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Abstract: A fractional derivative system identification approach for modeling battery dynamics
is presented in this paper, where fractional derivatives are applied to approximate non-linear
dynamic behavior of a battery system. The least squares-based state-variable filter (LSSVF)
method commonly used in the identification of continuous-time models is extended to allow the
estimation of fractional derivative coefficents and parameters of the battery models by monitoring a
charge/discharge demand signal and a power storage/delivery signal. In particular, the model
is combined by individual fractional differential models (FDMs), where the parameters can be
estimated by a least-squares algorithm. Based on experimental data, it is illustrated how the
fractional derivative model can be utilized to predict the dynamics of the energy storage and
delivery of a lithium iron phosphate battery (LiFePO4) in real-time. The results indicate that a
FDM can accurately capture the dynamics of the energy storage and delivery of the battery over
a large operating range of the battery. It is also shown that the fractional derivative model exhibits
improvements on prediction performance compared to standard integer derivative model, which in
beneficial for a battery management system.

Keywords: fractional differential model (FDM); energy storage and delivery; system identification;
battery management system (BMS); least squares-based state-variable filter (LSSVF) method

1. Introduction

Technological improvements in rechargeable solid-state batteries are recently being driven by an
ever-increasing demand for electrical applications in automotive, power tools and communication
systems. Among the various existing technologies, state-of-the-art lithium-ion (Li-ion) battery
technologies are the default choice, providing one of the best energy-to-weight ratios, offering flexible
and lightweight design, having low self-discharge when not in use and exhibiting little to no memory
effect. All of these beneficial features, as well as decreasing costs, have made Li-ion batteries one of
the primary candidates for the next generation of energy storage and delivery systems in portable
electronics, electrified transportation, renewable energy integration, and smart grids [1–7].

Due to volatility, flammability and entropy changes, Li-ion batteries can cause irreversible, and
under extreme conditions, catastrophic damages when overcharged or subjected to high discharge
rates. Moreover, overcharging and overdischarging may reduce cell storage capacity and total cycle
life of the battery due to irreversible chemical reactions [8–10]. Therefore, a battery management
system (BMS) plays a vital role in improving battery performance and optimizing battery operation
in a safe and reliable manner. A BMS is composed of hardware and software in order to protect
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the battery from operating outside its safe operating area, monitoring the state of the battery, and
controlling its environment [11,12].

Some (Li-ion) battery model is required for designing and building BMS algorithms that uses
this model to predict unmeasurable variables such as the state of charge (SOC) and state of health
(SOH) of the battery. In addition, a BMS may be used to predict and compare measurable variables
such as current, voltage, power and battery temperature [13–17] for battery fault and conditioning
monitoring. An example of BMS usage can be seem in electric vehicle (EV) applications, shown
in Figure 1. Indeed, among all the functions, one of the primary tasks of BMS is to track physical
(un)measurable parameters and observe the states of the battery as the battery ages [18–20].

SOC, SOH, …
Estimation

Battery Management System
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Control
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and 

Alarms Loads
Charger
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Figure 1. Overall architecture of a battery management system (BMS). SOC: state of charge; and SOH:
state of health.

A BMS may use a physics-based battery model based on electrochemical principles [21] typically
describing with a set of partial differential equations (PDE). A physics-based battery PDE model can
account for the diffusion, intercalation, and electrical dynamics of a battery. A physics-based battery
PDE model has the advantage of being able to describe detailed information in terms of integration
of the various physical processes occurring in a battery and prediction capabilities, but may suffer
from complexity and parameter uncertainty. Parameter estimation can be a solution to parameter
uncertainty, but is limited by parameter identifiability conditions when only external voltage, current
and temperature information is available.

With limited computing resources in a BMS for parameter estimation and model simulation,
simplification of the electrochemical model can be done via the porous electrode model with a
polynomial approximation model (PAM) and a single particle model (SPM) [23,24]. Although both
PAM and SPM are computationally faster, they do not account for all physical processes. For example,
the solution phase diffusion limitations are ignored, thus they have limitations in prediction of battery
performance [25,26].

Another way for battery modeling is the simple equivalent circuit model (ECM), which is
developed by using internal resistance, effective capacitance and equivalent potential to mimic
the phenomenological behavior of batteries [27]. This model has a clear electrical interpretation.
Unfortunately, the linearity and finite order of the ECM lacks the possibility to capture the possibly
volatile and partial derivative nature of the electrochemical process over the full operating range of a
Li-ion battery [28,29]. Although the accuracy of an ECM in predicting the input/output behavior
of the battery can be improved by allowing the model parameters to vary with applied current,
temperature and the SOC, the validity of the underlying ECM is still unreliable in high power and
high energy applications. Especially for battery application in the automotive industry, where safety
is critical for a high energy battery pack [30,31]
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It is clear that alternative battery dynamic models with low computational requirements for
the BMS are desired. A BMS may use a simplified dynamic model to capture battery dynamics
formulated on the basis of observations from a power charge/discharge demand signal to the voltage
and current signals [22]. Besides focusing on the dynamics of the electrochemical process of Li-ion
battery, it is also very important to model the dynamics of battery energy storage capacity in terms
of energy demand based on measurable input/output signals in real-time. From this point of view,
a viable alternative method to model the battery system is to model the dynamic effects of power
storage and delivery, as indicated in Figure 2. In this paper, such a dynamic model for power storage
and delivery is based on fractional derivative model, used to capture the possible infinite dimensional
behavior of battery power dynamics.

A recently published method for parameter estimation of a fractional differential model (FDM)
for a battery system has shown the requirements of a large amount of convolution and integration
calculations [32] that can be time consuming and sensitive to the noise on voltage and/or current
measurements and the value of the fractional derivative.

Power Storage/Delivery Model

Voltage Model

Current Model

Charge/Discharge
Demand

Power
Storage/Delivery

Figure 2. Model approach for dynamic power storage/delivery, see also [22].

The purpose of this paper is to show that: (a) the power storage/delivery dynamics of a Li-ion
battery can be accurately modeled by a continuous-time FDM; and (b) optimization of parameters
can be found via state variable filters (SVF) to generate smooth fractional derivatives of input/output
signals that are less susceptible to noise. Based on filtered fractional derivative signals, the least
squares-based state-variable filter (LSSVF) method [33] is utilized to identify the parameters of the
FDM. The performance of the proposed method is evaluated on the FDM identification for energy
storage and delivery of a lithium iron phosphate battery (LiFePO4).

As indicated in Figure 2, the proposed method to predict power delivery of a battery based
FDM is done by modeling the individual dynamics from a power charge/discharge demand signal
to the voltage and the current signals of a LiFePO4 battery, respectively. The models are combined to
formulate a dynamic model of a battery as a power storage/delivery system to identify how fast a
battery can store and deliver energy as a function of time.

2. Experimental Setup

As shown in Figure 3, an experimental setup is built to test a battery as a power storage/delivery
system. The charge/discharge demand signal can be applied as the input when measuring current
and voltage signals of the batteries are recorded in real-time. There are three parts of the experimental
setup: main circuitry, control and measurement circuitry, and computer.

In the main circuity, metal-oxide-semiconductor field-effect transistor (MOSFETs) T1 and T2 are
used to allow the control of the power supply to Li-ion batteries. When T1 is on and T2 is off, the
Li-ion battery is connected to the power supply. The power is transferred to charge the battery. When
T1 is off and T2 is on, the battery is disconnected with the power supply. The power flow from the
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supply is switched off, thus the battery is connected to the ground and discharged. The main use of
the pulse-width modulation (PWM) technique of T1 and T2 is to allow for modulating charge and
discharge demand signals. The electric load is comprised of a parallel connection of load resistors.
Such an electric load behaves to limit the current when the battery is charged, and performs as the
load when the battery is discharged.

Power 
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Current
Sensor

Li-ion
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Electric 
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Main Circuitry

MOSFET
Drive

Signal
Processing

USB DAQ
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Circuitry
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Figure 3. Schematic of the experimental battery tester. DAQ: data acquisition.

In the control and measurement circuitry, a National Instruments (NI, Austin, TX, USA) USB
data acquisition (DAQ) device is used to delivery corresponding control signals to switch MOSFETs.
The DAQ device is also applied to receive the measured signals and can communicate with the
computer via a USB cable in real-time. A MOSFET drive is developed to boost the level of the digital
output signal generated by the DAQ device. Low-order Butterworth low-pass filtering circuitry is
used to reduce aliasing effects on the measured switching signals. a NI LabVIEW program was
developed to automatically load cycle signals from existing files and can also save measured signals
from the DAQ device. The experimental battery test can be repeated by applying the same sequence
of charge/discharge demand signals.

A photograph of the experimental battery tester is shown in Figure 4. A 2.3 Ah-3.3 V LiFePO4

battery cell ANR26650 manufactured by A123 Systems (Waltham, MA, USA) is utilized in the
experimental test. Pulse discharge at 10 s can reach 120 A and maximum continuous discharge
is 70 A. Low drain-to-source on-resistance MOSFET IRLZ34 is applied to adapt in a high current
flow. A bidirectional ± 20 A Hall effect sensor ACS714 is utilized to measure the current, and an
analog-to-digital (A/D) conversion is used to measure the voltage over the battery.
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Figure 4. Photograph of the experimental battery tester.
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3. Fractional Differential Systems

3.1. Fractional Differential System Equation

A fractional differential system is governed by a fractional differential equation

y(t) + a1Dα1 y(t) + ... + anDαn y(t) = b0Dβ0 u(t) + b1Dβ1 u(t) + ... + bmDβm u(t) (1)

where (aj, bi) ∈ R2, and the differentiation orders α1 < α2 < ... < αn, β0 < β1 < ... < βm, and
αi,βi ∈ R+ are allowed to be non-integer positive real numbers. The concept of differentiation to an
arbitrary non-integer order α is defined as [34–36]

Dα = (
d
dt

)α, ∀α ∈ R+

The α-th order uninitialized fractional derivative of a function f (t) is defined as an integer
derivative of order dαe of a non-integer integral of order α− bαc

Dα f (t) = (
d
dt

)α
1

Γ(dαe − α)

∫ t

0

f (τ)
(t− τ)α−bαc

dτ (2)

where t > 0, ∀α ∈ R+, and Euler gamma function Γ(β) is defined for every β ∈ R+ by

Γ(β) =
∫ ∞

0
zβ−1e−z dz (3)

In the above equations, d·e denotes the ceiling function that is defined as the smallest integer still
greater than α, and b·c is the floor function that represents the largest integer still smaller than α. The
Laplace transform

L{Dα f (t)} = sαF(s), if f (t) = 0 ∀t ≤ 0 (4)

of α-th derivative (α ∈ R+) can also be used to describe a fractional systems [37,38]. With both the
input signal u(t) and the output signal y(t) equal to 0 for all t < 0, allows Equation (1) to be written
in a transfer function form

G(s) =
b0sβ0 + b1sβ1 + · · ·+ bmsβm

1 + a1sα1 + · · ·+ ansαn
(5)

which represents the fractional order continuous-time transfer function G(s) of the FDM throughout
the paper.

3.2. Direct Least Squares Method

To consider estimation of the parameters in the FDM in Equation (1) or G(s) in Equation (5),
measurable output signals y(t) are considered to be corrupted by an additive noise e(t) given by

y(t) = y0(t) + e(t) (6)

where y0(t) is hypothetical noise-free deterministic system output. The input u(t) and the output y(t)
signals are supposed to be related by Equation (1) and the equation error can be described as [39]

ε(t) = y(t)−ϕ(t)Tθ (7)

where the regressor is given by

ϕ(t)T =
[

Dβ0 u(t) Dβ1 u(t) ... Dβm u(t) − Dα1 y(t) − Dα2 y(t) ... − Dαn y(t)
]

(8)
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and the parameter is denoted by the vector

θT = [b0 b1 ... bm a1 a2 ... an] (9)

Minimizing the L2 norm of ε(t)

J =
∫ T

0
(ε(t))2dt (10)

with respect to θ, would lead to the following least squares (LS) estimate

θ̂LS =
[∫ T

0 ϕ(t)
Tϕ(t)dt

]−1 ∫ T

0
ϕ(t)Ty(t)dt (11)

Clearly, a numerical discretization of the fractional derivatives of the input/ouput signals must
be employed for the numerical computation of the estimate in Equation (11). With a time digitized
regression vector ϕ(kTs), k = 1, 2, . . . , N over N data points, we can formulate the regressor matrix

Φ = [ϕ(Ts) ϕ(2Ts) . . . ϕ(NTs)]
T (12)

Similarly, an output matrix Y can be defined as a column vector of the digitized system output
y(kTs), k = 1, 2, . . . , N over N data points to allow the LS estimation to be computed via

θ̂LS = (ΦTΦ)−1ΦTY (13)

3.3. Least Squares-Based State-Variable Filter Method

Perturbations on either the initial conditions or the coefficients of a differential equation will
typically lead to perturbations in the solution [35]. Special care needs to be given to the estimation of
the coefficients of the FDM to reduce the effect of perturbations and/or noise on the input and output
data. An effective way to estimate the coefficients of a continuous-time (fractional order) model is
through a SVF [40–42]. From a signal analysis point of view, the SVF consists of multiple band-pass
filters used to obtain the behavior of differentiation at low frequencies, while reducing the effect of
noise at high frequencies. The SVF uses a common operator model [33,40]

L(s) =
1

E(s)
=

1
(s + λ)n (14)

which is applied to pre-process the input and output signals

u f (t) = L(s)u(t), y f (t) = L(s)y(t) (15)

where u f and y f are filtered input and output signals, respectively. The notion of an SVF can be
extended to the (fractional) derivatives in Equation (1) to formulate a least squares-based SVF (LSSVF)
method based on the filtered signals in

y f (t) + a1Dα1 y f (t) + ... + anDαn y f (t) = b0Dβ0 u f (t) + b1Dβ1 u f (t) + ... + bmDβm u f (t) (16)

Based on a filtered signal in Equation (16), the L2 norm of ε f (t) now to be minimized is given by

ε f (t) = y f (t)−ϕ f (t)Tθ (17)

where the regressor is given by the filtered input/output signals

ϕ f (t)T =
[

Dβ0 u f (t) Dβ1 u f (t) . . . Dβm u f (t) − Dα1 y f (t) − Dα2 y f (t) . . . − Dαn y f (t)
]

(18)
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Again, a numerical discretization of the (fractional) derivatives of the input/ouput signals must
be employed for the numerical computation of a parameter estimate. More details on the computation
of the digitized fractional derivatives follows in the next section. With a time digitized filtered
regression vectorϕ f (kTs), k = 1, 2, . . . , N over N data points, we can formulate the LSSVF estimate as

θ̂LSSVF = (ΦT
f Φ f )

−1ΦT
f Y f (19)

where
Φ f = [ϕ f (Ts) ϕ f (2Ts) ... ϕ f (NTs)]

T (20)

and Y f is a column vector of the filtered system output y f (kTs), k = 1, 2, . . . , N over N data points.
The overall filtering and LS estimation in the LSSVF algorithm are summarized in Figure 5.

LS 
algorithm

…
…

…
…

…
…

…
…

Figure 5. The least squares-based state-variable filter (LSSVF) estimator.

3.4. Computation of Digitized Fractional Derivatives

Time-analysis of a fractional derivative model, i.e., simulation of the system response to an
arbitrary input signal, is carried out using a revised Grünwald-Letnikov definition. The revised
Grünwald-Letnikov definition is given by

Dα f (t) = lim
h→0

1
hα

[ t−a
h ]

∑
j=0

(−1)j

(
α

j

)
f (t− jh) (21)

where [·] donates the integer part. Usign the revised Grünwald-Letnikov definition, the closed-form
numerical solution to the fractional-order differential Equation (1) is obtained in [43] by the
recursive formulation

yt =
1

∑n
i=0

(
ut −∑n

i=0
ai

hαi ∑
[ t−a

h ]

j=1 w
(αj)

j yt−jh

)
(22)
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where h is the step-size in computation, The function wj(α) in the recursive formulation of
Equation (22) can be computed recursively from

wα
0 = 1, wα

j = (1− α+ 1
j

)wα
j−1, j = 1, 2, ... (23)

Using the above recursive formulations, the fractional derivatives of both the input and output signals

can be calculated with Equation (22) and substituting (−1)α
(
α

j

)
= wα

j ,. Due to the fixed-step

computation, the accuracy of the simulation may depend on the chosen step-size h, thus validating
the results by gradually decreasing step-size h until there is no variation in the simulation results
is desirable.

4. Power-Based Modeling

In order to establish a dynamic model of a Li-ion battery as a power storage/delivery system,
the power charge/discharge demand signal r(t) is considered as an input signal. The voltage signal
v(t) and current signal i(t) of the battery are considered as observable output signals. As shown
in Figure 2, the multiplication of voltage signal v(t) and current signal i(t) is equal to the power
storage/delivery signal p(t). The experimental results included below illustate that the parameters
of the two separate FDMs between r(t) as input signals and v(t) and i(t) as output signals can be
estimated very well with the LSSVF method.

4.1. Experimental Results

For experimental verification of the parameter estimation of the battery FDM, the battery is
charged and discharged by a sequence of charge/discharge demand signal composed of 6th order
pseudo random binary sequence (PRBS) [22]. Specifically, each PRBS is the 6th order with different
scaling factors of 1, 2, and 3, respectively. As a result, different C-rates are implemented in the
experiment. Each PRBS is connected with a period of zero-state, which indicated the idle status of the
charge/discharge system, as shown in Figure 6. The measured signals of voltage and current are also
shown in Figure 6. The experimental time is T = 90 min, and the sample rate is 10 Hz, which contains
54,000 samples.
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Figure 6. Charge/discharge cycles, voltage and current experimental results in 90 min.
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4.2. Voltage Model

A second-order voltage FDM, with input r(t) and output v(t), has much better prediction
performance as shown in Figure 7,and the simplest form to capture the voltage dynamics is estimated
by the LSSVF method in the form

v(t) = vn(t) + v0 =
b2s2α + b1sα + b0

a2s2α + a1sα + 1
r(t) + v0 (24)

where v0 and vn(t) are offset voltage and new output voltage signals, separately. First order SVF
L(s) = 1

s+λ is then applied to get the filtered charge/discharge demand signal r f (t) and the filtered
new output voltage signal vn f (t). In order to estimate the parameters, the filtered prediction error of
voltage model can be defined as

ε f v(t, θ1) = vn f (t)−ϕ∗1 f (t)
Tθ1 (25)

where the regression vector is given by

ϕ∗1 f (t)
T = [s2αr f (t) sαr f (t) r f (t) − s2αvn f (t) − sαvn f (t)] (26)

and the parameter vector
θT

1 = [b2 b1 b0 a2 a1] (27)

combines the unknown parameters.
subsequently, the predicted voltage

v̂(t, θ1) = v̂n(t, θ1) + v0 = ϕ∗1 f (t)
Tθ1 + v0 (28)

is applied to estimate the performance of the model, where v̂n(t, θ1) is the predicted new voltage. The
filtered squared prediction error of voltage model given by

ε2
f v(t, θ1) = ||vn f (t)− v̂n(t, θ1)||22 (29)

is utilized to validate the accuracy of the estimation.

4.3. Current Model

Following the same procedure, a first-order current FDM with the input r(t) and the output i(t),
can be estimated by the LSSVF method to capture the current dynamics of battery. The first-order
current FDM is of the from

i(t) =
d1sα + d0

c1sα + 1
r(t) (30)

and still excellent prediction performance as shown in Figure 7.
After applying the same filter L(s), the filtered current signal i f (t) and filtered charge/discharge

demand signal r f (t) are used to minimize the L2 norm of ε f i(t, θ2)

ε f i(t, θ2) = i f (t)−ϕ∗2 f (t)
Tθ2 (31)

where the regression vector is given by

ϕ∗2 f (t)
T = [sαr f (t) r f (t) − sαi f (t)] (32)

and the parameter vector
θT

2 = [d1 d0 c1] (33)
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combines the unknown coefficients in the first order current FDM. As in the voltage model, the filtered
squared prediction error of current model is now built as

ε2
f i(t, θ2) = ||i f (t)− î(t, θ2)||22 (34)

to verify the accuracy of the model, where î(t, θ2) as the predicted current output.

4.4. Experimental Data-Based Modeling

For identification and model validation purposes, the first 30 min of measured data and 5 Hz
cut-off frequency SVF are applied to estimate the parameters and validate the models. The filtered
squared prediction error of the first order and the second order voltage model ε2

f v, and the current

model ε2
f i as a function of fractional differential order α are shown in Figure 7. The dependency on

the fractional differential order α is used to charactrize the accuracy of the models for different values
of α, where a lower value along the y-axis indicates a more accurate estimation.

As can be seen in Figure 7, the results show that the filtered squared prediction error of a
second-order voltage FDM is significantly smaller than a first-order model. This explains that the
selected second-order model indeed has much better prediction performance, while still preserving
the requirement of a model of the smallest complexity to capture the voltage dynamic. For the current
FDM it is observed that a first order FDM suffices. Although the second-order current FDM has a
slightly smaller prediction error, the first-order current FDM shows similar performance with the
advantage of only having to need a first order model.

When the fractional differential order α is chosen as α = 0.1 both ε2
f v and ε2

f i have the smallest
value, which leads to the most accurate estimation. Therefore, the fractional differential order α = 0.1
is chosen in the system identification via the LSSVS method for both the voltage and current FDM in
Equations (24) and (30). Fixing the fractional differential order, the batch-wise estimation leads to the
following voltage model and the current model, respectively given by

• Voltage Model

v(t) =
0.2420s0.2 − 0.3766s0.1 + 0.1105

1.7607s0.2 − 2.9055s0.1 + 1
r(t) + 3.2141 (35)

• Current Model

i(t) =
−1.7381s0.1 + 2.1883
−0.7840s0.1 + 1

r(t) (36)
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Figure 7. Squared prediction error of voltage model ε2
f v(t, θ1) and current model ε2

f i(t, θ2) as a
function of fractional differential order α.

The estimated voltage FDM in Equation (35) and the current FDM in Equation (36) are used
to predict the voltage, current outputs and power output on the basis of measurements of the
charge/discharge demand signal r(t) that acts as an input to these models. Prediction of the voltage
and current signals is done with the parameters of the voltage and current FDMs in Equations (35)
and (36) that have been optimized for 1-step-ahead prediction. The resulting 1-step-ahead predictions
are given by

v̂(t|t− 1) = ϕ∗1(t)
Tθ1 + v0 (37)

and
î(t|t− 1) = ϕ∗2(t)

Tθ2 (38)

using the regessor vectors

ϕ∗1(t)
T = [s0.2r(t) s0.1r(t) r(t) − s0.2vn(t) − s0.1vn(t)] (39)

and
ϕ∗2(t)

T = [s0.1r(t) r(t) − s0.1i(t)] (40)

creating the 1-step-ahead power predictor by

p̂(t|t− 1) = v̂(t|t− 1) · î(t|t− 1) (41)

as a multiplication of the 1-step-ahead prediction of voltage and current.
It should be noted that the models given in Equations (35) and (36) may not be suitable for

simulation, as parameters are optimized for prediction. Instead, the predictors in Equations (37) and
(38) should be used for 1-step-ahead power delivery/storage prediction of the battery. As shown in
Figure 8, the comparison of the predicted and measured results indicates that the estimated voltage
and curent FDMs obtained via the LSSVF method can both capture the dynamics of the voltage and
current signals of the battery system. Furthermore, the proposed method is evaluated to estimate
the performance of FDM identification for power storage/delivery model, which is achieved by
multiplying the outputs of the individual FDMs. As shown in Figure 9, the estimation results indicate
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that the power storage/delivery modelsis able to capture the dynamics of the battery as the power
storage/delivery systems.
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Figure 8. Validation results of the dynamic voltage and current models with one-step-ahead voltage
and current predictors v̂(t|t− 1) and î(t|t− 1) in the first 30 min.
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Figure 9. Validation results of dynamic power storage/delivery models with the one-step-ahead
power predictor p̂(t|t− 1) in the first 30 min.

It should be noted that the one-step-ahead predictors using FDMs yield better prediction than
using the same order integer models. The voltage and current prediction errors comparison between
the optimized fractional models (α = 0.1) given in Equations (35) and (36) and the integer models
(α = 1) given in Equations (24) and (30) are shown in Figure 10. The comparison result obtained
indicates that very low relative voltage prediction errors and slight low current prediction errors of
fractional models offer substantially better accuracy of prediction ability than integer models.
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Figure 10. Voltage and current prediction errors εv(t, θ1) and εi(t, θ2) of optimized fractional models
(α = 0.1) and integer models (α = 1) in the first 30 min.

As a final comparision of the FDM quaility, a model fit ratio

γx,x∈{v,i,p} = (1− ‖ x̂(t|t− 1)− x ‖
‖ x− x̄ ‖ ) (42)

is introduced to validate the accuracy of the model, where x, x̄ and x̂(t|t− 1) are output, mean value
of output and one-step-ahead output predictor, respectively. Also shown in Table 1, the model fit
ratios comparison illustrates that our proposed fractional models via the LSSVF method obtain more
accurate estimation for all of the voltage models, the current model and the power storage/delivery
model, assuming that fractional models are more believable than integer models.

Table 1. Model fit ratios comparison between fractional models (α = 0.1) and integer models.

Model Fit Ratio Fractional Model Integer Model

Voltage Model γv 98.9893% 81.7168%
Current Model γi 97.5721% 97.1509%

Power Storage/Delivery Model γp 97.9440% 91.0754%

Furthermore, the last 60 min data set is used to validate the estimated voltage model and the
current model in Equations (24) and (30), respectively. The comparison of the predicted and measured
results is shown in Figure 11. The comparison results indicate that the estimated models can also
capture the dynamics of the objective system in the last 60 min and predict well with various C-rate
charging and discharging and the wider range of SOC. As indicated in Figure 12, the predicted power
output, which is combined by the product of the predicted voltage and current, is compared with
measured power. The results validate that our proposed dynamic model can accurately predict the
dynamics from the demand signal to the power storage/delivery signal of the battery for various
operating situations of the battery.
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Figure 11. Validation results of dynamic voltage and current models with one-step-ahead voltage and
current predictors v̂(t|t− 1) and î(t|t− 1) in the last 60 min.
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Figure 12. Validation results of dynamic power storage/delivery model with one-step-ahead power
predictor p̂(t|t− 1) in the last 60 min.

5. Conclusions

System identification of a proposed FDM of a battery via the LSSVF method is described in
this paper. This method allows for a consistent estimation of the battery output dynamics by
fixing the value of the fractional differential order and then computing smooth fractional derivative
signals of voltage and current signals to perform parameter estimation through standard Least
Squares minimization. Furthermore, an additional line search over the fractional differential order
is utilized to minimize the estimation error and find the best fractional differential order. The
proposed method is applied to model the dynamics from a power demand signal to the actual power
storage/delivery of a LiFePO4 battery cell. This is done by estimating two separate FDMs from the
power demand signal to the voltage and current signals measured at the battery in real-time. Based
on the experimental data set obtained from the LiFePO4 battery system, comparison of predicted
and measured results validates that the FDM estimated via the LSSVF method can capture the
power storage/delivery dynamics over a large operation range of the battery and reveal better
prediction performance than standard linear differential equation models with integer derivatives.
It is anticipated that the proposed estimation method is easily implemented in a BMS to determine
and predict the power delivery dynamics of a battery.
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