter path is not in ‘hop’ sense but in ‘time’ sense, which
would carry more information favoring the balance of energy consumption, such as the current load
status of nodes.

Consider that node nj has a local time nj.lts generated by its local clock. When receiving an
interest message M, node nj first checks whether a piece of interest message with the same qid as M.qid
has been stored in the interest message cache. If there is no matching interest message in the cache,
node nj should write message M to its cache and choose the node denoted by M.sid as its kernel node.
It also should inform the kernel node after making the choice. Then, it updates its local time nj.lts by
nj.lts “ max

 

nj.lts, M.lts
(

. In this case, node nj should forward message M with updated fields, i.e.,
nj.IDñM.sid, nj.ltsñM.lts and nj.rpwñM.rpw.

However, if a matching interest message M’ exists in the interest cache, the new received interest
message M will not be broadcast to other sensor nodes. But, the sensor node nj should also compare
the message time M.lts with M’.lts. If M’.lts > M.lts, or M’.lts ď M.lts and M’.rpw < M.rpw, sensor
node nj changes its kernel node to the sensor node with M.sid and notes the change to both its
previous kernel node and its new kernel. It should also update its local time nj.lts according to the rule
nj.ts “ max

 

nj.lts, M.lts
(

.
After an interest message is forwarded to the entire network, a routing tree can be built. Note the

following properties associated with the procedure of building routing tree:

‚ In a query round, each sensor node in the network forwards the interest message only once, no
matter how many time it receives the message.

‚ During the process of constructing routing tree, the kernel node that a sensor node connects to
can be updated. But the change is limited to the node itself and does not affect its children nodes.

‚ Each sensor node forwards interest message immediately after receiving it. This benefits the fast
contribution of the routing tree.

‚ The interest messages that are forwarded by different nodes are allowed to arrive at a sensor node
asynchronously. And the ‘happened-before’ mechanism makes it possible to build a dynamic
routing path, which is an approximate shortest path and is helpful for accommodating dynamic
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network topology, balancing the energy consumption and synchronizing the time clocks of the
sensor nodes.

‚ Ideally, after some query rounds, all nodes will have similar local time. And then, remaining
energy of nodes will become the deciding factor of routing path.

In general, reconstructing routing tree will consume more energy. But for a sensor network,
interest messages should be sent to each node inevitably. Even in filter-based top-k query approach,
the configuration about new window size still need to be sent, whenever the measured data exceed
the range of the given window. On the other hand, without reconstruction, fixed routing would make
some node loss their effectiveness early. The proposed method focuses on build a dynamic routing
tree for data collection. And the above properties would reduce the energy consumption of routing
tree construction as far as possible.

4. Performance Evaluations

4.1. Simulation Setup

We implement the proposed LDA-RT algorithms over data-link layer in an NS-3 simulation
environment [38] (version 3.21). The implementation covers the details of building routing tree
and data aggregation, which are based on the model of media access and physical layers provided
for wireless sensor networks in NS-3. For simulating the scene of wearable sensor systems in a
larger region, IEEE 802.11b model is employed, which involves YansWifiPhy, YansWifiChannel and
AdhocWifiMac. Each sensor node has four modes, i.e., sending a message, receiving a message, idle,
and sleeping. Sleeping mode is only used for comparing with other existing approaches. We also
implemented a sample filter-based top-k query solution with TAG for constructing routing tree, and
an improved solution that uses DST.

The energy consumption models we used for the four modes are shown in Equations (3)–(6),
respectively,

Csending “ s ˚ pα`β ˚ dqq (3)

Creceiving “ s ˚ γ (4)

Cidle “ t ˚ η (5)

Csleeping “ t ˚ ε (6)

where s is the size of the message, α is a distance-independent parameter, β is a distance-dependent
parameter, q is the decay coefficient, d is the distance of the message is transmitted, t is the idle or
sleeping time, and γ, ε, and η are constants. As in [5,39,40], we set α “ 50 nJ{bit, β “ 100 pJ{b{m2, q “ 2
in our simulation. In addition, we set d “ 10 m, γ “ 50 nJ{bit, η “ 12.36 mW and ε “ 0.016 mW. When
the distance between two sensor nodes is about 10–14 m, the previous equations can be simplified as
shown below:

Csending “ 70 ˚ s nJ (7)

Creceiving “ 50 ˚ s nJ (8)

Cidle “ 12360000 ˚ t nJ (9)

Csleeping “ 16000 ˚ t nJ (10)

In order to compare with previous filter-based methods, parts of sensors’ readings are simulated
by the database provided by the Live from Earth and Mars project [41] at the University of Washington.
We extract 100 similar sub-traces from the temperature traces provided by the project. Each sub-trace
contained 800 readings. To reduce the randomness of the results, we repeat the same experiment
10 times and present the average result for each simulation. We use one sub-trace to simulate the
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readings of sensor nodes. Because of spatial correlation of sensors’ readings, we send successive
readings in a sub-trace to neighboring sensor nodes in the simulated network.

In our simulation, for interest message, qid, sid, lts, and rpw each take two bytes, and k takes one
byte. For data message, except for qid and sid, there are 2 bytes at most for containing the value of
readings. Furthermore, in the implementation of filter-based top-k query, an interest message contains
a 4-byte filter field.

We conduct two kinds of simulations. One is to test the performance of proposed LDA-RT, and
the other is to compare LDA-RT with the existing filter-based top-k query method. In the former, the
initial energy of each sensor node is 1 Joule. In the latter, it is set to 0.01 J for the purpose of comparison.

We simulate multi-hop networks with various numbers of sensor nodes in square and rectangular
regions. The base station is placed at the center or at one of the corners, and the distance between two
nodes in horizontal direction and in vertical direction is 10 m.

4.2. Construction of Routing Tree with Different Parameters

We test the construction process of routing tree using grid network and random network topology.
The purpose is to determine whether the routing tree can be established when sensor nodes have time
drift in their clock and processing delays. Figure 4 shows part of results. The routing trees that we
constructed show that, based on the ‘happened-before’ mechanism, LDA-RT can work well under
various conditions. We also note that the routing path constructed by LDA-RT is not but closer to the
shortest path in both grid network and random network.
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Figure 4. Routing trees constructed by LDA-RT with time drift (´3 ms~+3 ms) and different processing
delays: for (a) and (c), processing delay is 0; for (b) and (d), the processing delay is 40 ms; (a) and (b) is
the results of grid networks, and (c) and (d) random networks.

We further study how the processing delay and time drift affect the routing tree. The method is
to measure the path length of the routing tree constructed with different processing delay and time
drift. Sensor nodes are assigned a maximum processing delay. Before forwarding an interest message,
each node selects a random waiting time from the range of 0 ms to the maximum time, which is used
to simulate the processing delay. The results are presented in Figures 5–7. Figure 5 shows that the
average path length of LDA-RT increases slightly as processing delay increases for grid network. This
illustrates that, from a macroscopic perspective, processing delay has no significant influence on the
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routing tree in LDA-RT. Slightly increasing of average path length would not bring obvious impact on
the lifetime of network, comparing with the shortest path. Detailed data indicates that a sensor node
has lower probability of being chosen as kernel node when it has higher processing delay. Obviously,
this is due to the length of time that passes before interest message is forwarded. Not serving as kernel
node means less energy consumption. This is clearly beneficial to the lifetime of nodes that have
heavy loads and then encourages the whole network to work longer. Further, LDA-RT will result in
non-shortest path. That means these nodes being at the shortest path do not be chosen as kernel node.
This is consistent with the results shown in Figure 5, irrespective of whether the base station is located
at the center of the network or at one of the corners.
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As described in Section 3, kernel nodes in a routing tree conduct data aggregation. So, it is likely
to consume more energy than leaf-nodes. In general, the more children nodes that a kernel node has,
the more energy it will consume. Even so, when LDA-RT aggregates data, the computations have low
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complexity and low cost. Therefore, if some kernel nodes have more children nodes than others, they
will have an adverse effect on the lifetime of network. Thus, we investigate the number of children
nodes of each kernel node in various routing trees with different processing delays. Figure 6 shows
the results, in which mean value plots, with values ranging from 1.818 to 2.5 for grid network and
from 2.0 to 2.37 for random network, show that processing delay does not have a significant effect on
how many children nodes a kernel node has. In addition, under any condition of processing delay,
the standard deviation of the number of children nodes is near 1 for grid network and 1.5 for random
network, which means that the number of children of every kernel node tended to be close to the mean
value. It can also be considered that the energy consumption of each kernel node tends to balance at
data aggregation level. Un-uniform distribution of nodes is also the reason that the standard deviation
is slightly larger in random network.

Figure 7 gives the results of time drift influence. Because time drift can desynchronize the sensor
nodes, it will affect LDA-RT’s construction of the routing tree. The results indicate that, like processing
delay, time drift also has an influence on routing tree. However, the influence of time drift is weaker
than that of processing delay, as shown in Figure 7a. Numerical analysis indicated that updating local
time when receiving an interest message weakens the impact of time drift and helps in constructing a
routing tree that is similar to the shortest path. Nevertheless, the impact in random network is larger
than that in grid network. The reason is that some nodes in random network have more opportunities
to receive interest messages than others. Figure 7b shows the mean and standard deviation of the
number of children nodes of kernel nodes for difference time drifts. The curves suggest that time drift
has no obvious influence on the distribution of the number of children nodes in LDA-RT for both grid
network and random network.

Another important value is the number of query messages forwarded in one query round in the
entire network. Figure 8 shows the results in various sizes of networks excluding messages resent by
leaf-nodes. The curve demonstrates that, in LDA-RT, the number of forwarded messages is essentially
linear with respect to the number of nodes, which is in agreement with the fact that each node resends
the query message only once.
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As most studies in literature, we also consider the time that the first node runs out of its energy as
the lifetime of network. Therefore, the balance of energy consumption of all nodes is vitally important
for the lifetime of network. To inspect the performance of LDA-RT in balancing energy consumption,
we run the simulation using a variety of values for parameter k and record the final residual energy of
nodes on each path in both grid and random networks. We define the final residual energy of a node
as the energy at the moment that the first sensor node in network runs out of energy, i.e., its residual
energy is insufficient to complete a transmission. For convenience, we set the threshold value to 7 µJ.

Figure 9a shows the mean values of residual energy of nodes in grid networks and Figure 9b in
random networks. The results indicate that, when nodes’ paths have the same length, the nodes have
approximately the same final residual energy values for different values of parameter k. For example,
they lie in the range from 1.5995 to 1.5997 µJ for the nodes that have path lengths with the value of 2 in
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grid network. This indicates that energy consumption is balanced in horizontal direction of the routing
tree. However, for a given k value, the length of path has no linear effect on the mean value of residual
energy. This means energy consumption of nodes is balanced in the direction of routing path under
microscope, which is very important for keeping the whole network alive, because the nodes close to
base station would usually consume more energy. The fluctuations of values are the result of scale of
assembled nodes. The results also indicated that there is no node runs out of energy any earlier than
other nodes. Figure 9c shows the standard deviation of residual energy, which further demonstrates
that LDA-RT performs well in terms of balancing the energy load. We can notice that random network
has smaller standard deviation than grid network. The data details imply that nodes in random
network change their kernel node more often, which makes more balanced power consumption.
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We also invest the relationship between query number and spread extent in the values of residual
energy and node time. Figure 10 shows the standard deviation of residual energy at the end time
of various numbers of queries. Although the standard deviation increases as the number of queries
increases, its value is still small in contrast to the scale of node energy in both grid network and random
network. Certainly, there exists difference in the energy expenditure among different nodes. Figure 11a
shows that, the main factor affecting the time of a sensor node is clock time drifts, and LDA-RT can
help prevent time drift accumulation. For random network, as shown in Figure 11b, the standard
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deviation of node time is larger than that for grid network. Data show that the time of completing a
query is longer in random network than in grid network, because there is more variation of length
among different paths in random network.
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4.3. Comparison of Performance

In this section, we first compare the performance of LDA-RT with original filter-based top-k query
approach in terms of energy consumption and network lifetime, which is considered one kind of
efficient methods of data aggregation [5]. The method uses TAG, which is a shortest path tree, as its
path tree constructor. For the sake of comparability, we employ TAG as the query message path of
the original filter-based top-k in simulation. Moreover, the query messages of base station are sent
to nodes directly by single hop broadcast. We also replace the idle status of sensor nodes to sleep
status and set their initial energy to 0.01 J. Because the key factor that affects energy consumption of
the original filter-based top-k query approach is how many sensor nodes get readings with changed
values, which also concerns the power consumption on query message delivery, we simulate the
changes by assigning the temperature trace data (mentioned in Section 4.1) to the nodes. Here, “energy
consumption” refers to the energy dissipation of all sensor nodes in a given period. And as in [5], the
network’s lifetime is defined as the time duration until the first sensor node’s energy is depleted.

Figure 12a shows the simulation results for energy consumption. It is reasonable that average
energy consumption of the proposed LDA-RT approach is constant, because energy consumption is
not related to the change of reading values in LDA-RT. To the contrary, the energy consumption of
filter-based top-k query approach increases as the number of nodes with changed values increases.
This can be explained by the fact that increasing the number of changed values causes more frequently
updating of windows. This procedure requires more energy on the shortest path tree. In our
simulations, when there are four or less changed values, the average energy consumption of filter-based
method is improved. However, when five or more values changed in a period, the LDA-RT approach
outperformed the filter-based method. The detailed data also indicated that most of energy is consumed
during sleeping time rather than by data transmission of. So, if the energy needed to transmit data
increases, the curve of filter-based method will increase at a greater rate. It means filter-based method
will perform even better than LDA-RT with fewer changes and worse as the number of changed
values increases.

Similar to average energy consumption, network’s lifetime is also affected significantly by the
number of nodes with changed values in original filter-based method. Figure 12b shows that the
network’s lifetime decreases for filter-based method and remains constant for the LDA-RT method
as the number of nodes with changed values increases. Detail data indicate that the nodes close to
base station consume energy more quickly because they lie on the middle of the fixed path with
higher probability.
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Filter-Based top-k.

We next compare the proposed method with an improved filter-based top-k method proposed
in [3]. The improved method introduced two contributions. One is a filtering-based algorithm, and the
other is the authors claimed that the efficiency of top-k query algorithms can be improved by choosing
a proper underlying logical tree topology. The improved method employs DST (Dominating Set Tree)
as message delivery tree.

We check the lifetime of network first. In simulation, k is set to 10, and the initial energy of
each node is 0.01 J. Figure 13a gives the results under different probability of nodes with changed
value. When few nodes need to send data, original and improved filter-based top-k method have
longer lifetime than LDA-RT. With the probability of change increasing, the lifetime of original method
drops quickly, and that of improved method drops slowly. When the probability of change is more
than 0.3, LDA-RT will result longer lifetime than improved filter-based top-k method. Detailed data
indicate that two reasons led to low performance of filter-based methods under the condition of high
probability of change. One is that message flooding should be employed to generate routing tree in
these methods. Fixed routing and the absence of data aggregation are another reason that causes
fast energy consumption on some nodes. We also investigate the influence of initial energy of nodes.
Results are summarized in Figure 13b–d, which also shows that LDA-RT will have better performance
when more nodes need to send their measurements.
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Though filter-based methods assume the environment where the values of sensor readings do not
change much, they still need to face the issue of unbalanced energy consumption. Furthermore, too
strict constraints on the change of reading values will restrict their range of use.

We also evaluate the performance under various k values. Results are shown in Figure 14.
It is observed that, even under the condition of low probability of change, with increasing k, the
nodes running filter-based top-k methods consume more energy. This is because, when more data
need to be reported, the probability of updating window size becomes larger. It agrees with the
conclusion of [3] that more dynamic of data naturally triggers more updates and nodes-to-root
transmissions, which implies that well-designed dynamical routing and data aggregation will show
better performance in top-k monitoring when data change frequently. These also agree with the
researches in ref [5,7,10,15,16,18–20].
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5. Conclusions

In this paper, we studied the issue of top-k query in wearable wireless sensor networks and
proposed a routing tree-based top-k query approach, named LDA-RT. Different from existing works on
building routing trees and filter-based query methods, we introduced a ‘happened-before’ rule-based
approach to construct the routing tree, which can provide dynamic ability to avoid the weakness of
fixed routing. We also presented a distributed local data aggregation algorithm, called LDA. By taking
the advantage of routing tree, LDA-RT aggregates measurements locally and sorts them in layers. The
proposed aggregation algorithm generates readings with limited sizes and makes the sensor nodes
send messages that contain the readings only once in a query round.

We performed a series of simulations to evaluate the performance of the proposed LDA-RT and
compared with filter-based top-k method. The results indicated the following:

‚ LDA-RT can build dynamic routing paths quickly, which is helpful for maintaining the balance of
energy consumption and synchronizing the time clocks of wearable sensor nodes.

‚ The method of constructing routing tree also has the ability to round the nodes that have heavy
loads, which will reduce the energy consumption of these nodes.

‚ The energy consumption is balanced in the horizontal direction of routing tree and also in the
direction of routing path.

‚ LDA-RT outperforms filter-based method on energy consumption and network’s lifetime when
the readings of sensor nodes changes frequently, especially when there is a heavy load of data to
be transmitted.

Although the proposed LDA-RT shows better performance in many aspects, it should still be
improved in reduction of energy consumption by query message and data transmission. Meanwhile,
the adaptability to dynamic topology and changing data in large range must be preserved. It could be
a breakthrough but must be difficult to assemble the advantages of different methods to meet these
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needs. In our future work, we plan to include filter based top-k query methods as an extension of
LDA-RT to decrease the cost of transmitting data even further.
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