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Abstract: Robust and accurate building energy load forecasting is important for helping building
managers and utilities to plan, budget, and strategize energy resources in advance. With recent
prevalent adoption of smart-meters in buildings, a significant amount of building energy consumption
data became available. Many studies have developed physics-based white box models and data-driven
black box models to predict building energy consumption; however, they require extensive prior
knowledge about building system, need a large set of training data, or lack robustness to different
forecasting scenarios. In this paper, we introduce a new building energy forecasting method based on
Gaussian Process Regression (GPR) that incorporates physical insights about load data characteristics
to improve accuracy while reducing training requirements. The GPR is a non-parametric regression
method that models the data as a joint Gaussian distribution with mean and covariance functions and
forecast using the Bayesian updating. We model the covariance function of the GPR to reflect the data
patterns in different forecasting horizon scenarios, as prior knowledge. Our method takes advantage
of the modeling flexibility and computational efficiency of the GPR while benefiting from the physical
insights to further improve the training efficiency and accuracy. We evaluate our method with three
field datasets from two university campuses (Carnegie Mellon University and Stanford University)
for both short- and long-term load forecasting. The results show that our method performs more
accurately, especially when the training dataset is small, compared to other state-of-the-art forecasting
models (up to 2.95 times smaller prediction error).

Keywords: building energy load forecasting; Gaussian Process Regression; Kernel Model; HVAC load;
lighting load

1. Introduction

Governments across the world and private corporations are running a wide array of programs and
initiatives for reducing energy consumption and improving energy efficiency in the energy consuming,
transmitting and generating systems [1–3]. Among many sectors that consume energy, buildings take
about 40% of the US’s total energy consumption and 20% of the world’s total energy consumption,
according to the United States Energy Information Administration [4,5]. The first step towards
reducing energy consumption and improving energy efficiency is to accurately predict how much
energy will be consumed and what the associated uncertainties are. This will enable utilities and
building energy managers to plan the energy budget accordingly. In addition, load forecasting has
become increasingly important recently due to the increasing penetration of renewable energy [6,7].
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Work on modeling energy consumption and predicting the future energy demand already exists.
These works can be broadly classified into physics-based white box modeling and data-driven black
box modeling of the energy consumption of a building [8]. White box models mainly include using
building energy simulation software such as eQuest [9], EnergyPlus [10], etc. For example, EnergyPlus,
which is a United States Department of Energy tool, can be used to model and simulate a building space
and can output energy consumption, thermal comfort and other parameters of the building based
on different inputs. These models can provide accurate results provided that there are similarly
accurate and specific inputs [11–15], such as construction aspects of the building, heating and
cooling system characteristics, appliance operating schedules etc., which are often difficult to obtain
in practice. Recently, data-driven models, both deterministic and probabilistic have also been widely
adopted [16–20] as large amounts of data have been made available to building owners, energy
managers and utilities with the influx of smart-meters and other monitoring equipment [21–24].
However, these models require large amounts of training data for accurate predictions.

Hence, this paper introduces a new energy forecasting method, based on Gaussian Process
Regression (GPR) that utilizes only two physical parameters, that is (1) the time of day and (2) the external
temperature and other heuristics on energy consumption patterns to improve accuracy and robustness
of load prediction while reducing the need for extensive training data or prior knowledge. This is due to
the advantages of the GPR: modeling flexibility due to its non-parametric nature and computational
efficiency for both load forecasting and uncertainty quantification through Bayesian updating. Exploiting
these advantages, initial research work has been conducted for applying GPR to load forecasting, showing
promising results [25–29]. However, further investigation and development are necessary to facilitate
practical application of the method in this field, such as minimal requirement for training, robustness to
diverse forecasting scenarios (prediction horizon, load type, aggregation level, etc.), and field validation
across these scenarios.

To this end, this paper makes three main contributions: (1) The paper introduces a data-driven
GPR-based method that incorporates just two physical parameters, namely time of day and external
temperature (for training) and other heuristics about the load data to accurately forecast a building’s
energy load with minimum training data (2) It investigates the characteristics of energy consumption
data for different prediction horizon scenarios, which are used for covariance function modeling
to improve the robustness of load forecasting algorithm; and (3) The load forecasting performance
of our method is evaluated with field datasets collected from real campus buildings under diverse
forecasting scenarios, including consumption type, size of training data, prediction horizon, and energy
aggregation level.

For evaluation, we tested our methods with three field datasets collected from Stanford University
and Carnegie Mellon University campus buildings for both short-term (10 min ahead) and long-term
(1–5 day ahead) prediction of different types of building energy loads: lighting, Heating Ventilation
and Air Conditioning (HVAC), and plug loads.

The rest of the paper is organized as follows. In Section 2, a review of the existing literature on load
forecasting methods is provided. Section 3 discusses in detail about our forecasting approach using
Gaussian Processes (GPR) and the kernel design for the covariance function of the GPR. We discuss
the experimental setup and the results in Section 4. Finally, Section 5 provide conclusions.

2. Related Work

As mentioned in the previous section, building energy load forecasting can be achieved by
physics-based white box models and data-driven black box models. Due to the complexity of building
system, white box models often involves sophisticated simulation tools [11–15,30]. In [30], the authors
have used EnergyPlus and used several input parameters such as the type of internal loads (lighting,
computers etc.), their schedules, maximum and minimum dry-bulb temperature, and wind speed and
direction. Some of these parameters are difficult to obtain as they have mentioned in the paper that they
had to conduct several inspections to obtain these and even then, they needed to make assumptions
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about the occupancy profile for the building. Their simulated model had a prediction error rate of
around 13%. Similarly, in [31], authors have used four different simulation tools and compared their
performances. They used Energy10 [32], Green Building Studio, eQuest and EnergyPlus for simulation
and they required very detailed building structure inputs: U-value of the roofs, walls, windows and
load and space conditions (temperature set points of the HVAC systems, number of people) and
HVAC design type. Similarly, refs. [11–13] have used EnergyPlus and [14,15] have used eQuest tools
for obtaining energy forecasts for buildings.Simulation tools can provide accurate results [11–15,31],
but they need information regarding the building infrastructure and operating patterns, which might
be hard to obtain [33].

Data-driven black box models for load forecasting involve machine learning algorithms for
regression. Both deterministic models, such as Neural Networks, Support Vector Regression
(SVR), and Autoregressive Integrated Moving Average (ARIMA) models, and probabilistic models
such as Bayesian Networks, Random Forests etc. have been developed for forecasting the
consumption of different types of buildings—residential, commercial etc. and with different input
features—temperature, occupancy, weather parameters etc. [34–42]. These models eliminate the
need for extensive prior knowledge about the buildings and users; however, they often require
a large amount of training data for each building of interest [34–36,39] or result in insufficient
prediction accuracy, especially for long-term forecasting (1–5 day ahead forecasting) [37,40,43,44].
Among many, neural networks have been widely used in load forecasting [18,19,29,34,36,37] to
obtain accurate predictions of building loads. Neural Network models take different inputs such as
environmental parameters, occupancy information, inputs from the sensors on the HVAC system
etc. to provide accurate load forecasts [34,35,37]. However, neural networks require significant
amount of training data to produce such accurate results [34,36] and hence are not always suited
for building load prediction, particularly in newly constructed buildings, where there is not much
historical data available. Other algorithms, such as Support Vector Regression [18,19,38,39,43,45],
Random Forests [41,42] and Autoregressive models [44,46] have also been used to develop models
for building load prediction. They have been used for commercial building load forecasting and for
short-term and day-ahead load predictions. Similar to neural networks, these methods do not require
any prior knowledge but overcomes that requirement using significant periods of historical training
data to produce accurate results [39,41,43,44,46]. In addition, AR models may not perform well in
cases where there are high variations in the data [47–49].

To incorporate a systematic way to model and process data in probabilistic way, Bayesian methods,
such as Bayesian Networks and Gaussian Processes have also been employed for load forecasting in
buildings [25,27,40,50–54]. Bayesian Network approaches construct network graphs to represent how
various inputs impact building’s energy loading [40,50–52]. However, this model also suffers from
either extensive training or low accuracy (reported prediction error around 15–20%). Gaussian Process
Regression (GPR) has been used in various fields including image-processing [54,55], robotics [56–58],
people tracking [59], MRI scan analysis [60–62], etc. for regression and prediction by modeling
the overall structure of the data as a joint Gaussian distribution and characterizing them using
by modeling various kernel functions in the covariance matrix [63]. GPR has also been used for
predicting various energy loads, including peak energy demand, short-term power output from
photo-voltaic cells, machine energy usage prediction, utility level load forecasting, and short term
load forecasting [26–29,53,64]. These studies show that GPR has been successfully used for forecasting
energy loads and provide promising results for the predictions. However, to enable robust application
of GPR for load forecasting in practice, further studies are necessary to develop methods to model
GPR for different forecasting scenarios and validate with field datasets in diverse settings. This paper
will investigate the characteristics of building energy loads of different types in different prediction
horizon and incorporate this knowledge for modeling covariance function of GPR as described in
Section 3 and evaluate with multiple field dataset in Section 4.
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3. Building Energy Load Forecasting Algorithm Using Gaussian Process

Our load forecasting method models building energy consumption data such as a Gaussian
Process (GP) and predict short- and long-term energy demand using the Bayes’ rule. The key
component of the GP modeling involves learning the covariance function among the output data (e.g.,
energy demand) in terms of other input data (e.g., temperature, time of the day, etc.). In other words,
the covariance function of the GP represents the underlying structure/relationship of the output data
in terms of the input data. In our method, we first investigate the characteristics of energy load data
in different scenarios (prediction horizon, type of load) to model the covariance function accordingly.
Various kernels are used to incorporate the observed data characteristics. We will describe GP in detail
in Section 3.1 and explain the covariance function modeling in Section 3.2. Our method is evaluated
with field datasets, and the results are presented in Section 4.

3.1. Gaussian Process Regression

A Gaussian process (GP) is a stochastic process that is a collection of random variables, any finite
number of which follow a joint Gaussian distribution. Just as probability distributions describe the
likeliness of random variables which are scalars or vectors (for multivariate distributions), a stochastic
process governs the properties and likeliness of functions, f (x). In such a setting, a Gaussian Process
is a non-parametric generalization of the Gaussian probability distribution. This is because a GP can
model any finite number of function output, and thus the dimension of its parameters can grow to any
number as more output data are observed [63].

This is very useful, as it provides much greater flexibility to model the data in any form.
For example, in linear regression, if we assume a dependent variable y can be modeled as a function of
an independent random variable x, that is: y = f (x) + ε, then this produces accurate results only when
the function f defines a linear relationship ( f (x) = θ0 + θ1x). Learning the linear regression model tries
to find the parameters θ0 and θ1 that best fits the observed data for x and y. As GP does not limit the
model to any particular number of parameters, it finds a distribution over all possible functions that are
consistent with the observed data.

Just like a Gaussian distribution, a GP is defined by a mean function, m(x), and a covariance
function, k(x, x′),

f (x) ∼ GP(m(x), k(x, x′)) (1)

where

m(x) = E[ f (x)] (2)

k(x, x′) = E[( f (x)−m(x))( f (x′)−m(x′))] (3)

Usually, a prior mean function can be a constant or a simple function with a polynomial form
of one or two degree. Using such a prior mean function is not restrictive as the posterior will be
computed based on the data (i.e., the functional form of the mean function will be updated according
to the training data patter after updating).

The properties of the function f (x) to be considered in the regression are incorporated into the
GP model mostly through the covariance function. The covariance function encodes the assumptions
about the function outputs in terms of x that are to be learned. For example, particular families of
covariance functions can be chosen in order to emphasize the smoothness or the periodicity in the
functions. For such functions, the degree of change and stationarity can be fine-tuned by setting its
parameters, called hyper-parameters. We can also define other characteristics such as sudden spikes
or periodicity in the functions, as described in Section 3.2. Therefore, obtaining the best covariance
function is the goal of training a GPR model. As can be seen in Section 3.2, we can select a family or
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a combination of families of covariance functions and set hyper-parameters based on the characteristics
of the observations.

Note that in Equation (1), even though the mean and the covariance functions are properties of
function outputs f (x), they are defined by input values x. The outputs are the variables that have to
be predicted, and the inputs are a subset of any available information that is useful for predicting the
output values, such as any exogenous variables corresponding to an output observation, observation
time, spatial information, and even previous output observations [25,26,28,29,53,63]. In our case,
outputs are energy consumption, and inputs are temperature and time of day.

It can be seen that many existing machine learning algorithms or statistical models are special
cases of GP with particular form of covariance functions. For example, linear regression and logistic
regression using Gaussian priors for parameters are simple examples of the GP with degenerate
covariance functions. A degenerate covariance function has a finite number of non-zero eigenvalues.
Actually, a GP can be interpreted as a linear regression in the Bayesian framework using infinitely
many basis functions of inputs, which can be eigen functions of the covariance function. Moreover,
ref. [65] found that a certain type of a neural network with one hidden layer converges to a GP.
In general, GP are computationally efficient for regression and prediction and provides an entire
predictive joint density instead of giving a single prediction value with no information about its
uncertainties [25,26,28,29,53,63].

To learn the test outputs from the training data, let the function output vector fX for a set of input
values X has a prior distribution according to the GP,

fX ∼ N (m(X), K(X, X)) (4)

Similarly, the joint prior distribution of the training outputs, ftr, and the test outputs, fte, is[
ftr

fte

]
∼ N

([
m(Xtr)

m(Xte)

]
,

[
K(Xtr, Xtr) K(Xtr, Xte)

K(Xte, Xtr) K(Xte, Xte)

])
(5)

where Xtr and Xte are input data for training and testing, respectively. To obtain the posterior
distribution for fte, which is the predictive distribution of the test outputs given the training
observations, we can compute the analytical solution using the conditional probability of the joint
Gaussian distribution:

fte| ftr, Xtr, Xte ∼ N
(
m(Xte) + K(Xte, Xtr)K(Xtr, Xtr)

−1 ( ftr −m(Xtr)) ,

K(Xte, Xte)− K(Xte, Xtr)K(Xtr, Xtr)
−1K(Xtr, Xte)

)
. (6)

Equation (6) provides the predictive distribution of the function conditioned on the training
data. Note that the posterior mean for fte is a linear function of training data, which is why
the GP is referred to as a linear predictor. On the other hand, the mean can be seen as a linear
function of covariance functions between the test input(s) and the training inputs. This explains
why the covariance function characterizes the GPR. The posterior covariance is a function of only
the training and test inputs and does not depend on the training outputs. The first term of the
covariance function, K(Xte, Xte), is the prior covariance function of the test data, and the second
term K(Xte, Xtr)K(Xtr, Xtr)−1K(Xtr, Xte) represents the uncertainty reduction due to the training
observations [25,26,28,29,53,63].

In practice, the input data are rarely available for test dataset (e.g., future temperature data Xte is
unknown at the time of forecasting). Thus, we first predict future input data (e.g., outside temperature)
using a simple Gaussian Process Regression and use this predicted input data for predicting future
load. In Section 4, we compare the accuracy of load forecasting methods with predicted and actual
input data.
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3.2. Covariance Function Modeling

In learning data patterns, the notion of similarity between data points is very important.
It indicates how points with similar input values x tend to have similar target values y. In Gaussian
Processes, we incorporate this notion of similarity with covariance functions [63]. In this section,
we first examine potential kernels that are commonly used in covariance functions: periodic, squared
exponential, Matern, and linear kernels [26,28,63]. Then we investigate energy demand data in different
scenarios to model the covariance functions for each cases.

3.2.1. Kernel Types

We first examine several commonly used kernels for covariance functions. The covariance
functions will be modeled as combinations of these kernels according to the characteristics of the load
data to predict.

1. Periodic Function:

K(x, x′) = θ2
1 × exp

−2 sin2
(

π|x−x′ |
θ2

)
θ2

3

 (7)

The periodic kernel is suitable for modeling functions that repeat themselves. The variance θ2
1

is the average deviation of the function from its mean. The period θ2 indicates the distance between
the repetitions of the functions. The length-scale parameter θ3 determines the length of the wiggles
(continuous and repeated up-down patterns in the function) [66].

2. Squared Exponential:

K(x, x′) = θ2
1 × exp

(
− (x− x′)2

2θ2
2

)
(8)

This is also known as the Radial Basis function or the Gaussian Kernel. This kernel is infinitely
divisible and hence a Gaussian Process with this kernel as a covariance function has derivatives of all
orders and is thus very smooth [63]. It is widely applied in Support Vector Machines and Gaussian
Processes to generally represent smoothly varying functions. The parameters θ1 and θ2 represent
the average deviation of the function from its mean and the characteristic length-scale, which is
an indicator of the spread of the curve (width of the bell) respectively.

3. Matern Kernel:

K(x, x′) =
21−ν

Γ(ν)

(√
2ν(x− x′)

l

)ν

Kν

(√
2ν(x− x′)

l

)
(9)

With positive parameters ν and l, where Kν is a modified Bessel function [67] and Γ(ν) is
an extension of the factorial function with complex and real arguments (Γ(ν) = (ν − 1)!). When
ν = l + 1

2 , l ∈ N+, the Matern covariance can be expressed as a product of an exponential and
a polynomial of degree l [63]. The Matern kernel is not infinitely differentiable and hence is used for
less smooth functions.

4. Linear Kernel:

K(x, x′) = θ2
1 × (x− c)× (x′ − c) (10)

Using just a linear kernel for a Gaussian Process is equivalent to doing a simple Bayesian linear
regression [66]. θ1 represents the average deviation of the function from its mean and c determines
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the x-coordinate of the point through which all the lines in the posterior go though [66]. At this point,
the function will have zero variance (without any noise) [66]. This kernel is often used in combination
with other kernels.

5. Random Noise Kernel

K(x, x′) = θ2
1δx,x′ (11)

δi,j is the Kronecker’s delta function for i and j [68]. This kernel is often used to represent random
noise components of the data. Tuning the parameter θ1 corresponds to estimating the noise-level.

3.2.2. Long-Term Forecasting

To achieve accurate long-term load forecasting (1–5 day ahead), it is important to first understand
the long-term behavior of the building energy load data. To this end, Figure 1 shows an example of
long-term (5 day) profile of each of the 3 datasets: aggregate electricity data of 10 buildings in the
Carnegie Mellon University campus and cooling load and lighting load of one campus building in
Stanford Campus (more details about the datasets are provided in Section 4). The figure shows that
all the data are periodic as the load profile is similar every day and the data is quite smooth (Y2E2
lighting load visible less smooth than both CMU electricity load nad Y2E2 cooling load) throughout
except for variations around the peak load. We also observe that during the course of a day, the data
does follow a bell curve, with maximum load in the middle of the day and minimum at both sides
(at night). We now use these characteristics and model a covariance function that can incorporate all
these information.

(a) (b) (c)

Figure 1. Different 5-day loads and temperatures. (a) Aggregate Electricity Load and Temperature of
Carnegie Mellon University; (b) Cooling load and Temperature for Y2E2 building in Stanford Campus;
(c) Lighting load and Temperature for Y2E2 building in Stanford Campus.

A combination of several kernels is used for the covariance function of the GPR to model the
long-term building energy load data. First, the data is periodic in time, and hence a periodic function
is used. To capture the varying amplitude or load across a day, a squared exponential function is
combined with the periodic function. We model the covariance function as a product of periodic
function and the squared exponential function for the time of day input. Then, another squared
exponential function is used for the temperature input to incorporate the impact of outside temperature
to the energy consumption. The squared exponential function represents a smooth variation of
consumption data as a function of temperature, since the temperature and the load data generally
share similar patterns, as shown in Figure 1. A random noise function is also included to model noise
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in the data. The mean of the GPR is defined as a simple constant value, as explained in Section 3.1.
The mean and the covariance functions are represented as

m(x) = a (12)

K(x, x′) = θ2
1 × exp

− (x1 − x′1)
2

2θ2
2

−
2 sin2

(
π|x1−x′1|

θ3

)
θ2

4

+ θ5
1 × exp

(
− (x2 − x′2)

2

2θ2
6

)
+ θ2

9δx,x′ (13)

where x1 and x′1 are times, x2 and x′2 are temperatures, and δi,j is the Kronecker’s delta function for
i and j [68]. To learn the hyper-parameters, θis, of the combined covariance function, we use the
maximum likelihood estimation using conjugate gradient method with the Polak-Ribiere formula [69].

3.2.3. Short-Term Forecasting

In short periods of time (10 min), all the different loads can be seen following a linear trajectory,
as can be seen in Figure 2. For this reason, the covariance function in Equation (13) was not well suited
as there was no periodicity or any particular pattern in the load variation. Hence we have used a linear
kernel with noise and a constant mean function:

m(x) = a (14)

K(x, x′) = θ2
1 × (x− c)× (x′ − c) + θ2

2δx,x′ (15)

Here, θ1 and θ2 are the hyper-parameters to be learned and δ is the Kronecker’s delta function,
an independent covariance function representing a noise [68].

(a) (b) (c)

Figure 2. Different loads for a short duration of time. (a) Aggregate Electricity Load of Carnegie Mellon
University; (b) Cooling load for Y2E2 building in Stanford Campus; (c) Lighting load for Y2E2 building
in Stanford Campus.

4. Evaluation

In this section, we evaluate our algorithm using three datasets: CMU electricity load, Stanford
Y2E2 cooling load and Stanford Y2E2 lighting load. We compared the performance of our proposed
algorithm with three benchmark methods that are conventional data-driven load forecasting approaches.
To show the robustness of our algorithm, we also evaluate the performance for different types of
load data, predicted vs real temperature input data, and different kernels on the prediction results.
Section 4.1 describes the datasets and benchmark methods. Section 4.2 analyzes and discusses the
evaluation results.
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4.1. Experimental Setup

We introduce the datasets used for evaluation and benchmark methods we compared the
forecasting performance with. The datasets include CMU electricity consumption data described in
Section 4.1.1 and Stanford Y2E2 building cooling load data and lighting load described in Section 4.1.2.
A representative example of the daily load profile of each of these loads is presented in Figure 3.
Then three benchmark methods, Support Vector Regression (SVR), Random Forests (RF) and the
Autoregressive Integrated Moving Average (ARIMA), are described in Section 4.1.3.

(a) (b) (c)

Figure 3. A Daily Load Profile for each of the dataset. (a) CMU electricity load; (b) Y2E2 cooling load;
(c) Y2E2 lighting load.

4.1.1. Electricity Consumption Data of Carnegie Mellon University

This dataset contains the aggregated electricity consumption data of a group of ten buildings
in the campus of Carnegie Mellon University collected at a time resolution of every five minutes.
Most of these buildings are academic buildings belonging to various departments and contain lecture
halls, conference rooms, research labs and, faculty, staff and student offices. The dataset also includes
electricity consumption data from a couple of student housing buildings on the university campus.
This data aggregates the total consumption by lighting loads, plug level loads and HVAC loads,
with a major portion of the HVAC load being used for obtaining chilled water and a small portion
used for heating purposes (as natural gas is preferred for heating).

4.1.2. Cooling and Lighting Load Data of Y2E2 Building in Stanford University

The Jerry Yang and Akiko Yamazaki Environment and Energy (Y2E2) building in Stanford
University is a three storey building that has been certified LEED-EBOM (Existing Building: Operations
and Maintenance) Platinum. It has an area of 166,000 square foot, accomodates several departments,
schools, laboratories, lecture halls, conferences rooms and a cafe. The status of the environment and
appliances in and around the building is continuously monitored and for this paper, we are using the
data from the HVAC systems and lighting loads in the building. Chilled water systems are used to
cool down the components and equipment in the building and hence we use amount of chilled water
being used (in tons), aggregated to hourly intervals as the cooling load. For the lighting loads, we use
data that has been aggregated to five minute intervals.

4.1.3. Benchmark Methods

We have compared the performance of the proposed GPR-based method with the performance
of other conventional forecasting methods. These methods include learning algorithms such as kernel
transformed Support Vector Regression (SVR), Random Forests (RF) and the Autoregressive Integrated
Moving Average (ARIMA) [16,18,19,27,41,44–46]. Support Vector Regression is a conventional non-
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parametric regression method, which utlizes different kernels and support vectors to enable the ability to
approximate complex model. Random Forest is widely applied by constructing multiple decision trees
to avoid overfitting. ARIMA is a conventional statistical method for non-stationary time series analysis.

4.2. Results and Discussion

In this section, we discuss the performance of our algorithm on long-term forecasting with
different time length of training data (Section 4.2.1) and varying prediction horizon (Section 4.2.2) and
short-term prediction (Section 4.2.3). We also evaluate the impact of using predicted input temperature
values for both long-term and short-term load forecasting in Sections 4.2.4 and 4.2.5, respectively.
In Section 4.2.6, we characterize the performance of our algorithm with different kernels for predicting
different types of loads.

4.2.1. Long-Term Forecasting under Varying Duration of Training Data

We evaluate the prediction performance of our algorithm when there is varying duration of the
training dataset. In this paper, we vary the training data from one day to four days and use these
different trained models to predict the one day ahead energy load in the same week. We ran this
evaluation on different weeks throughout the year and for each of the three datasets to predict the
load for one day in each of these different weeks.

Figure 4 shows the spread of the Mean Absolute Percentage Errors (MAPE) for predicting
next day load across different weeks for the different data that we have when tested using models
trained on different amount of training data. It can be seen that there are certain boxplots missing
a whisker. Whiskers on the top of the boxplot represent the largest data point that is less than the
Q3 + 1.5 ∗ (Q3 − Q1), where Q3 is the 3rd quartile or the 75-percentile, Q1 is the 1st quartile of
25-percentile and Q3−Q1 represents the inter-quartile range, IQR [70]. Whiskers on the bottom of the
boxplot represent the smallest point that is larger than Q1− 1.5 ∗ (Q3−Q1) [70]. Any point above the
top whisker and below the bottom whisker are conventionally considered to be “outlier points”. Thus,
in Figure 4, the boxplots in the Y2E2 cooling load and Y2E2 lighting load that have no top whiskers
indicate that there are no data points for MAPE values between Q3 and Q3 + 1.5 ∗ (Q3−Q1), even
with a larger dataset. Hence, if we can choose to look beyond these very few outliers, it can be seen
that the median MAPE for CMU electricity load prediction is around 5% and for Y2E2 cooling load
prediction, it is around 10% which are quite accurate. The error percentage is quite high for the Y2E2
lighting load, with the median error around 30%. This difference in error is due to the volatility of the
lighting load. It is more difficult to predict the highly volatile load data because of the high uncertainty.

In this paper, we refer to volatility of the load as the degree of smoothness of the load curve.
We quantify this degree of smoothness of the load curve by calculating the conventional metric of
smoothness, namely the lag-one autocorrelation of the difference between the consecutive data points
of the load. As this value approaches 1, it means that the curve is very smooth and it is said to be
very jagged when it is near −1. Figures 1 and 3 show that the Y2E2 lighting load is less smooth as
compared to the CMU electricity load and Y2E2 cooling load. The lag-one autocorrelation values of the
difference between the consecutive data points of the load curves in Figure 3 is 0.893, 0.799 and 0.336
for CMU electricity load, Y2E2 cooling load and Y2E2 lighting load, respectively. The smoothness in
the CMU electric load can be attributed to the fact that it is the aggregated electricity consumption
data of a group of ten buildings in the CMU campus (Section 4.1.1). Hence the turning on/off of a few
appliances does not make a significant impact on the load curve. The Y2E2 cooling load is the amount
of chilled water being used (in tons) to cool one building (Section 4.1.2). This HVAC load is always an
incremental increase and it is not a sudden turn on/off and hence we fail to see any significant step
ups/downs in the load profile. On the other hand, the Y2E2 electric load is just the power consumed
by lighting appliances in the Y2E2 building (Section 4.1.2). Hence, it is not that large as the CMU
aggregated electricity load and change in state of one or two lighting appliances can make a significant
impact on the overall lighting load. Lighting loads can be turned off/on immediately and this feature
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can cause sudden step ups/downs in the load curve and hence it is less smooth compared to both of
the other loads.

(a) (b) (c)

Figure 4. Distribution of the prediction MAPE over different weeks for varying duration of training
data using GPR. (a) CMU electricity load; (b) Y2E2 cooling load; (c) Y2E2 lighting load.

Then we compare the results we obtained using Gaussian Processes with other benchmark
methods. Figure 5 plots the mean values of the MAPE obtained for the three loads after applying
Gaussian Process Regression (GPR), Support Vector Regression (SVR), Random Forest (RF) and
Autoregressive Integrated Moving Average (ARIMA). It can be seen that our method produces much
better results than the other three methods in all the three loads for all training data amount. GPR
performs up to 2.95 times, 2.81 times and 2.94 times better than the other methods for CMU electricity
load, Y2E2 cooling load and Y2E2 lighting load respectively. The prior knowledge about the type of
data is represented in the covariance kernel functions that we chose, and this decision helps the GPR to
produce more accurate results with lesser amount of data. From these, it is evident that irrespective of
the amount of training data, GPR performs better than the other methods. Specially, for CMU electric
data, 3-days results in best performance for our GPR method. For Y2E2 cooling load and lighting load,
4-days and 2-days result in best performance for our GPR method respectively.

(a) (b) (c)

Figure 5. Mean of the MAPE of prediction over different weeks for varying duration of training data
using GPR, SVR, RF and ARIMA. (a) CMU electric load; (b) Y2E2 cooling load; (c) Y2E2 lighting load.

4.2.2. Long-Term Forecasting under Varying Prediction Horizon

In this section, we test the performance of our prediction models for all the different loads while
varying the prediction horizon from one day to five days. By this evaluation, we can see how far
ahead can our GPR model predict the future building energy consumption values accurately. For this
evaluation, we use the models trained on 1 training day that had been presented in Section 4.2.1.
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The models are trained on one day of the week (could be any day) and are used to predict the load
on its first day ahead, its second day ahead and up to its fifth day ahead. For example, when the
prediction horizon is 1, a model trained on Monday of a week is used to predict the Tuesday’s load,
a model trained on Tuesday is used to predict Wednesday’s load etc. When the prediction horizon is 3,
in this example, the model trained on the Monday’s load would be used to predict Thursday’s load
and the model trained on Tuesday would be used to predict Friday’s load and so on. This evaluation
is also done across multiple weeks to get more data points and thus stable results.

Each boxplot in Figure 6 represents the distribution of the MAPE of prediction horizon of ‘k’ days
(with ‘k’ varying from 1 to 5 days). CMU electricity load forecasting is very accurate with the median
error percentage always less than 8%. The median Y2E2 cooling load error is less than 17% and the
median MAPE for Y2E2 lighting load is less than 39%. The higher error for the Y2E2 lighting load
can be attributed to the high volatility of the lighting load as mentioned in Section 4.2.1 and shown in
Figures 1 and 3. Both median and mean in Figures 6 and 7 show a general trend of increasing MAPE
values as the prediction horizon increases, with the exception of 5-day prediction horizon for Y2E2
lighting load. The decrease in the 5-day ahead lighting forecasting MAPE value may be due to the fact
that (1) the 5-day ahead happened to have the same day of the week as the training and the test data
(e.g., the GPR is trained on the load profile from Monday and tested on the next Monday data, because
only weekdays are considered) and (2) the lighting load tends to be more sensitive to daily human
activities compared to the other two loads.

(a) (b) (c)

Figure 6. Distribution of the prediction MAPE over different duration of training data for varying
duration of prediction horizons using GPR. (a) CMU electricity load; (b) Y2E2 cooling load; (c) Y2E2
lighting load.

Figure 7 compares the average of MAPE of prediction results by using GPR based on our proposed
kernels, SVR, RF and ARIMA methods. It can be seen here also that our algorithm outperforms the
other three methods for all the loads. GPR performs up to 1.93 times, 2.08 times and 2.42 times better
than the other methods for CMU electricity load, Y2E2 cooling load and Y2E2 lighting load respectively.
From these, it can be concluded that GPR can produce quite accurate prediction results for future load
forecasts up to at least five days in advance, but at the same time, more often than not, the likelihood
of obtaining similarly accurate results as we obtained with prediction horizon of 1 or 2 days reduces,
due to a general trend of higher variances and outlier points.
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(a) (b) (c)

Figure 7. Mean of the MAPE of prediction over duration of training data for varying duration of
prediction horizon using GPR, SVR, RF and ARIMA. (a) CMU electricity load; (b) Y2E2 cooling load;
(c) Y2E2 lighting load.

4.2.3. Short-Term Forecasting

We evaluate the performance of Gaussian Processes in short-term load forecasting. We used the
kernel mentioned in Section 3.2.3, which is a linear kernel with noise. We used consumption and
temperature data for the previous 30 min to predict the load data for the next 10 min. Figure 8a
is a scatter plot of the actual against the predicted Y2E2 lighting load values for a 20 h period in
a day. The actual and predicted time-series load is shown in Figure 8b and it can be seen from these
two that, this short-term prediction algorithm using Gaussian Process Regression is quite accurate.
The initial few data points in Figure 8b, where there is only actual load data and no predicted load
data, are the first set of training data (30 min, which consists of 6 data points). These were used to train
a model and predict the first two values on the predicted load curve. Now the next training period
moves 10 min ahead from the initial start time and extends up to 30 more minutes. These points are
then used to train a new model and predict the 2 values for next 10 min and this process continues.
We obtained a low prediction MAPE of 7.96%, which is much better than the errors that we obtained
on the Y2E2 lighting load with long term forecasting. Similarly, we obtained better prediction results
with short-term forecasting of the CMU electricity load and Y2E2 cooling load as well, with MAPE of
0.735% and 6.53% respectively. Therefore it can be seen that with short-term, we are much more aware
of the recent trends in data and it is easier to predict accordingly.

(a) (b)

Figure 8. Short Term Forecasting of the Y2E2 lighting load every 30 min period using a linear kernel in
GPR. (a) Actual v/s Predicted Load for a 20 h period; (b) Predicted (blue dashed) and Actual (orange
solid) load for a 20 h period.
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4.2.4. Long-Term Forecasting with Predicted Inputs

As we are using temperature as an external input to predict the building’s load, we would need
an estimate of future temperature as well, particularly if we are forecasting the building’s load on
a future date. While we have access to temperature and load for the training the prediction model,
we require the temperature for the period for which we are predicting the load as well, which is
not available at the time of prediction. For this purpose, we predict the temperature first using
Gaussian Processes and we make use of a kernel that combines the linear kernel and the squared
exponential kernel. This makes a good kernel for predicting temperature because the temperature
profile throughout a day is relatively smooth, as supported by our observations. A couple of examples
of these observations can be seen in the “Actual Temperature” curve in Figure 9. The linear kernel
allows increases and decreases in the predicted temperature according to similar and corresponding
variations in the corresponding historical actual temperature used in training. We trained the Gaussian
Process Regression model with the combined kernel to obtain the estimation of the temperature for the
entire prediction horizon. Then we feed the predicted temperature to the load forecasting model to
obtain the future load consumption.

(a) (b)

Figure 9. A smooth predicted (blue dashed curve) and a jagged actual (orange solid curve) Temperature
curve for two different days in Stanford, CA. (a) Day 1; (b) Day 2.

Figure 10a,b show that mean MAPE value with predicted inputs is lower than that with actual
input for CMU electricity load and Y2E2 cooling load forecasts. The mean MAPE of the Y2E2 lighting
load forecast does not change much with different temperature input (actual vs predicted). However,
for electricity load and cooling load, we found that using prediction as input can produce lower
error than using actual temperature as input. To better understanding the results, we characterize
two examples of prediction results. As Figure 9 shows, the actual temperature is jagged and not very
smooth, especially when compared to the predicted temperature. The difference in smoothness of
the temperature curve is also supported when we take the lag-one autocorrelation of the difference of
consecutive values in both temperature signals: for Figure 9a, the autocorrelation metric is 0.936 for
the predicted temperature and 0.687 for the actual temperature and similarly, for Figure 9b, it is 0.871
and 0.799 for the predicted and actual temperature, respectively. Therefore, CMU electric load and
Y2E2 cooling load profiles are smoother than the actual temperature data, while Y2E2 lighting load
data is less smoother than the actual temperature data.

As Figure 10 shows, when the load data is smoother, the predicted input results in less error
than the actual input (e.g., up to 41% change in mean MAPE in Figure 9a. This change is the ratio
of the difference between the mean MAPEs for the actual and predicted inputs to the mean MAPE
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for the actual input), while when the load data is less smoother, the performance using the predicted
temperature is similar with using the actual temperature (e.g., up to 4.4% and 0.63% changes in mean
MAPE in Figure 9b,c, respectively). This indicates that smoother input may improve the prediction
accuracy on smooth load data. This may be because the smoother temperature input already reduces
the uncertainty induced by irrelevant but volatile influence factors, such as measurement noise. Note
that the purpose of this study is to show that our method using the predicted temperature input
performs comparatively to using the actual temperature input. This is important since when predicting
loads in practice, it is difficult to obtain the actual future temperature data. Thus, our method allows
us to predict energy loads accurately without having to know the actual future temperature data.

(a) (b) (c)

Figure 10. Mean of the MAPE of prediction when using Actual Temperature Input v/s Predicted
Temperature Input in the GPR model for all the three loads. (a) CMU electricity load; (b) Y2E2 cooling
load; (c) Y2E2 lighting load.

4.2.5. Short-Term Forecasting with Predicted Inputs

We evaluate the performance of our short term forecasting kernel, as mentioned in Section 3.2.3.
Here we use the predicted temperature as inputs to the model instead of the actual temperature,
as described in the above Section 4.2.4. We obtain the future temperature estimate using Gaussian
Process and a combination of linear kernel and squared exponential kernel (as above) and use this
estimate to predict the future load for a short term duration of 10 min. Similar to the short term
forecasting earlier, we use 30 min of training data to obtain these 10 min of load forecasts.

Figure 11 shows the actual Y2E2 lighting load, predicted Y2E2 lighting load using actual
temperature, and predicted Y2E2 lighting load using predicted temperature for a 20 h period in
a day. It can be seen that both predicted load curves overlap each other. The MAPE of the load
prediction with predicted temperature is 7.96%, which is almost exactly the same the MAPE of the load
predicted with actual temperature (difference of 4× 10−6). This is mainly due to the fact that in such
a small duration of 10 min, the actual and predicted temperature differ only by around 0.3◦F–0.5◦F.
The low error rate of temperature prediction make it feasible to use predicted temperature as the input
for short term load forecasting.
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Figure 11. Actual Y2E2 lighting load (orange solid line), Short Term Forecast of the Y2E2 lighting load
using Actual Temperature Input (blue dashed line) and Short Term Forecast of the same load using
predicted Temperature Input (red dashed-dotted line) for a 20 h period.

4.2.6. Impacts of Different Kernels

We investigated the impacts of using different kernels, Matern kernel and combination of Matern
kernel and linear kernel, on the performance of Gaussian Process Regression for load forecasting,
compared to our method.

1. Matern kernel for Y2E2 Building’s Cooling Load Forecasting

As the Matern kernel is another commonly used kernel for modeling the varying load consumption
instead of the smoother squared exponential function, we predicted the cooling load for Y2E2 building
for one to five days ahead using Matern Kernels (shown in Equation (13)) and compared the performance
with that of the squared exponential kernel.

Matern Kernel resulted in a higher MAPE with a higher deviation as Figure 12 showed.
This empirically justifies our kernel selection to use the squared exponential kernel for our GPR
modeling. This is due to the smoothness associated with our load curve as we are taking the total
consumption of a whole building, instead of a more granular level of consumption like a conference
room or a small residential building. This smoothness can be better captured by the squared exponential
curve and hence it produces a better load forecast.

2. A combination of Matern and Linear Kernel for Y2E2 Building’s lighting load forecasting

We present the results of the Y2E2 lighting load forecast using the combination of Matern and
linear kernels:

K(x, x′) = θ2
1 × (x− c)× (x′ − c) ∗ 21−ν

Γ(ν)

(√
2ν(x− x′)

l

)ν

Kν

(√
2ν(x− x′)

l

)
+ θ2

2δx,x′ (16)
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where θ1, θ2, ν and l are hyper-parameters, Kν is a modified Bessel function, Γ(ν) is a Gamma function
and δi,j is the Kronecker Delta function for i and j [68]. We then compare the results with those of using
our kernel model described in Section 3.2.2. We used lighting loads as it is the least smooth of the
three data that we have.

Figure 13 shows that our kernel model performs much better (lower MAPE) than the combination
of Matern and linear kernels developed to characterize not-so-smooth functions. While many more
kernels can be constructed and compared, these results show that the more we understand the physical
insights about the data and encode it in our covariance function, more accurate forecasting results
will become.

(a) (b)

Figure 12. MAPE for forecasting a Y2E2 cooling load chilled water consumption using Squared
Exponential Kernel and Matern Kernel. (a) Squared Exponential Kernel; (b) Matern Kernel.

(a) (b)

Figure 13. MAPE for forecasting the Y2E2 lighting load using our long-term load forecasting kernel
(Section 3.2.2) and a combination of a linear and matern kernel. (a) Our long Term Load Forecasting
Kernel in Section 3.2.2; (b) Combination of Matern and linear kernels for Long Term Forecasting.

5. Conclusions

This paper introduced a new building energy forecasting method that combines Gaussian Process
Regression and physical insights and heuristics about load data in diverse forecasting scenarios.
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We investigated building energy load data for various durations and then modeled the covariance
function of the GPR accordingly using kernels to represent the behavior of the data most accurately in
each scenario. For example, long-term behavior of aggregate loads tend to be smooth and periodic
over time, and thus smoother kernels, such as the squared exponential kernel and periodic functions,
are more appropriate, while for short-term forecasting a simpler kernel-like linear kernel is more
appropriate. The performance of our method is evaluated with three field datasets to predict loads
in diverse forecasting scenarios, such as amount of training data, prediction horizon, load type,
and aggregation level. The field datasets include aggregated electricity load of Carnegie Mellon
University (CMU), the cooling and the lighting load of a campus building in Stanford University.
The results show that as the amount of training data and the duration of prediction horizon increases,
the overall prediction error increases. Our model resulted in the prediction accuracy of up to 94.38%
and 99.26% for long- and short-term forecasting, respectively. They correspond to up to 2.95 times
improvement in the prediction error, compared to state-of-the-art forecasting methods, including
Support Vector Regression (SVR), Random Forest (RF), and Autoregressive Integrated Moving Average
(ARIMA). The evaluations show that our Gaussian Process load forecasting model is accurate and
robust to diverse forecasting scenarios using minimal training data.
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