
sensors

Article

A Reliability-Based Method to Sensor Data Fusion

Wen Jiang *, Miaoyan Zhuang and Chunhe Xie

School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China;
zhuang-my@mail.nwpu.edu.cn (M.Z.); xiechunhe@mail.nwpu.edu.cn (C.X.)
* Correspondence: jiangwen@nwpu.edu.cn or jiangwenpaper@hotmail.com; Tel.: +86-29-8843-1267

Received: 21 May 2017; Accepted: 3 July 2017; Published: 5 July 2017

Abstract: Multi-sensor data fusion technology based on Dempster–Shafer evidence theory is widely
applied in many fields. However, how to determine basic belief assignment (BBA) is still an open
issue. The existing BBA methods pay more attention to the uncertainty of information, but do not
simultaneously consider the reliability of information sources. Real-world information is not only
uncertain, but also partially reliable. Thus, uncertainty and partial reliability are strongly associated
with each other. To take into account this fact, a new method to represent BBAs along with their
associated reliabilities is proposed in this paper, which is named reliability-based BBA. Several
examples are carried out to show the validity of the proposed method.
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1. Introduction

In practical applications, there are various interferences in the working environment. Sensor data
fusion technology can combine the related information from multiple sensors to enhance the robustness
and safety of a system [1,2]. Hence, this technique has received significant attention in many fields,
such as target tracking and recognition [3,4], complex network [5–7] and image processing [8–10].
Besides, information gathered from sensors is usually uncertain due to the change of the environment.
It can degrade the performance of the information fusion system. Thus, how to handle uncertain
information is a vital issue in the sensor fusion system. To solve this problem, many theories are
presented by domestic and foreign scholars. Fuzzy sets theory was first introduced by Zadeh [11]
in 1965 as an extension of the classical notion of set. It can be used in a wide range of domains in
which information is incomplete or imprecise [12–14]. Dempster–Shafer evidence theory (evidence
theory) acts as the pioneer in data fusion algorithms, which was proposed by Dempster [15] and
extended by Shafer [16] subsequently. It is capable of managing epistemic and aleatoric uncertainty
due to its framework. Possibility theory was introduced in 1978 by Zadeh [17]. It describes reasonably
the meaning of information, especially the meaning of incomplete information within a possibilistic
framework [18–21], which could be seen as the theory interconnecting fuzzy sets and evidence theory.

Within these theories, evidence theory has a good performance to process the uncertain
information without the prior probability, which contributes to its wide application [22,23]. However,
counter-intuitive results may be obtained when dealing with highly conflicting evidence. A famous
example was illustrated by Zadeh [24]. Since then, many methods have been proposed to address
this issue [25–27]. Martin et al. [28] proposed a conflict measures of a group of experts based on
the distance of basic belief assignments. Smarandache et al. [29] presented a new normalization
of a measure called contradiction to characterize the degree of discord or conflict inside a body of
evidence. Martin [30] defined a conflict measure to quantify how the focal elements of two mass
functions are included together. Deng et al. [31] considered a biological and evolutionary perspective
to study the combination of evidences. Another open issue in evidence theory is how to determine
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the basic belief assignment (BBA). So far, many methods to generate BBA have been put forward.
Denoeux [32] determined BBA by minimizing the mean squared differences between the classifier
outputs and target values. Xu et al. [33] calculated an interval BBA from this matching degree by
the modified Latin hypercube sampling Monte Carlo technique. Tabassian et al. [34] determined BBA
in which the class memberships of training data are subject to ambiguity. A BBA method based on
probability families encoded by possibility distributions and belief functions is presented by Baudrit
and Dubois [35]. Mönks et al. [36,37] defined a fuzzy basic belief assignment (µBBA) based on α-cut of
fuzzy membership.

Comparing with the µBBA, the idea of the proposed BBA determination method is similar to
the µBBA method to some extent. We both use the fuzzy membership function to obtain the degree
of membership to the respective propositions, and the degree of membership is applied as BBA.
However, the proposed method is still very different from the µBBA method in some aspects. First,
the BBA of the µBBA method is defined in the real line. Namely, the determination of BBA is
the determination of the possibility of sensor signal belonging to each interval proposition, which is
the determination of value ranges. The BBA of the proposed method is defined in categorical
data. Namely, the determination of the sensor signal is the determination of the category. Besides,
in the proposed method, the fuzzy membership function is used to model the feature of each
category proposition. However, in the µBBA method, the fuzzy membership function is used to
represent the knowledge of possibility, and the proposition is modeled by an interval. Hence,
the proposed method and the µBBA method are different. They are applicable to the different
application backgrounds.

In reality, information is often not just uncertain, but also partially reliable. If we only consider
one of them, then the whole complexity of real-world information cannot completely be covered,
which may cause the incorrect fusion results. Hence, reliability evaluation is indispensable in practical
applications [38,39]. Guo et al. [40] presented a new framework for sensor reliability evaluation
in classification problems based on evidence theory. Yuan et al. [41] took the static reliability and
dynamic reliability into consideration to handle the conflicting evidence. However, the reliability of
these methods is measured from the support degree (consistency) among BBA. Namely, the reliability
is obtained based on the given BBA, rather than from the information sources, which may lose part of
the source information. Glock et al. [42] used the concepts of majority observation and consistency to
monitor the sensor reliability based on the possibilistic framework. Ehlenbröker et al. [43] proposed a
method to generate a consistency-based reliability assessment for sensors, which is utilized to detect
sensor defects based on groups of sensors instead combining all sensors at once. In the two reliability
methods, the whole measure of reliability is time dependent. Besides, the static reliability is a prior
reliability based on expert knowledge, and the dynamic reliability considers its former reliability and
the consistency of observations. Comparing with that, the measure of reliability is not time dependent
in this paper. The reliability is obtained based on the measure of sensor capability to distinguish
the different targets. The capability to discriminate the difference classes is large under a certain
attribute, and the reliability of the generated BBA is larger under this attribute.

The existing BBA methods pay more attention to the uncertainty of information, but do not
simultaneously consider the reliability of information sources. In fuzzy sets theory, Zadeh [44]
proposed the concept of the Z-number in 2011, which is an ordered pair of fuzzy numbers denoted by
Z = (A, B). The first component A is a fuzzy measurement of the uncertainty. The second component
B is a measurement of the reliability of A. The Z-number can simultaneously describe the reliability
of information sources. Originating from the idea of the Z-number, a new method to represent BBAs
along with their associated reliability is proposed in this paper, which is named reliability-based BBA.
Reliability-based BBA (BBA, R) is an ordered pair; its first component BBA is a mass function, and
the second component R is a measurement of the reliability of the first component BBA.
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The rest of this paper is organized as follows. The relevant concepts of evidence theory and
pignistic probability are briefly recalled in Section 2. In Section 3, a reliability-based BBA is proposed.
In Section 4, this method is compared with other methods by several examples. The conclusion is
presented in Section 5.

2. Preliminaries

In this section, the relevant concepts of evidence theory and pignistic probability are briefly recalled.

2.1. Dempster–Shafer Evidence Theory

Evidence theory was introduced by Dempster [15] and then developed by Shafer [16]. It includes
the following concepts: frame of discernment, mass function and Dempster’s combination rule, etc.
These concepts contribute to its good performance in handling the uncertainty information [45–47].

2.1.1. Frame of Discernment

Let Θ be a set of N mutually-exclusive and collectively-exhaustive hypotheses, defined as:

Θ = {θ1, θ2, · · · , θi, · · · , θN} (1)

where Θ is called a frame of discernment. The power set of Θ is composed with 2Θ, namely:

2Θ = {∅, {θ1}, · · · {θN}, {θ1, θ2}, · · · , {θ1, θ2, · · · θi}, · · · , Θ} (2)

where ∅ is denoted as the empty set. The N subsets containing only one element each are called
the singleton subset proposition; the subsets containing more than one element each are called the
compound subset proposition.

2.1.2. Mass Function

A mass function m is a mapping from 2Θ to [0, 1], formally defined as:

m : 2Θ → [0, 1], (3)

which satisfies the following conditions [16]:
∑

A⊂2Θ

m(A) = 1

m(∅) = 0.
(4)

The mass function m is also called the BBA function. Any subset A of 2Θ, such that m(A) > 0,
is called a focal element.

2.1.3. Dempster’s Combination Rule

Suppose m1 and m2 are two mass functions in the same frame of discernment. Dempster’s
combination rule, which is denoted as m = m1 ⊕m2, is defined as follows [15]:

m(A) =


∑

B∩C=A
m1(B)m2(C)

1− k
, A 6= ∅

0, A = ∅

(5)

where:
k = ∑

B∩C=∅
m1(B)m2(C). (6)
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Here, k is regarded as a measure of conflict between m1 and m2. The value of k is larger, and the
conflict between the evidence is larger.

2.1.4. Discounting

Assuming that a BBA has a support degree of α, where 0 ≤ α ≤ 1, then this BBA is discounted by
the following discounting rule [16]:{

mα(A) = α×m(A) ∀A ⊂ 2Θ

mα(Θ) = α×m(Θ) + (1− α)
(7)

where A is any subset of the power set of the frame of discernment Θ.

2.2. Pignistic Probability

The pignistic probability function is introduced by Smets and Kennes [48] for decision making.
Its procedure corresponds to the insufficient reason principle: if you need to build a probability
distribution on n elements, given a lack of information, give a probability 1/n to each element. This
procedure is repeated for each mass m. Let BetP be the pignistic probability distribution so derived.
For all propositions A ∈ Θ,

BetP(A) = ∑
A⊆B⊆2Θ

1
|B| ·

m(B)
1−m(∅)

(8)

where ∅ is denoted as the empty set. B is the proposition in mass function m, and |B| is the cardinality
of B.

3. The Proposed Method

In this section, the method of generating reliability-based BBA is given in detail. As shown in
Figure 1, the method is expounded from five parts. In the first part, the models of training samples are
built using the Gaussian membership functions. In the second part, according to the matching degree
between the test sample and the attribute model, the first component BBA is generated, which is based
on a previous work in the literature [49]. In the third part, the second component R (reliability of
BBA) is measured, where both the similarity among classes under a certain attribute (static state) and
the distance between the test sample and the models (dynamic state) are taken into account. The main
contribution of this paper focuses on this part. Then, a reliability-based BBA (BBA, R) is obtained.
Each (BBA, R) is discounted by the obtained reliability. Finally, these reliability-based BBAs are fused
based on Dempster’s combination rule. At the stage of modeling of sensor information, the uncertainty
and the reliability of the information source are simultaneously considered in the proposed method,
which can obtain a more adequate construction for the description of real-world information.
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Figure 1. Flowchart of the proposed method.

3.1. The Modeling of Each Attribute

Due to the change of environment, the sensor data have usually a certain degree of fuzziness.
In this case, the membership function can be used to represent the sample feature. Besides,
there are some interruptions in the working process of the sensor, such as the mechanical noise
and electromagnetic waves. In this case, the probability density function of the measured value of
the same physical quantity is generally regarded as a form of Gaussian distribution. The Gaussian
distribution possesses the following advantages [50]: first, if the error can be seen as the superposition
of many independent random variables, then the error is supposed to have the form of the Gaussian
distribution based on the central limit theorem. Second, many of the probability distributions of
random variables in production and scientific experiments can be approximately described by the
Gaussian distribution. Hence, the modeling of the training samples is built based on the Gaussian
membership function in this paper.

Assuming that X is a sample space of the training set, then the Gaussian membership function of
each attribute is defined as follows:

µ(x) : X → [0, 1], x ∈ X.

µ(x) can be gained by the following steps:

1. Suppose that there are n classes, namely the frame of discernment Θ = {θ1, θ2, · · · , θn}. Each class
θi (i = 1, 2, · · · , n) has k attributes.

2. For the training samples of class θi in the j-th attribute, the mean value Xij and the standard
deviation σij are calculated respectively as follows:

Xij =
1
N

N

∑
l=1

xijl ,

σij =

√√√√ 1
N − 1

N

∑
l=1

(xijl − Xij)2,

(9)

where i = 1, 2, · · · , n and j = 1, 2, · · · , k. N is the training sample size of class θi. xijl is the attribute
value of the j-th attribute from the l-th training sample in class θi.
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3. The Gaussian membership function of the j-th attribute of class θi is generated as follows:

µ
j
i(x) = exp[−

(x− Xij)
2

2σ2
ij

] (10)

where −3σij ≤ x ≤ 3σij, i = 1, 2, · · · , n and j = 1, 2, · · · , k.

3.2. Reliability-Based BBA Generation Method

In this section, a reliability-based BBA is introduced from two parts: one is the determination of
BBA; another is the reliability measurement of BBA.

3.2.1. The Determination of BBA

In this section, a nested structure BBA function is introduced. As described in Figure 2, a singleton
subset proposition is modeled by a Gaussian membership function. For example, the singleton subset
proposition {A} is produced by the membership function µA(x). The proposition with two elements
is represented by the intersection of two singleton subset propositions. For instance, the compound
subset proposition with two elements {AB} can be constructed as follows:

µAB(x) = min(µA(x), µB(x)). (11)

Namely, {AB} is defined by the intersection µAB(x) of {A} with {B}. Further, a compound
subset proposition with three elements can be constructed by the intersection among three singleton
subset propositions. For example, {ABC} can be constructed as follows:

µABC(x) = min(µA(x), µB(x), µC(x)). (12)
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Figure 2. The modeling of the singleton subset and compound subset.

Suppose that G(G ⊂ 2Θ) is a proposition and t is the feature information of a test sample under
a certain attribute. The matching degree between t and G implies the plausibility of this test sample
belonging to this proposition, which is defined as follows:

Pl(G|t) = µG(x) |x=t (13)

where G can be a singleton subset proposition or a compound subset proposition. Equation (13)
indicates that the plausibility is determined by the intersection between functions µG(x) and x = t.
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That is, the plausibility of a test sample belonging to these propositions {A}, {AB} and {ABC} is
denoted respectively as follows:

Pl(A|t) = µA(x) |x=t,

Pl(AB|t) = µAB(x) |x=t,

Pl(ABC|t) = µABC(x) |x=t.

(14)

Then, the plausibility function, which measures the matching degree between the test sample
and class proposition, is used to determinate BBA in this paper. Note that when the plausibility
of a singleton subset proposition is equal to the plausibility of a compound subset proposition,
this plausibility is only assigned to the compound subset proposition as its BBA. For example, as shown
in Figure 3, for the test sample x, the plausibility of this test sample belonging to each proposition can
be given as:

Pl(B|t) = µB(x) |x=7 = p2,

Pl(C|t) = µC(x) |x=7 = p1,

Pl(BC|t) = µBC(x) |x=7 = p2,

Pl(A|t) = Pl(AB|t) = Pl(AC|t) = Pl(ABC|t) = 0

Then, the BBA of each proposition is obtained as follows:

m(C) = Pl(C|t) = p1,

m(BC) = Pl(BC|t) = p2,

m(A) = m(B) = m(AB) = m(AC) = m(ABC) = 0

where since Pl(B|t) = Pl(BC|t) = p2, the plausibility p2 is assigned to the compound subset
proposition BC, namely m(BC) = p2, but m(B) = 0.
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Figure 3. The determination of BBA.

Considering that the cumulative sum of the above gained BBAs may not be equal to one,
the following rules are given to normalize BBAs: if the total sum is greater than one, these BBAs are
normalized; if the total sum is less than one, the redundancy belief value 1−∑ BBA is assigned to the
universal set Θ, namely that is assigned to the unknown.
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3.2.2. The Measurement of the Reliability of BBA

As shown in Figure 4, there exist two kinds of potential possibility of false classification: one is
that class A is incorrectly recognized as class B, which is defined as P(B | A); the other is that class B
is incorrectly recognized as class A, which is defined as P(A | B). The potential possibility leads to the
generated BBA being not wholly reliable. This issue is not considered in the existing BBA methods.
To address this issue, a method of measuring the BBA reliability is proposed in this paper.
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Figure 4. The overlapping area of the static attribute model.

1. The static reliability index based on the attribute model:

Assume there are two kinds of class A and B; from Figure 4, we can know that if a test sample
comes from class A and its value locates in the range from c to d, the possibility of the false BBA
P(B | A) =

∫ d
c µA(x)dx/

∫ d
a µA(x)dx. If a test sample comes from class B and its value locates in

the range from b to c, the possibility of the false BBA P(A | B) =
∫ c

b µB(x)dx/
∫ e

b µB(x)dx. Hence,

the total error rate of BBA is P = P(B | A) + P(A | B). Namely, under a certain model (
∫ d

a µA(x)dx and∫ e
b µB(x)dx are invariable), if the overlapping area

∫ d
c µA(x)dx or

∫ c
b µB(x)dx is larger, the similarity

among classes is larger, then the possibility of generating the false BBA is larger, and vice versa.
As analyzed above, a method of measuring the reliability of BBA is proposed based on the similarity
among the attribute model, which is detailed as follows.

In the attribute j(j = 1, 2, · · · , k), the similarity between Classes 1 and 2 is defined as:

simj
12 = sim(µ

j
1(x), µ

j
2(x)) =

∫
µ

j
12(x)dx∫

µ
j
1(x)dx +

∫
µ

j
2(x)dx−

∫
µ

j
12(x)dx

(15)

where µ
j
1(x) and µ

j
2(x) are the membership functions of the j-th attribute of Class 1 and Class 2,

respectively. µ
j
12(x) is the j-th attribute’s membership function of the overlapping area between Class

1 and Class 2, namely the membership function of the compound subset {12}.
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Then, a similarity matrix of the j-th attribute, SMj, is obtained as follows:

SMj =

µ
j
1 (x) µ

j
2 (x) · · · µ

j
n (x)

µ
j
1 (x)

µ
j
2 (x)

...

µ
j
n (x)



1 simj
12 · · · simj

1n

simj
21 1 · · · simj

2n

...
...

. . .
...

simj
n1 simj

n2 · · · 1


(16)

where simj
il(i, l = 1, 2, · · · , n) is the similarity between class i and class l in the j-th attribute.

Finally, based on the static model of the j-th attribute, the reliability of BBA generated from the
j-th attribute is denoted as follows:

Rs
j = ∑

i<l
(1− simj

il) (17)

where j = 1, 2, · · · , k and simj
il(i, l = 1, 2, · · · , n) is the similarity between class i and class l in the j-th

attribute. Obviously, Rs
j implies that the larger the similarity, the lower the reliability of BBA generated

from this attribute model.

2. The dynamic reliability index based on the test samples:

The static reliability index shows that the overlapping area among classes is larger, the similarity
is larger, the possibility of generating the false BBA is larger, then the reliability of the generated BBA
is smaller. This index can reflect that the reliability of BBA is affected by some static factors, such as
the similarity among classes. However, the reliability of BBA is also affected by the test samples.
For example, as shown in Figure 5a, although classes B and C have a large overlapping area, it is
almost impossible that the test sample x1 from class A is incorrectly classified as class B or C. In this
case, the overlap degree between class B and C has little negative influence on the reliability of the
generated BBA; whereas, in Figure 5b, the test sample x2 from class C is easily incorrectly classified as
class B. In this case, the overlap degree between classes B and C has a large negative influence on the
reliability of the generated BBA. As analyzed above, the reliability of BBA is related to the test samples.
To reflect this influence, a risk distance d is introduced in this section. It is denoted as the distance
between the test sample and the overlapping area among attribute models. If the distance is larger, the
influence of the overlapping area is smaller, the risk of the incorrect classification is smaller, then the
reliability of the generated BBA is larger, and vice versa. The risk distance is produced as follows.

In the attribute j(j = 1, 2, · · · , k), pj
12 is the maximum of the intersection between Class 1 and

Class 2, namely the vertex of the overlapping area between Class 1 and Class 2. In this section, pj
12

is taken as the reference point of this overlapping area. Hence, the distance between the test sample
xj and the reference point pj

12 can be calculated to represent the risk distance. This reference point is
defined as:

pj
12 = sup min(µ1(x)j, µ2(x)j). (18)

where µ1(x)j and µ2(x)j are the Gaussian membership functions of Class 1 and Class 2 in the j-th
attribute, respectively. Then, a vector Pj containing all reference points of the overlapping area among
class i(i = 1, 2, · · · , n) in the j-th attribute is obtained as follows:

Pj =
[

pj
12 · · · pj

1n pj
23 · · · pj

2n · · · pj
(n−1)n

]
(19)
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In the j-th attribute, the risk distance between the test sample xj and the reference points pj
(n−1)n

of the overlapping area between the classes µ
j
n−1(x) and µ

j
n(x) is formulated as:

dj
(n−1)n = d(xj, pj

(n−1)n) =
|xj − pj

(n−1)n|
Dj (20)

where Dj represents the maximal interval comprised by all classes. Then, distance vector D∗j of the j-th
attribute is given as follows:

D∗j =
[

dj
12 · · · dj

1n dj
23 · · · dj

2n · · · dj
(n−1)n

]
(21)

Finally, the dynamic reliability index based on the test samples of the j-th attribute is denoted
as follows:

Rd
j = e

n
∑

l=2
dj
(l−1)l (22)

where dj
(l−1)l is the distance between the test sample xj and the reference points pj

(l−1)l of

the overlapping area between class µ
j
l−1(x) and µ

j
l(x) in the j-th attribute. Obviously, Rd

j implies
that the larger the risk distance, the larger the reliability of BBA generated from this attribute.
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Figure 5. Reliability measure based on the dynamic test samples.

3. Comprehensive reliability measure:

Based on the above analysis, a method of measuring the BBA reliability is proposed. This method,
which considers the comprehensive reliability based on the attribute model and the test samples,
is more reasonable and effective. It is denoted as follows:

Rj = Rs
j × Rd

j (23)

where Rs
j and Rd

j are separately the static reliability index and the dynamic reliability index in the j-th
attribute, which can be gained using Equations (17) and (22), respectively.

Suppose that there are K attributes of each class, the reliability of the generated BBA in the j-th
attribute are normalized as:

R∗j =
Rj

max(Rk)
(24)

where k = 1, 2, · · · , K.
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According to Section 3.2.1 and Section 3.2.2, both the first component BBA and the second
component R of reliability-based BBA can be acquired. Finally, the proposed reliability-based BBA
(BBA, R) is obtained.

3.3. Sensor Data Fusion

In this paper, the reliability-based BBA is first translated into the classical BBA based on
the discounting method [16]. After that, Dempster’s combination rule can be used to fuse these BBAs.

Assuming that in the frame of discernment Θ = {θ1, θ2, · · · , θn}, there are k reliability-based
BBAs (BBAj, Rj), (j = 1, 2, · · · , k). Based on the discounting method, the BBAs generated from sensors
are discounted as follows: {

mR
j (A) = Rj ×mj(A) ∀A ⊂ 2Θ

mR
j (Θ) = Rj ×mj(Θ) + (1− Rj)

(25)

where Rj is the reliability of BBAj of the j-th attribute.
Eventually, these reliability-based BBAs are fused using Dempster’s combination rule.

The maximum pignistic probability is taken as the decision-making criterion in this paper. Hence,
the final mass function is transformed to pignistic probability, and the final decision-making can
be done.

4. Numerical Example

To evaluate the validity of the reliability-based BBA, several experiments of two datasets and
a fault diagnosis are performed in this section.

4.1. Experiments on Two Datasets: Five-Fold Cross-Validation

In this section, two kinds of datasets, including Iris and Wine, are selected from the UCI databases
(UCI Machine Learning Repository: http://archive.ics.uci.edu/ml/datasets.html.) to evaluate
the proposed method. Within these, the Iris dataset contains three classes of 50 samples each, and
each class has four attributes, which is the well-known database in pattern recognition. The Wine
dataset contains three classes, and each class has 13 attributes. First of all, the proposed method is
compared with the method, which uses the same BBA method, but does not consider the reliability of
BBA. The comparison results of five-fold cross-validation are shown in Figure 6.
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Figure 6. The comparison of considering the reliability or not.

http://archive.ics.uci.edu/ml/datasets.html
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The above results show that after considering the reliability of BBA, the recognition rates of two
datasets are all increased to some extent. Namely, the proposed method that measures the reliability of
BBA is valid and reasonable.

To further evaluate this method, a comparison experiment between our method and other
classifiers is carried out. Here, we consider the following three kinds of classifiers: support vector
machine with radial basis function (SVM-RBF), decision tree (REPTree) and naive Bayesian (NB).
Within these, SVM and NB are both the top ten data-mining algorithms [51]. REPTree is also a
well-known machine-learning algorithm. The comparison results of five-fold cross-validation are
shown in Figure 7.
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Figure 7. The comparing results between our method and other classifiers.

From the above experimental results, it can be found that: in the Iris dataset, the recognition rates
of the proposed method and the classical classifiers are greater than 90%, namely they are all effective in
this dataset. In the Wine dataset, the recognition rate of our method is 95.66%; NB is 85.27%; REPTree is
90.36%; and SVM-RBF is 37.18%. This shows that the proposed method has competitive performances
contrasting with these selected classifiers. What is more, the reliability of BBA is measured at the stage
of BBA generation, which is more reasonable.

4.2. An Application Example of Fault Diagnosis

To evaluate the validity of this method in engineering applications, a case study of the fault
diagnosis of motor rotor is executed. There are three kinds of fault: F1 = {Rotorunbalance},
F2 = {Rotormisalignment} and F3 = {Pedestallooseness}. Three vibration acceleration sensors and
a vibration displacement sensor are placed in different installation positions to collect the vibration
signal. Vibration displacement and acceleration vibration frequency amplitudes at the frequencies
of 1×, 2× and 3× are taken as the fault feature variables. The relevant data are acquired from the
literature [52], which is cited in the Appendix. The method is compared with the method that does not
consider the reliability of BBA and other classifiers, respectively. The comparison results of five-fold
cross-validation are shown in Table 1.
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Table 1. The comparing the results of fault diagnosis.

Methods
Classes

Overall Average
F1 F2 F3

Not considering reliability 99.00% 95.50% 100% 98.17%

Support vector machine 94.15% 92.86% 100% 95.67%
Decision tree 99.05% 98.68% 99.78% 99.17%

Naive Bayesian 98.05% 96.94% 100% 98.33%

The proposed method 100% 100% 100% 100%

The above experiments can evaluate the rationality and the effectiveness of the presented method
well. The advantages of our method are concluded as follows:

• Based on the idea of the Z-number, an ordered pair (BBA, R) is proposed to represent BBA along
with its associated reliability. The first component BBA is a mass function; the second component
R is a measurement of the reliability of the first component. According to this ordered pair,
the reliability of BBA can be measured well at the stage of BBA generation.

• In the process of measuring the reliability of BBA, the information about two things is taken
into account. One is the similarity among classes (static information). Another is the risk
distance between the test samples and the overlapping area among classes (dynamic information).
This makes the results truer and more credible.

• The proposed method is based on a feasible method of measuring the reliability of BBA, which
can be replaced with other measure methods for different applications. Namely, this method is
flexible and easy to extend in many applications.

5. Conclusions

In the multi-sensors data fusion based on evidence theory, how to determine BBA is an open
issue. In this paper, a novel method named the reliability-based BBA is proposed. Within this method,
first, the models of training samples are built using the Gaussian membership functions. Second, the
BBA of every test sample is generated based on the matching degree between the test sample and
the attribute model. Then, the reliability of BBA is measured according to both the similarity among
classes and the risk distance between the test samples and the overlapping area among classes. Finally,
a reliability-based BBA can be generated. Several performed experiments verify that the proposed
method is effective. In the future, we will try to apply the proposed method to more practical
applications and research a new combination rule for reliability-based BBA.
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Appendix A. Experimental Data of Fault Diagnosis

There are three kinds of faults in a motor rotor: F = {X, Y, Z} =

{Rotorunbalance, Rotormisalignment, Pedestallooseness}, which has four fault feature variables.
At the same time interval, each fault feature of each fault is continuously observed 40 times, which
is taken as a group of observations. A total of five groups is measured in each fault feature of each
fault. Hence, i = 1, 2, 3, 4 respectively represent four fault feature variables: displacement, acceleration
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frequency of 1×, 2× and 3×. j = 1, 2, 3, 4, 5 respectively represent the group numbers of the measured
data. Five groups of observations of each feature variables of each fault are shown in Table A1.

Table A1. Experimental data of fault diagnosis [52].

Groups Observations

X11

0.1663 0.1590 0.1568 0.1485 0.1723 0.2006 0.1903 0.1908 0.1986 0.1843
0.1785 0.1610 0.1579 0.1511 0.1532 0.1647 0.1628 0.1646 0.1634 0.1642
0.1648 0.1640 0.1674 0.0661 0.1659 0.1650 0.1633 0.1632 0.1604 0.1542
0.1555 0.1562 0.1540 0.1564 0.1557 0.1542 0.1546 0.1571 0.1537 0.1536

X12

0.154 0.1518 0.1537 0.1548 0.1542 0.1538 0.1545 0.1537 0.1571 0.1560
0.1584 0.1552 0.1586 0.1574 0.1569 0.1565 0.1551 0.1585 0.1585 0.1593
0.1548 0.1558 0.1547 0.1593 0.1532 0.1632 0.1575 0.159 0.1594 0.1541
0.165 0.1674 0.1651 0.1604 0.1787 0.1818 0.1820 0.1656 0.1658 0.1644

X13

0.1647 0.1647 0.1654 0.1651 0.1656 0.1653 0.1652 0.1652 0.1648 0.1649
0.1653 0.1650 0.1650 0.1652 0.1653 0.1652 0.1648 0.1647 0.1646 0.1645
0.1651 0.1652 0.1652 0.1649 0.1650 0.1643 0.1640 0.1639 0.1641 0.1633
0.1632 0.1629 0.1630 0.1630 0.1634 0.1631 0.1634 0.1629 0.1632 0.1629

X14

0.1630 0.1629 0.1627 0.1626 0.1622 0.1624 0.1627 0.1618 0.1614 0.1617
0.1621 0.1615 0.1618 0.1611 0.1614 0.1610 0.1612 0.1611 0.1616 0.1612
0.1612 0.1613 0.1623 0.1616 0.1621 0.1613 0.1611 0.1610 0.1610 0.1613
0.1615 0.1616 0.1618 0.1616 0.1614 0.1612 0.1606 0.1614 0.1619 0.1614

X15

0.1609 0.1610 0.1612 0.1615 0.1609 0.1606 0.1604 0.1606 0.1605 0.1601
0.1604 0.1608 0.1610 0.1603 0.1599 0.1601 0.1602 0.1599 0.1598 0.1598
0.1598 0.1596 0.1595 0.1593 0.1594 0.1598 0.1596 0.1597 0.1595 0.1593
0.1598 0.1596 0.1597 0.1595 0.1593 0.1577 0.1580 0.1576 0.1577 0.1579

X21

0.1612 0.1620 0.1612 0.1610 0.1385 0.1222 0.1475 0.1306 0.1210 0.1501
0.1548 0.1577 0.1622 0.1618 0.1621 0.1665 0.1639 0.1652 0.1625 0.1637
0.1645 0.1645 0.1650 0.1649 0.1650 0.1630 0.1493 0.1533 0.1474 0.1460
0.1489 0.1499 0.1495 0.1491 0.1489 0.1503 0.1507 0.1505 0.1477 0.1496

X22

0.1517 0.1496 0.1504 0.1498 0.1528 0.1519 0.1534 0.1516 0.1555 0.1520
0.1512 0.1546 0.1538 0.1551 0.1563 0.1536 0.1543 0.1519 0.1514 0.1520
0.1501 0.1514 0.1483 0.1499 0.1502 0.1550 0.1537 0.1507 0.1557 0.1537
0.1556 0.1545 0.1529 0.1500 0.1380 0.1343 0.1346 0.1544 0.1458 0.1424

X23

0.1464 0.1460 0.1446 0.1448 0.1476 0.1464 0.1434 0.1432 0.1450 0.1420
0.1448 0.1452 0.1456 0.1462 0.1464 0.1464 0.1444 0.1440 0.1422 0.1442
0.1470 0.1478 0.1468 0.1482 0.1472 0.1462 0.1478 0.1494 0.1488 0.1496
0.1480 0.1476 0.1502 0.1496 0.1488 0.1488 0.1484 0.1534 0.1490 0.1486

X24

0.1466 0.1460 0.1438 0.1458 0.1488 0.1466 0.1494 0.1502 0.1486 0.1488
0.1512 0.1490 0.1470 0.1478 0.1484 0.1490 0.1474 0.1456 0.1464 0.1446
0.3468 0.1484 0.1478 0.1486 0.1470 0.1448 0.1460 0.1458 0.1458 0.1456
0.1452 0.1470 0.1470 0.1458 0.1450 0.1456 0.1462 0.1442 0.1464 0.1468

X25

0.1484 0.1474 0.1488 0.1460 0.1462 0.1464 0.1452 0.1450 0.1438 0.1434
0.1438 0.1438 0.1436 0.1436 0.1432 0.1412 0.1428 0.1418 0.1422 0.1422
0.1432 0.1406 0.1420 0.1402 0.1410 0.1418 0.1432 0.1450 0.1418 0.1424
0.1412 0.1408 0.1412 0.1390 0.1412 0.1398 0.1406 0.1394 0.1392 0.1382

X31

0.1221 0.1219 0.1207 0.1215 0.1222 0.1296 0.1235 0.1295 0.1280 0.1233
0.1218 0.1159 0.1163 0.1195 0.1190 0.1271 0.1247 0.1232 0.1233 0.1237
0.1210 0.1227 0.1233 0.1222 0.1252 0.1230 0.1049 0.1033 0.0899 0.1003
0.1044 0.1060 0.1064 0.1042 0.1072 0.1071 0.1070 0.1070 0.1041 0.1049

X32

0.1068 0.1063 0.1069 0.1057 0.1091 0.1061 0.1094 0.1067 0.1109 0.1111
0.1112 0.1096 0.1074 0.1085 0.1109 0.1116 0.1110 0.1113 0.1106 0.1110
0.1091 0.1080 0.1044 0.1098 0.1084 0.1102 0.1078 0.1087 0.1111 0.1116
0.1124 0.1128 0.1110 0.1078 0.1101 0.1115 0.1131 0.1108 0.1111 0.1079
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Table A1. Cont.

Groups Observations

X33

0.1105 0.1092 0.1074 0.1096 0.1055 0.1076 0.1003 0.1031 0.1040 0.1046
0.1041 0.1021 0.1041 0.1053 0.1057 0.1038 0.1029 0.1037 0.1012 0.0997
0.1020 0.1020 0.0990 0.1049 0.1066 0.1065 0.1098 0.1102 0.1076 0.1116
0.1097 0.1150 0.1120 0.1078 0.1106 0.1075 0.1061 0.1090 0.1098 0.1105

X34

0.1105 0.1081 0.1075 0.1059 0.1097 0.1105 0.1086 0.1085 0.1095 0.1084
0.1093 0.1113 0.1122 0.1139 0.1140 0.1129 0.1119 0.1107 0.1119 0.1137
0.1128 0.1122 0.1104 0.1129 0.1130 0.1143 0.1132 0.1132 0.1115 0.1111
0.1123 0.1124 0.1117 0.1120 0.1130 0.1127 0.1158 0.1145 0.1138 0.1144

X35

0.1160 0.1137 0.1159 0.1164 0.1158 0.1165 0.1167 0.1160 0.1155 0.1175
0.1170 0.1175 0.1168 0.1191 0.1190 0.1191 0.1190 0.1211 0.1196 0.1187
0.1191 0.1202 0.1200 0.1205 0.1194 0.1193 0.1195 0.1180 0.1190 0.1194
0.1197 0.1194 0.1173 0.1187 0.1169 0.1179 0.1184 0.1197 0.1194 0.1196

X41

4.4090 4.3780 4.3430 4.2950 4.2890 4.2890 4.2740 4.1840 4.1820 4.2020
4.2130 4.2240 4.2220 4.2250 4.2160 4.2220 4.2210 4.2410 4.2200 4.2180
4.2260 4.2430 4.2390 4.2370 4.2270 4.2300 4.2210 4.2200 4.2430 4.6660
4.4540 4.4370 4.4380 4.4410 4.4400 4.4350 4.4330 4.4430 4.4460 4.4420

X42

4.4480 4.4380 4.4420 4.4320 4.4270 4.4320 4.4220 4.4320 4.4240 4.4270
4.4590 4.4240 4.4650 4.4180 4.4200 4.4180 4.4190 4.4230 4.4200 4.4460
4.4210 4.4040 4.4120 4.4000 4.4100 4.4150 4.4070 4.4120 4.3920 4.4020
4.3930 4.3920 4.3860 4.3890 4.3820 4.3790 4.4120 4.3750 4.3740 4.3790

X43

4.3680 4.3840 4.3800 4.3690 4.3840 4.3830 4.3830 4.3820 4.3830 4.3850
4.3800 4.3800 4.3710 4.3720 4.3740 4.3890 4.3720 4.3670 4.3750 4.3650
4.3600 4.3570 4.3640 4.3570 4.3550 0.3570 4.3480 4.3470 4.3470 4.3400
4.3460 4.3360 4.3190 4.3300 4.3480 4.3500 4.3500 4.3460 4.3500 4.3500

X44

4.4000 4.3440 4.3410 4.3420 4.3510 4.3450 4.3370 4.3370 4.3340 4.3330
4.3330 4.3210 4.3250 4.3180 4.3300 4.3100 4.3190 4.3160 4.3160 4.3150
4.3090 4.3040 4.3060 4.3050 4.3010 4.3000 4.2960 4.2940 4.2860 4.2860
4.2890 4.2940 4.2900 4.3070 4.2890 4.2800 4.2820 4.2880 4.2810 4.2980

X45

4.3000 4.2930 4.2980 4.3303 4.2990 4.2870 4.3030 4.2910 4.2950 4.3050
4.3020 4.3120 4.3250 4.3090 4.3240 4.3210 4.3240 4.3230 4.3270 4.3290
4.3230 4.3290 4.3290 4.3350 4.3210 4.3240 4.3270 4.4620 4.4120 4.3740
4.3960 4.3730 4.3550 4.3540 4.3500 4.3430 4.3470 4.3550 4.3380 4.3310

Y11

0.1666 0.1666 0.1670 0.1696 0.1665 0.1671 0.1652 0.1663 0.1656 0.1656
0.1659 0.1655 0.1640 0.1634 0.1631 0.1618 0.1617 0.1615 0.1597 0.1592
0.1584 0.1585 0.1575 0.1578 0.1573 0.1567 0.1834 0.1825 0.1827 0.1822
0.1828 0.1817 0.1820 0.1823 0.1808 0.1818 0.1814 0.1816 0.1808 0.1807

Y12

0.1809 0.1794 0.1799 0.1799 0.1788 0.1795 0.1785 0.1785 0.1780 0.1777
0.1778 0.1777 0.1766 0.1767 0.1761 0.1770 0.1757 0.1765 0.1755 0.1755
0.1746 0.1757 0.1741 0.1743 0.1741 0.1732 0.1736 0.1723 0.1730 0.1708
0.1708 0.1702 0.1691 0.1686 0.1683 0.1676 0.1668 0.1670 0.1649 0.1644

Y13

0.1637 0.1639 0.1655 0.1641 0.1643 0.1641 0.1625 0.2038 0.2037 0.2033
0.2014 0.2028 0.2022 0.2026 0.2014 0.2013 0.2007 0.2012 0.1999 0.2012
0.1998 0.1999 0.1988 0.1992 0.1988 0.1985 0.1977 0.1976 0.1979 0.1981
0.1966 0.1973 0.1979 0.1984 0.1973 0.1969 0.1963 0.1960 0.1953 0.1941

Y14

0.1958 0.1952 0.1954 0.1938 0.1940 0.1956 0.1945 0.1937 0.1954 0.1947
0.1950 0.1955 0.1947 0.1956 0.1945 0.1932 0.1942 0.1925 0.1924 0.1934
0.1904 0.1905 0.1909 0.1906 0.1989 0.1898 0.1891 0.1892 0.1886 0.1880
0.1884 0.1890 0.1874 0.1872 0.1880 0.1855 0.1862 0.1866 0.1849 0.1841

Y15

0.1857 0.1844 0.1837 0.1831 0.1835 0.1826 0.1828 0.1834 0.1833 0.1837
0.1822 0.1829 0.1823 0.1807 0.1833 0.1835 0.1832 0.1828 0.1816 0.1820
0.1805 0.1808 0.1803 0.1795 0.1785 0.1794 0.1795 0.1788 0.1786 0.1781
0.1771 0.1775 0.1774 0.1769 0.1780 0.1778 0.1758 0.1740 0.1736 0.1738
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Table A1. Cont.

Groups Observations

Y21

0.3111 0.3124 0.3205 0.3268 0.3225 0.3268 0.3305 0.3245 0.3247 0.3245
0.3300 0.3279 0.3265 0.3221 0.3209 0.3227 0.3196 0.3150 0.3193 0.3182
0.3148 0.3122 0.3133 0.3107 0.3131 0.3071 0.3412 0.3401 0.3357 0.3466
0.3422 0.3390 0.3372 0.3364 0.3398 0.3392 0.3384 0.3383 0.3344 0.3394

Y22

0.3386 0.3342 0.3364 0.3338 0.3381 0.3388 0.3347 0.3348 0.3321 0.3367
0.3367 0.3322 0.3300 0.3309 0.3346 0.3341 0.3335 0.3303 0.3320 0.3317
0.3295 0.3265 0.3299 0.3267 0.3271 0.3253 0.3297 0.3247 0.3243 0.3269
0.3229 0.3211 0.3171 0.3202 0.3170 0.3125 0.3144 0.3165 0.3079 0.3087

Y23

0.3117 0.3095 0.3152 0.3222 0.3171 0.3169 0.3157 0.3480 0.3498 0.3469
0.3447 0.3476 0.3507 0.3470 0.3403 0.3359 0.3412 0.3399 0.3459 0.3449
0.3479 0.3422 0.3446 0.3471 0.3467 0.3461 0.3421 0.3413 0.3416 0.3457
0.3423 0.3439 0.3423 0.3465 0.3405 0.3399 0.3372 0.3387 0.3333 0.3349

Y24

0.3419 0.3436 0.3510 0.3392 0.3354 0.3350 0.3500 0.3354 0.3358 0.3349
0.3385 0.3414 0.3351 0.3394 0.3371 0.3374 0.3370 0.3365 0.3342 0.3389
0.3386 0.3394 0.3374 0.3355 0.3357 0.3312 0.3274 0.3353 0.3351 0.3325
0.3305 0.3314 0.3304 0.3238 0.3315 0.3259 0.3253 0.3308 0.3215 0.3233

Y25

0.3282 0.3208 0.3211 0.3138 0.3144 0.3199 0.3182 0.3196 0.3205 0.3180
0.3166 0.3170 0.3181 0.3139 0.3212 0.3254 0.3238 0.3193 0.3204 0.3168
0.3148 0.3204 0.3146 0.3132 0.3191 0.3164 0.3141 0.3165 0.3137 0.3160
0.3135 0.3137 0.3188 0.3177 0.3193 0.3239 0.3158 0.3236 0.3291 0.3262

Y31

0.2517 0.2634 0.2590 0.2808 0.2869 0.2827 0.2913 0.2909 0.2893 0.2903
0.2999 0.2961 0.2930 0.3040 0.2971 0.3125 0.2968 0.2979 0.2998 0.3003
0.3023 0.2986 0.3008 0.3022 0.3017 0.3218 0.2338 0.2414 0.2510 0.2498
0.2424 0.2451 0.2477 0.2473 0.2494 0.2523 0.2523 0.2496 0.2557 0.2591

Y32

0.2485 0.2534 0.2636 0.2670 0.2661 0.2641 0.2581 0.2637 0.2733 0.2735
0.2644 0.2622 0.2669 0.2713 0.2663 0.2720 0.2753 0.2758 0.2722 0.2755
0.2710 0.2870 0.2820 0.2770 0.2727 0.2761 0.2812 0.2777 0.2880 0.2919
0.2882 0.2784 0.2788 0.2792 0.2799 0.2731 0.2717 0.2851 0.2606 0.2696

Y33

0.2786 0.2774 0.2921 0.2991 0.2982 0.2974 0.2980 0.2015 0.1872 0.1865
0.2016 0.1980 0.1982 0.2022 0.2071 0.2020 0.1882 0.1877 0.2065 0.2057
0.2052 0.2143 0.2135 0.2261 0.2110 0.2077 0.2089 0.2134 0.2161 0.2119
0.2109 0.2130 0.2180 0.2096 0.2102 0.2152 0.2137 0.2110 0.2113 0.2126

Y34

0.2170 0.2130 0.2190 0.2192 0.2112 0.2214 0.2166 0.2137 0.2109 0.2024
0.2117 0.2102 0.2087 0.2050 0.2149 0.2134 0.2067 0.2140 0.2239 0.2153
0.2144 0.2103 0.2145 0.2190 0.2250 0.2137 0.2060 0.2153 0.2132 0.2160
0.2079 0.2047 0.2130 0.2058 0.2174 0.2138 0.2142 0.2138 0.2022 0.2169

Y35

0.2206 0.2133 0.2141 0.2031 0.2073 0.2099 0.2066 0.2052 0.2172 0.2131
0.2140 0.2184 0.2152 0.2099 0.2258 0.2264 0.2273 0.2322 0.2204 0.2248
0.2242 0.2251 0.2222 0.2317 0.2193 0.2262 0.2255 0.2332 0.2299 0.2289
0.2305 0.2398 0.2401 0.2306 0.2365 0.2398 0.2439 0.2595 0.2529 0.2557

Y41

5.3920 5.3260 5.3080 5.2620 5.2800 5.2460 5.1950 5.2280 5.1840 5.1820
5.1590 5.1310 5.0980 4.9840 5.0190 4.9340 4.9260 4.9500 4.9690 4.8960
4.7990 4.8330 4.8220 4.7450 4.7840 4.8260 4.8960 4.8920 4.9120 4.8390
4.8230 4.7960 4.8000 4.8180 4.8240 4.8310 4.8370 4.8720 4.8410 4.8410

Y42

4.8610 4.8220 4.6890 4.7250 4.7070 4.7300 4.6980 4.6810 4.6620 4.7610
4.7460 4.6870 4.7120 4.7080 4.6910 4.5130 4.4670 4.5120 4.5410 4.3910
4.4220 4.5130 4.5950 4.5810 4.5420 4.5400 4.5160 4.5220 4.5180 4.5660
4.5380 4.5450 4.4510 4.4570 4.4810 4.4860 4.4940 4.4690 4.4180 4.4170

Y43

4.3700 4.4000 4.3950 4.3840 4.3740 4.3800 4.3310 4.3230 4.3140 4.2870
4.2300 4.2440 4.2500 4.2200 4.2150 4.2540 4.2100 4.1980 4.2550 4.2210
4.2110 4.2000 4.1810 4.1790 4.1840 4.1570 4.1440 4.1600 4.1150 4.0940
4.1230 4.1280 5.2340 5.2320 5.2110 5.2210 5.2280 5.2060 5.1800 5.1890
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Table A1. Cont.

Groups Observations

Y44

5.1510 5.1240 5.1230 5.1220 5.0830 5.0600 5.0930 5.0750 5.0490 5.0520
5.0150 5.0250 5.0750 5.0150 4.9010 4.9300 4.9080 4.8860 4.8780 4.9040
4.8980 4.8830 4.8510 4.8510 4.8370 4.9340 8.8960 4.8160 4.7640 4.7940
4.8010 4.7670 4.7450 4.7540 4.7710 4.7560 4.7540 4.7360 4.6780 4.6650

Y45

4.6770 4.6610 4.6500 4.6280 4.6440 4.6320 4.6120 4.4620 4.6770 4.6580
4.6290 4.6220 4.6300 4.6140 4.6260 4.6130 4.5850 4.5690 4.5820 4.5500
4.5330 4.5520 4.5040 4.4760 4.5660 4.5280 4.5550 4.5230 4.5190 4.5390
4.5220 4.5210 4.5090 4.4870 4.5270 4.4730 4.4710 4.4900 4.4570 4.4510

Z11

0.3207 0.3213 0.3213 0.3235 0.3322 0.3419 0.3434 0.3440 0.3454 0.3461
0.3474 0.3476 0.3432 0.3468 0.3439 0.3423 0.3440 0.3430 0.3436 0.3420
0.3416 0.3402 0.3373 0.3403 0.3414 0.3423 0.3420 0.3423 0.3425 0.3379
0.3379 0.3391 0.3386 0.3355 0.3352 0.3361 0.3333 0.3333 0.3315 0.3347

Z12

0.3347 0.3320 0.3323 0.3327 0.3329 0.3287 0.3304 0.3312 0.3285 0.3287
0.3309 0.3270 0.3274 0.3285 0.3283 0.3305 0.3274 0.3261 0.3264 0.3251
0.3271 0.3252 0.3275 0.3275 0.3287 0.3270 0.3269 0.3297 0.3266 0.3308
0.3293 0.3304 0.3323 0.3305 0.3305 0.3330 0.3339 0.3342 0.3312 0.3315

Z13

0.3312 0.3301 0.3315 0.3307 0.3315 0.3320 0.3311 0.3327 0.3292 0.3301
0.3315 0.3289 0.3246 0.3267 0.3295 0.3270 0.3238 0.3264 0.3251 0.3264
0.3260 0.3247 0.3224 0.3235 0.3249 0.3230 0.3232 0.3273 0.3249 0.3270
0.3218 0.3244 0.3006 0.3030 0.3041 0.3174 0.3220 0.3196 0.3241 0.3251

Z14

0.3263 0.3266 0.3282 0.3270 0.3290 0.3198 0.3237 0.3229 0.3261 0.3238
0.3259 0.3221 0.3309 0.3271 0.3242 0.3235 0.3240 0.3261 0.3294 0.3287
0.3267 0.3277 0.3263 0.3262 0.3278 0.3276 0.3271 0.3267 0.3289 0.3270
0.3266 0.3299 0.3068 0.3148 0.3322 0.3323 0.3320 0.3336 0.3326 0.3322

Z15

0.3326 0.3317 0.3301 0.3316 0.3336 0.3280 0.3292 0.3297 0.3283 0.3283
0.3264 0.3279 0.3275 0.3294 0.3245 0.3268 0.3261 0.3262 0.3253 0.3272
0.3270 0.3252 0.3284 0.3253 0.3265 0.3277 0.3291 0.3287 0.3256 0.3239
0.3248 0.3261 0.3252 0.3249 0.3254 0.3290 0.3275 0.3274 0.3274 0.3251

Z21

0.2893 0.2863 0.2801 0.2847 0.3271 0.3448 0.3409 0.3346 0.3249 0.3425
0.3360 0.3368 0.3361 0.3411 0.3434 0.3459 0.3460 0.3481 0.3518 0.3495
0.3478 0.3477 0.3506 0.3470 0.3470 0.3501 0.3477 0.3561 0.3489 0.3529
0.3539 0.3544 0.3525 0.3515 0.3560 0.3596 0.3567 0.3616 0.3602 0.3589

Z22

0.3541 0.3561 0.3607 0.3636 0.3614 0.3595 0.3586 0.3575 0.3574 0.3563
0.3601 0.3619 0.3647 0.3599 0.3621 0.3647 0.3557 0.3457 0.3558 0.3509
0.3525 0.3527 0.3484 0.3452 0.3474 0.3438 0.3500 0.3447 0.3429 0.3508
0.3397 0.3375 0.3503 0.3421 0.3421 0.3362 0.3328 0.3409 0.3391 0.3364

Z23

0.3287 0.3323 0.3313 0.3416 0.3315 0.3352 0.3396 0.3349 0.3402 0.3406
0.3472 0.3526 0.3439 0.3462 0.3427 0.3492 0.3507 0.3550 0.3456 0.3522
0.3480 0.3397 0.3474 0.3499 0.3503 0.3365 0.3450 0.3516 0.3506 0.3528
0.3493 0.3546 0.2995 0.3094 0.2950 0.3479 0.3361 0.3394 0.3484 0.3441

Z24

0.3469 0.3380 0.3356 0.3378 0.3385 0.3338 0.3396 0.3345 0.3363 0.3426
0.3333 0.3298 0.3335 0.3339 0.3397 0.3349 0.3357 0.3361 0.3401 0.3382
0.3379 0.3356 0.3309 0.3333 0.3328 0.3330 0.3412 0.3334 0.3264 0.3297
0.3302 0.3318 0.2961 0.3143 0.3616 0.3506 0.3463 0.3446 0.3412 0.3393

Z25

0.3454 0.3396 0.3453 0.3455 0.3517 0.3426 0.3590 0.3516 0.3481 0.3502
0.3440 0.3428 0.3455 0.3404 0.3518 0.3517 0.3389 0.3481 0.3382 0.3530
0.3471 0.3566 0.3554 0.3539 0.3576 0.3536 0.3480 0.3568 0.3567 0.3524
0.3587 0.3578 0.3535 0.3602 0.3565 0.3490 0.3532 0.3541 0.3507 0.3467

Z31

0.1810 0.1864 0.1803 0.1829 0.1605 0.1441 0.1436 0.1412 0.1414 0.1476
0.1502 0.1477 0.1507 0.1469 0.1490 0.1512 0.1461 0.1497 0.1511 0.1488
0.1486 0.1480 0.1493 0.1451 0.1520 0.1537 0.1498 0.1478 0.1471 0.1496
0.1467 0.1443 0.1446 0.1420 0.1454 0.1365 0.1347 0.1373 0.1380 0.1446
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Table A1. Cont.

Groups Observations

Z32

0.1434 0.1380 0.1413 0.1412 0.1452 0.1444 0.1396 0.1364 0.1400 0.1424
0.1408 0.1419 0.1415 0.1393 0.1472 0.1452 0.1387 0.1383 0.1267 0.1326
0.1326 0.1398 0.1283 0.1291 0.1296 0.1282 0.1314 0.1235 0.1283 0.1179
0.1206 0.1285 0.1365 0.1290 0.1290 0.1345 0.1191 0.1275 0.1290 0.1187

Z33

0.1252 0.1210 0.1268 0.1339 0.1333 0.1359 0.1309 0.1362 0.1315 0.1399
0.1387 0.1369 0.1326 0.1381 0.1308 0.1301 0.1322 0.1302 0.1260 0.1241
0.1266 0.1210 0.1298 0.1264 0.1232 0.1250 0.1313 0.1284 0.1257 0.1281
0.1321 0.1350 0.1665 0.1695 0.1692 0.1386 0.1352 0.1422 0.1409 0.1332

Z34

0.1387 0.1343 0.1349 0.1335 0.1289 0.1300 0.1282 0.1263 0.1258 0.1331
0.1268 0.1291 0.1353 0.1295 0.1304 0.1279 0.1345 0.1329 0.1329 0.1294
0.1398 0.1386 0.1318 0.1278 0.1371 0.1317 0.1357 0.1361 0.1370 0.1416
0.1291 0.1350 0.1368 0.1535 0.1340 0.1304 0.1312 0.1331 0.1276 0.1302

Z35

0.1232 0.1340 0.1316 0.1299 0.1375 0.1238 0.1344 0.1229 0.1331 0.1324
0.1297 0.1297 0.1233 0.1286 0.1314 0.1334 0.1259 0.1362 0.1151 0.1279
0.1256 0.1287 0.1323 0.1216 0.1263 0.1296 0.1241 0.1274 0.1252 0.1310
0.1276 0.1314 0.1328 0.1284 0.1284 0.1339 0.1346 0.1360 0.1356 0.1359

Z41

9.7920 9.8090 9.8090 9.8130 9.8190 9.8730 9.7850 9.8220 9.7880 9.7530
9.8170 9.7530 9.7060 9.7480 9.7840 9.7210 9.7330 9.7910 9.9090 9.9510
9.9670 9.9340 9.8760 9.9070 9.9470 9.8780 9.9150 9.9200 9.9090 9.9220
9.8440 9.8740 9.8000 9.8700 9.8970 9.8670 9.8760 9.8830 9.9370 9.9330

Z42

9.9070 9.8530 9.8510 9.8690 9.8250 9.8630 9.8610 9.8440 9.8500 9.7980
9.8300 9.8250 9.8370 9.8890 9.8350 9.8030 9.7550 9.7960 9.7760 9.7730
9.7270 9.6260 9.6430 9.6620 9.6920 9.6800 9.6990 9.3850 9.7020 9.7160
9.7420 9.6530 9.7390 9.7830 9.7030 9.7460 9.7360 9.8000 9.7490 9.7840

Z43

9.7060 9.7540 9.7830 9.7500 9.7290 9.7900 9.7790 9.7370 9.7640 9.6970
9.6850 9.7260 9.6830 9.6880 9.7230 9.7360 9.6930 9.7560 9.7500 9.7880
9.7050 9.7660 9.7710 9.8240 9.8610 9.8290 9.8020 9.8550 9.7600 9.8230
9.8610 9.8200 9.8420 9.8370 9.8340 9.8750 9.9040 9.8570 9.8000 9.8650

Z44

9.8190 9.8400 9.8350 9.7756 9.8520 9.8900 9.9230 9.8810 9.9580 9.9290
9.9320 9.6500 9.9680 9.9220 9.8580 9.9460 9.8760 9.9400 9.8370 9.7400
9.8990 9.9440 9.9570 10.0360 9.8960 9.9550 10.0230 10.0170 9.9950 9.7420
9.6220 9.7320 9.7280 9.9780 10.1120 10.0350 9.9930 9.6710 9.5720 9.6780

Z45

9.7530 9.7570 9.7510 9.8330 9.7730 9.7980 9.8460 9.8440 9.8750 9.8690
9.8300 9.6950 9.6930 9.6990 9.6540 9.6880 9.5790 9.6610 9.9250 9.8580
9.6240 9.6830 9.8540 9.6300 9.5890 9.6450 9.7990 9.8260 9.9420 9.9150
9.9150 9.7980 9.9240 9.8970 9.8820 9.8090 9.7990 9.8150 9.8580 9.8380
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