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Abstract: Cluster-based pseudo-relevance feedback (PRF) is an effective approach for searching
relevant documents for relevance feedback. Standard approach constructs clusters for PRF only on
the basis of high similarity between retrieved documents. The standard approach works quite well if
the retrieval bias of the retrieval model does not create any effect on the retrievability of documents.
In our experiments we observed when a collection contains retrieval bias, then high retrievable
documents of clusters are frequently retrieved at top positions for most of the queries, and these
drift the relevance feedback away from relevant documents. For reducing (retrieval bias) noise, we
enhance the standard cluster construction approach by constructing clusters on the basis of high
similarity and retrievability. We call this retrievability and cluster-based PRF. This enhanced approach
keeps only those documents in the clusters that are not frequently retrieve due to retrieval bias.
Although this approach improves the effectiveness, however, it penalizes high retrievable documents
even if these documents are most relevant to the clusters. To handle this problem, in a second
approach, we extend the basic retrievability concept by mining frequent neighbors of the clusters. The
frequent neighbors approach keeps only those documents in the clusters that are frequently retrieved
with other neighbors of clusters and infrequently retrieved with those documents that are not part
of the clusters. Experimental results show that two proposed extensions are helpful for identifying
relevant documents for relevance feedback and increasing the effectiveness of queries.

Keywords: document clustering; machine learning; information retrieval; pseudo-relevance feedback;
query expansion; retrieval bias; retrievability measure

1. Introduction

Pseudo-relevance feedback (PRF)-based query expansion is an effective approach for increasing
the effectiveness of queries. Most pseudo-relevance feedback methods assume that a set of
top-retrieved documents is relevant and then learn from the pseudo-relevant documents to expand
terms to increase the effectiveness of queries [1–5]. However, if the top retrieved documents are noisy
(irrelevant to the search query), then this noise decreases the effectiveness. Recently, a deterministic
sampling method based on overlapping clusters was proposed (cluster-based PRF) to select better
documents for PRF [6,7]. By permitting overlapped clusters for the top-retrieved documents and
repeatedly using the dominant documents that appear in multiple highly-ranked clusters, an expansion
query can be represented to emphasize the core topics of a query.

Although it is well observed that cluster-based PRF improves effectiveness, however, further
improvement is possible by removing noisy documents from the clusters. Related approaches construct
clusters for PRF either using a query-dependent approach (after processing the initial query) or using a
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query independent approach (offline) [6–8]. Kalmanovich et al. [6] observed from their experiments that
the query independent approach provides higher effectiveness than the query-dependent approach.
This is because during cluster construction, the query independent approach utilizes the full context of
a collection rather than the local context of a query [6]. Furthermore, the query independent approach
is preferable over the query-dependent approach in terms of efficiency. In the query independent
setting, the clusters are constructed offline and only once during the indexing of documents, and these
offline clusters are used during query processing for selecting pseudo relevance feedback documents
(PRF); whereas in the query-dependent setting, the clusters are needed to construct for every query,
and this requires a long processing time and resources for selecting PRF documents.

The standard query independent approach constructs clusters for each document of a collection
by assuming each document as the centroid of its cluster. Next, documents of clusters are retrieved
through the k-nearest neighbor approach (kNN); the top k nearest neighbors of each centroid form the
cluster, and this cluster is used for relevance feedback. kNN searches nearest neighbors through (well
descriptive) long queries either using full text or the top most frequent terms of centroid document.
Then, after constructing clusters, it is assumed that when the relevant documents of a query would be
searched through the initial query, then a subset of their nearest neighbors that exist in the query’s
retrieved set would provide aid to them as a relevance feedback to retrieve these at top positions.
This assumption works quite well if the retrieval bias of retrieval models does not create any effect
on the retrievability of documents of clusters [9]. However, if the documents of the collection have
large retrievability inequality between them (due to retrieval bias), then high retrievable documents of
clusters have a large probability of retrievability at top positions for most of the queries. These biased
documents drift the PRF selection towards noise [10]. This is because the documents that contain high
retrievability have a large probability of retrievability at top positions for most of the queries compared
to the documents that have low retrievability [9,11]. Although high retrievable documents of clusters
are also a relevant part of the clusters, if retrieved frequently only due to retrieval bias, then these
decrease the effectiveness of cluster-based relevance feedback [12].

Motivation and Contribution

The objective of this paper is to understand the effect of retrieval bias on PRF clusters and
then improving the effectiveness of PRF by constructing clusters on the basis of high similarity
and retrievability. We study this objective with the help of the following set of experiments.
In the first experiment, we construct clusters using the standard k-nearest neighbor approach and
examine which class of documents (if we partition the collection into several classes on the basis of
low/high retrievability) contributes most to positive relevance feedback. In these experiments, we
want to analyze whether the retrieval bias of the retrieval model affects PRF effectiveness. In the
next set of experiments, we enhance the standard cluster construction approach proposed in [8] using
retrievability and construct clusters by removing all of those documents from the clusters that add noise
in the relevance feedback due to retrieval bias. In another extension, we enhance the basic retrievability
mechanism by mining frequent neighbors of clusters. We then construct clusters by keeping only
those documents in the clusters that not only have high similarity with the centroid of the clusters, but
are also frequently retrieved with other documents of the cluster. We evaluate the effectiveness of all
proposed approaches on the Text Retrieval Conference (TREC) chemical patent retrieval task collection
(TREC-CRT) [13]. From the results, we observed that during constructing clusters, if we use retrieval
bias and the retrievability of documents along with the similarity of documents to centroids, then this
improves the overall effectiveness of cluster-based PRF. We compare the effectiveness of our approach
with the cluster-based PRF approach presented in [8]. Our results show improvement over [8].

The remainder of this paper is structured as follows. Section 2 reviews related work on machine
learning approaches that are used for the selection of PRF. Section 3 describes the TREC-CRT (TREC
chemical patent retrieval task) benchmark collection, retrieval models and effectiveness measures that
we used for experiments. Section 4 discusses the cluster-based PRF approach. In Section 5, we discuss
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the retrievability and cluster-based PRF. We explain this section by first describing the retrievability
measure, and then, we show how retrieval bias effects the cluster-based PRF; finally, we proposed two
extensions for cluster-based PRF using retrievability in order to improve the effectiveness. Section 6
briefly summarizes key lessons learned from this study.

2. Related Work

In information retrieval (IR), it is well studied that query expansion (QE) improves retrieval
effectiveness. Research on query expansion using PRF falls into the following three classes. In the
first class, different probabilistic approaches are investigated for selecting dominant (relevant) terms
for expansion. These include Kullback–Leibler divergence [14], term selection by the Robertson and
Walker method [15] and different variants of language modeling [3,16,17]. In the second class, different
strategies are proposed for classifying the dominant expansion terms on the basis of data mining and
machine learning techniques [18,19]. However, in both classes, it is assumed that the set of top-n
documents is useful for relevance feedback. In the third class, different machine learning techniques
are used for identifying relevant documents for PRF [6–8,20].

Huang et al. [19] observed that the effectiveness of PRF strongly relies on the quality of selected
expansion terms from the top ranked documents. In their study, they used a number of machine
learning classification techniques (naive Bayesian, decision tree, support vector machine) in the form
of co-training for selecting the good terms for the expansion the from top-n documents. Cao et al. [18]
also used a classifier to select the best terms from the top-n documents after analyzing the effects of
each term on the effectiveness of training queries.

Collins-Thompson et al. [21] used bootstrap sampling on top-retrieved documents for identifying
variants of the query by leaving a single term out. They assumed that if a set of query terms is noisy,
then these decrease the robustness and effectiveness of queries. Sakai et al. [16] used clustering for
skipping noisy relevance feedback documents that are retrieved at top positions.

Cluster-Based Pseudo-Relevance Feedback

There has also been work on term expansion using clustering in the vector space model [22–25].
At TREC 6 [23] used document clustering on the System for Manipulating and Retrieving Text (SMART),
though the results of using clusters did not show improvements over the baseline feedback method.
Huang et al. [20] found that the effectiveness of queries is highly sensitive to the selection of feedback
documents. In their study, they proposed a number of techniques for selecting query-specific feedback
documents by applying query the clarity score, discount cumulative gain and mixture models.

Lee et al. [8] used document clustering, which helps in selecting documents for PRF on the basis of
their cluster size and similarity to other documents of the query. Under their assumption, a document
is considered relevant for the PRF if it contains high similarity with other documents of the query and
is irrelevant if it has either no nearest neighbor or some neighbors with low similarity. Their technique
generates clusters for PRF after processing the initial query and for only the N number of top retrieved
documents. This approach also forms the basis of the approaches presented in this paper. Although,
this approach works quite well if the retrieval bias of the retrieval model does not create any effect on
retrievability of documents [10], in our experiments, we observed when a collection contains retrieval
bias, then high retrievable documents of clusters are frequently retrieved at top positions for most
of the queries, and these drift the relevance feedback away from relevant documents. For reducing
(retrieval bias) noise, we enhance this standard cluster construction approach by constructing clusters
on the basis of high similarity and retrievability. We call this retrievability and cluster-based PRF.
This enhanced approach keeps only those documents in the clusters that are not frequently retrieved
due to retrieval bias.

In [26], Bashir et al. evaluated the effectiveness of different retrieval systems using retrievability
measures with a focus on recall-oriented application domains. Their results indicate that state of the
art query expansion methods provide a large inequality in the retrievability of documents as compared
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to those systems that do not expand queries. This is due to their ineffective assumption that top rank
documents for PRF are always relevant, and learning from these relevance feedback documents for
expanding queries can increase the effectiveness of retrieval systems. To overcome the limitations of
the standard clustering approach in their paper, they proposed an improved approach. Their approach
selects clusters for PRF on the basis of their intra-cluster similarity rather than only on the basis of
clusters size. This is helpful for pruning irrelevant clusters when long documents cluster a large
number of documents on the basis of their noisy terms. Moreover, they used local frequent terms of
clusters for fast inter-cluster similarity checking. Smaller-sized related clusters are also merged using
a fast method on the basis of local frequent terms. Finally, top documents in high rank clusters are
selected for relevance feedback by ranking their similarity with centroid frequent terms of clusters.
Although [26] used cluster-based PRF for query expansion, however, we could not compare the system
of [26] with our proposed approach. This is because in [26], the authors used local frequent terms for
merging small clusters and pruning irrelevant clusters that have low inter-cluster similarity, and these
features provide additional benefit for increasing the effectiveness.

3. Experimental Setup

3.1. Collection

We select the prior-art (PA) task of the TREC-CRT collection for analyzing the effectiveness of
retrieval models [13]. The total size of the collection is 1.2 million documents. Figure 1 shows the
document length statistics of the collection. The PA task consisted of 1000 topic queries that are the
full-text patent documents (i.e., consisting of at least claims and abstract or description) taken from both
the European Patent Office (EPO) and the U.S. Patent Office (USPTO). The goal of searching a patent
database for the prior-art search task is to find all previously-published related patents on a given
topic [13,27,28]. It is a common task for patent examiners and attorneys to decide whether a new patent
application is novel or contains technical conflicts with some already patented invention. They collect
all related patents and report them in a search report. We use these reports as relevance judgments.
Next, we apply a standard approach for query generation in the patent retrieval domain. From each
topic, we select only the claim section, because it is regarded as being the most representative piece of
text, characterizing the scope of invention well due to the rules of the patent system worldwide, as
done also in [27–30].
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Figure 1. The document length statistics of the TREC chemical patent retrieval task collection.
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3.2. Retrieval Models

Eight standard retrieval models and three query expansion methods along with cluster-based
PRF (resampling [8]) are used for experiments. These are as follows.

3.2.1. Standard Retrieval Models

• TFIDF: The TFIDF (term frequency inverse document frequency) is a retrieval model often used in
information retrieval. It is a statistical measure used to evaluate how important a query terms is
to a document. The importance increases proportionally to the number of times a term appears
in the document, but is offset by the frequency of the term in the collection. The standard TFIDF
retrieval model is described as follow:

TFIDF(d, q) = ∑
t∈q

t ft,d ∗ log
|D|
d ft

(1)

t ft,d is the term frequency of query term t in d and |D| is the total number of documents in the
collection. d ft represents the total number of documents containing t.

• NormTFIDF: The standard TFIDF does not normalize the term frequencies relative to document
length, thus sensitive to and biased toward large absolute term frequencies. It is possible to address
the length bias by using document length |d| and defied normalized TFIDF (NormTFIDF) as:

NormTFIDF(d, q) = ∑
t∈q

t ft,d

|d| ∗ log
|D|
d ft

(2)

• BM25: Okapi (Best Match Retrieval Model BM25) is arguably one of the most important and
widely-used information retrieval models. It is a probabilistic function and nonlinear combination
of three key attributes of a document: term frequency tt,d, document frequency d ft and the
document length |d|. The effectiveness of BM25 is controlled by two parameters k and b. These
parameters control the contributions of term frequency and document length. We used the
following standard function of BM25 proposed by [4]:

BM25(d, q) = ∑
t∈q

log
|D| − d ft + 0.5

d ft + 0.5
t ft,d(k + 1)

t ft,d + k(1− b + b |d||d| )
(3)

|d| is the average document length in the collection from which the documents are drawn. k and b
are two parameters, and they are used with k = 2.0 and b = 0.75.

• SMART: The System for Manipulating and Retrieving Text (SMART) is a retrieval model in
information retrieval. It is based on the vector space model. We use the following variation of
SMART developed by [31] at AT&T Labs.

SMART(d, q) = ∑
t∈q

(Wd ∗Wq) (4)

Wd =
1 + log(t ft,d)

1 + log(avt f )
∗ 1

0.8 + 0.2 ut f
pivot

(5)

Wq = (1 + log(t ft,d)) ∗ log
|D|+ 1

d ft
(6)

avt f represents the average number of occurrences of each term in the d, ut f is the number of
unique terms in d and pivot represents the average number of unique terms per document.
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3.2.2. Language Models with Term Smoothing

The language model tries to estimate the relevance of the document by estimating the probabilities
of terms in the document. The terms are assumed to occur independently, and the probability is the
product of the individual query’s terms given the document model Md of document d:

P(q|Md) = ∏
t∈q

P(t|Md) (7)

P(t|Md) =
t ft,d

|d| (8)

In Equation (7), the overall similarity score for the query and the document could be zero if some
of the query terms do not occur in the document. However, it is not sensible to rule out a document
just because of missing only a few or a single term. For dealing with this, language models make use
of smoothing to balance the probability mass between the occurrences of terms present in documents
and the terms not found in the documents. We use the following four variations of term smoothing in
our experiments.

• Jelinek–Mercer smoothing (JM): Jelinek–Mercer smoothing [17] combines the relative frequency of
a query’s term t ∈ q in the document d with the relative frequency of the term in the collection (D).
The amount of smoothing is controlled by the λ, and it is set between 0 and 1. Small smoothing
values of λ close to 0 add only the contribution of term frequencies, while large λ values reduce
the effect of relative term frequencies within the documents, and more importance is given toward
the relative frequencies of terms in the collection.

P(t|Md) = (1− λ)
t ft,d

|d| + λP(t|D) (9)

P(t|D) is the probability of term t occurring in the collection (∑d∈D t ft,d/ ∑d∈D |d|). According to
the suggested value of λ by [17], we use (λ with 0.7).

• Dirichlet (Bayesian) smoothing (DirS): This smoothing technique makes smoothing dependent
on the document length [17]. Since long documents allow us to estimate the language model
more accurately, therefore, this technique smooths them less, and this is done with the help of a
parameter µ. Since the value of µ is added in the document length, thus small values of µ retrieve
less long documents. If the µ is used with large values, then the distinction for the difference
between document lengths becomes less extreme, and long documents are more favored over
short documents. Again, this favoritism mostly occurs in the case of long Boolean OR queries.

P(t|Md) =
t ft,d + µP(t|D)

|d|+ µ
(10)

According to [17] suggestion, we use the µ with 2000.
• Two-stage smoothing (TwoStage): This smoothing technique first smooths the document model

using the Dirichlet prior probability with the parameter µ (as explained above), and then, it mixes
the document model with the query background model using Jelinek–Mercer smoothing with the
parameter λ [17]. The query background model is based on the term frequency in the collection.
The smoothing function is therefore:

P(t|Md) = (1− λ)
t ft,d + µP(t|D)

|d|+ µ
+ λP(t|D) (11)

where µ is the Dirichlet prior probability and λ is the Jelinek–Mercer parameter. In our experiments,
we use the parameters µ = 2000 and λ = 0.7, respectively.
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• Absolute discount smoothing (AbsDis): This technique makes smoothing by subtracting a constant
δ ∈ [0, 1] from the counts of each seen term [17]. The effect of δ is similar to Jelinek–Mercer
parameter λ, but differs in this sense that it discounts the seen terms’ probabilities by subtracting
a constant δ instead of multiplying them by (1− λ).

P(t|Md) =
max(t ft,d − δ, 0)

|d| +
δ|Td|
|d| P(t|D) (12)

Td is the set of all unique terms of d. We use the δ with 0.7.

3.2.3. Query Expansion Models

1. Query expansion using language modeling (TS-LM): [32]: This method uses the top-n documents
for PRF selection. The candidate terms for the expansion in the PRF are ranked according to the
sum of divergences between the documents in which they occurred and the importance of the
terms in the whole collection (Equation (14)),

2. Query expansion using Kullback–Leibler divergence (TS-KLD): [14]: This method also uses the
top-n for PRF selection. However, terms for the expansion in the PRF set are ranked according to
the relative rareness of terms in the PRF set as opposed to the whole collection (Equation (13)),

KLDt =
P(t|P)
|P| ∗ log(

P(t|P)
|P| ∗

C + 0.01 ∗ |V|
c ft + 0.01

) (13)

t is the expansion term; P is the PRF set; c ft represents the total count of term t in the collection;
C represents the total count of all terms in the collection; and P(t|P) = (∑p∈P t ft,p/ ∑p∈P |p|) is
the probability of term t occurrence in the PRF set P.

3. PRF selection using clustering (resampling): [8]: This technique selects PRF using document
clustering (see Section 4 for more details). Resampling selects candidate terms for the expansion
using TS-LM as described above.

For effectiveness analysis, we used BM25 for providing initial ordering of documents for the PRF
selection. For all query expansion strategies, the top 10 documents are used for the PRF and the top 30
terms are used for query expansion.

4. Cluster-Based Pseudo-Relevance Feedback

In this section, we present the effectiveness results of retrieval models that we obtained after
processing queries. We start this section by first describing the cluster-based PRF technique, and then,
we compare the effectiveness of cluster-based PRF with standard query expansion approaches.

4.1. Constructing Clusters for PRF

We construct clusters using the k-nearest neighbors approach [7,8,33]. In this approach,
each document of the collection plays a central role for forming its own cluster. Each document
is assumed as a centroid of its cluster and k nearest neighbors are retrieved from the collection on the
basis of their similarity with the centroid document. To check the similarity between two documents,
we represent vectors of documents using the BM25 weighting scheme, and we used the top 30 most
frequent terms of each document for calculating similarity. We kept the parameter k constant for all
clusters; thus, all documents of different lengths have similar cluster sizes. The parameter k also helps
in controlling the number of topics and their quality in the clusters. Ideally, the value of k should be
not too small or too large. A large value for k increases the total number of available clusters for PRF,
but decreases the effectiveness of PRF due to retrieving neighbors with low similarity. A very small
value for k retrieves a small number of clusters for PRF and, thus, decreases the effectiveness of PRF.
Next, during query processing, clusters are generated for only the top-retrieved 500 documents of the
query to find dominant documents for PRF.
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To select top documents of a query for relevance feedback, the formed clusters are ranked
according to their cluster sizes. This approach can be easily understand from the following example.

Example 1. Suppose we have a collection of 1.2 million documents, and we want to construct clusters for these
1.2 million documents using the k nearest neighbor approach. With this approach, each document of the collection
plays a central role for forming its own cluster. Each document is assumed as a centroid of its cluster, and k
nearest neighbors are retrieved from the collection on the basis of their similarity with the centroid document.
Suppose the value of k is 2000, and thus, each document in the collection has an independent cluster of a size of
2000 documents. Now, suppose we want to process a query “Networking Cables”, and we need pseudo feedback
documents for query expansion. Suppose query “Networking Cables” retrieves only 80 documents from 1.2
million documents. The retrieved documents have ids from {d1, d2...d80}. Now, suppose document (d1) has
its 20 cluster documents (out of 2000) in the 80 retrieved documents, and document (d2) has its 10 cluster
documents (out of 2000) in the 80 retrieved documents. Thus, for pseudo relevance feedback, d1 has a larger
cluster size in the retrieved set than d2.

4.2. Ranking Clusters and Selecting Documents for Relevance Feedback

To select top documents of a query for relevance feedback, the formed clusters are ranked
according to their cluster sizes.

Once the clusters are ranked, the top S clusters (representing documents) are selected for the
PRF. Next, terms for the expansion are ranked according to the sum of divergences between the
PRF documents where they occurred and the importance of the terms in the whole collection [32]
(Equation (14)). This penalizes those terms of PRF documents that occur more frequently in
the collection.

scoret = ∑
s∈S

((λ ·
t ft,s)

|s| )) + (1− λ)
c ft

C
)log(λ

t ft,s

|s|
c ft

C
+ 1− λ)) (14)

where t is the expansion term, S is the PRF set, λ represents the smoothing parameter, c ft represents
the total count of term t in the collection, C is the total count of all terms in the collection and t ft,s is
the term frequency of t in document s.

After selecting top terms for the expansion, the relevance scores of documents using expansion
terms are again calculated using BM25. Figure 2 shows the architecture of cluster-based PRF. In the
architecture, clusters for PRF are constructed using the query-independent approach, and these clusters
are used to select relevant documents for PRF.

4.3. Parameter Setting for Constructing Clusters

The clustering process explained above controls the size of clusters with the help of the k parameter.
Figure 3 shows the sensitivity of the ranges of k over effectiveness. In order to select the best values
of k, we tune the values of the k over different ranges and examine its sensitivity with P@30. The k
is varied within a range of 10, 50 and then from 100 to 3000 with each step with an increase of 100.
The results reveal that the large values of k (between 1000 and 3000) increase the total number of topics
in the clusters, but decrease the quality of the clusters since a large number of noisy neighbors with
low similarity are also appearing in the clusters. This increases the probability of the appearance of
noisy clusters in the query processing and decreases the effectiveness. The very small values of k are
also not suitable. Small values of k decrease the probability of PRF documents’ selection via clustering,
and thus, most of the PRF documents are selected through standard query relevance scores. In our
clustering process, we use k with 300.
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Figure 2. Architecture for cluster-based pseudo-relevance feedback. We construct the clusters using the
query independent approach, and then during processing queries, we use these clusters for searching
relevant documents for relevance feedback.
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Figure 3. The maximum number of neighbors used for constructing clusters and their effect on
effectiveness. Large values of k decrease the quality of topics in clusters and decrease the effectiveness.
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4.4. Effectiveness Analysis

We select prior-art (PA) task of the TREC-CRT collection for analyzing the effectiveness of retrieval
models. From each topic, we select only the claim section, because it is regarded as being the most
representative piece of text, characterizing the scope of invention well due to the rules of the patent
systems worldwide. In order to build prior-art queries from the claim section, we first sort all of the
terms found in the claim section on the basis of their increasing term frequencies. We then select
only the top 10 terms that have high frequencies and use these terms in the form of a long query for
searching relevant documents. Using 10 terms’ queries instead of very long 30 terms’ queries allows us
to examine more precisely the effectiveness of query expansion approaches over non-query expansion
approaches.

Information retrieval experimentation has a strong underlying experimental methodology as
used for example in the ongoing series of text retrieval conferences (TREC): a set of queries is run on a
static collection of documents, with each query returning a list of answer resources. Humans assess
the relevance of each document-query combination, and from this, a variety of system effectiveness
metrics can be calculated. We use the following effectiveness metrics for analyzing the effectiveness of
retrieval models.

• Recall: Recall cares about all relevant (judged) documents. It is the ratio of the number of retrieved
relevant documents relative to the total number of documents in the collection that are desired
to be retrieved.

Recall =
tp

tp + f n
(15)

tp represents the total number of relevant documents retrieved. f n represents the false negative,
the documents that are relevant, but could not be retrieved.

• Precision: Precision is the ratio of the number of retrieved relevant documents relative to the total
number of retrieved documents. Precision measures the quality of the rank lists. However, since it
does not consider the total number of relevant documents, therefore, a result list consisting of just
a few retrieved and relevant documents might provide higher precision than a large result list
with many relevant documents.

Precision =
tp

tp + f p
(16)

f p represents the false positive, the documents that are retrieved, but are not relevant. Recall and
precision are always used with rank cutoff levels. In our experiments we measured the recall with
R@100 and precision with P@30 rank cutoff levels.

• Mean average precision (MAP): Precision and recall are not sensitive to the ranking order of
documents (i.e., they do not consider how efficiently different retrieval models retrieve the relevant
documents at the top ranked positions). Average precision cares for this factor by averaging the
precision values obtained after each relevant document found. Thus, a retrieval model that ranks
a large number of relevant documents at the top ranked positions would provide good average
precision. It is calculated using the following equation.

AveP(q) =
∑d∈Dq(P@kdg(q)) · rel(d)

tp + f n
(17)

Dq represents the set of retrieved documents of a query q, and kdq is the rank of a document d in
Dq. rel(d) returns one, if d is a relevant judged document of q, otherwise zero. The mean average
precision (MAP) is used for the average precision figures over a number of different queries.

MAP =
∑q∈Q AveP(q)

|Q| (18)
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• b-pref : The b-pref measure is designed for those situations where the relevance judgments are
known to be far from complete. It was introduced in the TREC 2005 terabyte track. b-pref computes
a preference relation of whether the judged relevant documents are retrieved ahead of irrelevant
documents. Thus, it is based only on the relative ranks of judged documents [34]. The b-pref
measure is defined as:

b-pref =
1
Jq

∑
kjq∈Jq

(1−
Number o f e above kdq

(|E|) ) (19)

where Jq is the set of judged relevant documents of a query q, E is the set of all judged irrelevant
documents retrieved before the last judged document rank position in q, k jq is the rank of judged
document in q and e represents the count of irrelevant documents in E retrieved before the rank
position k jq. b-pref can be thought of as the inverse of the fraction of judged irrelevant documents
that are retrieved before the relevant ones.

Table 1 lists the effectiveness of different retrieval strategies with R@100, P@30, MAP and b-pref
on the TREC-CRT collection. If we compare only non-query expansion retrieval models, then the
effectiveness of language modeling approaches (JM, AbsDis, DirS, TwoStage) is better than other
retrieval models. If we compare only query expansion models, then TS-LM shows better effectiveness
than TS-KLD. Overall, both query expansion models shows better effectiveness than non-query
expansion models. As we can see from the results, the overall effectiveness of resampling (cluster-based
PRF selection) is better. The resampling brings an improvement of (35%, 47%, 80%, 28%) on R@100,
P@30, MAP and b-pref as compared to the language modeling (JM) approach and (11%, 23%, 29%,
05%) as compared to the standard PRF selection-based TS-LM approach. Table 2 shows the robustness
of resampling, TS-LM, TS-KLD and JM to each other. The robustness is defined as the number of
queries whose effectiveness is improved or hurt as the result of applying these methods over others.
Resampling shows stronger robustness than JM (non-query expansion approach). It improves 540
queries and hurts 281, whereas the standard PRF selection approach TS-LM improves 493 queries and
hurts 294. Although the resampling improves the effectiveness of only 47 more queries than TS-LM,
however, the improvement obtained by the resampling is significantly large.

Table 1. Effectiveness of the retrieval models on the TREC-chemical patent retrieval task (CRT)
collection. ? indicates improvement on the effectiveness by applying cluster-based pseudo-relevance
feedback (PRF). TFIDF, term frequency inverse document frequency; SMART, System for Manipulating
and Retrieving Text; DirS, Dirichlet smoothing; JM, Jelinek–Mercer; AbsDis, absolute discount; LM,
language modeling.

Retrieval Model
Effectiveness

R@100 P@30 MAP b-Pref

TFIDF 0.015 0.006 0.005 0.133
NormTFIDF 0.057 0.032 0.016 0.243

BM25 0.121 0.079 0.037 0.351
SMART 0.036 0.016 0.010 0.210

DirS 0.144 0.093 0.045 0.406
JM 0.148 0.094 0.045 0.410

AbsDis 0.145 0.094 0.044 0.392
TwoStage 0.141 0.089 0.044 0.403
TS-LM 0.180 0.112 0.063 0.500

TS-KLD 0.157 0.097 0.050 0.429
Resampling ?0.199 ?0.138 ?0.081 ?0.523
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Table 2. Robustness of retrieval strategies relative to others using mean average precision (MAP).
The values of the cell show that the numbers of queries improve or hurt by applying this method over
others. The superscript α with ? indicates statistically-significant improvements over others. We use
the paired t-test with significance at p < 0.05.

TS-LM Resampling JM TS-KLD

TS-LM - 292/448 ?493/294 α ?449/313 α

Resampling ?448/292 α - ?540/281 α ?523/279 α

JM 294/493 281/540 - 305/371
TS-KLD 313/449 279/523 371/305 -

5. Retrieval Bias and Cluster-Based PRF

In the above section, we analyzed the effectiveness of the cluster-based PRF approach (resampling).
We achieved higher effectiveness than standard PRF approaches. In standard cluster-based PRF, we
construct clusters with only those neighbors of clusters that have high similarity with centroids.
These nearest neighbors are retrieved using the top 30 frequent terms of centroid documents by
assuming that during query processing, a subset of these cluster documents would be retrieved at
top rank positions, thus increasing the effectiveness of PRF by retrieving relevant documents. This
assumption works quite well when the retrieval bias of the retrieval model does not cause any effect
on the retrievability of documents of clusters. However, if there exists a large retrievability inequality
between documents of a collection (due to retrieval bias), then high retrievable documents of clusters
are frequently retrieved at top rank positions for most of the queries due only to retrieval bias. These
documents decrease the effectiveness of PRF. The objective of this section is to analyze to what extent
retrieval bias effects the PRF effectiveness and how to improve the effectiveness by constructing
clusters with the help of high similarity and retrievability. We perform the following set of experiments
in order to understand this objective.

• In the first experiments, we construct clusters by retrieving k-nearest neighbors that have high
similarity with centroid documents. We then partition all documents of the collection into different
subsets according to their retrievability scores, and then, we analyze which subset contributes
most to PRF effectiveness. These experiments help us with understanding which documents add
noise in the PRF selection.

• In the second experiments, we construct clusters by retrieving k-nearest neighbors that have high
similarity with the cluster centroids and that do not add noise due to retrieval bias. Basically, for
these experiments, we remove high retrievable documents from the clusters. We then compare the
effectiveness with the standard k-nearest neighbor approach and found high improvement.

• In the third experiments, we mine frequent neighbors of clusters and construct clusters by
retrieving k-nearest neighbors that have high similarity with cluster centroids and are also
frequently retrieved with documents of cluster. The standard retrievability approach always
penalizes high retrievable documents even if these are most relevant to the clusters and frequently
retrieved with documents of the cluster. Constructing clusters by mining frequent neighbors is
helpful for increasing the effectiveness. We also compare the effectiveness of this approach with
the retrievability-based cluster construction approach and found high improvement.

As all of the above experiments are based on retrievability, therefore, in the following sections, we
first introduce the definition of the retrievability measure in IR; then, we describe the process of creating
queries for calculating retrievability; and finally, we perform all experiments as described above.

5.1. Retrievability Measure

The following description of retrievability measurement as introduced by [9] provides a quick
introduction of how it is measured.
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Given a collection D, a retrieval model accepts a user query q and returns a ranked list of
documents, which are deemed to be relevant to q. We can thus consider the retrievability of a
document as influenced by two factors: (a) how retrievable it is, with respect to the collection D;
and (b) the effectiveness of the ranking strategy of the retrieval model. In order to derive an estimate
of this quantity, [9] used query set-based sampling [35]. The query set Q could either be a historical
sample of queries or an artificial simulated substitute similar to users’ queries. Then, each user’s q ∈ Q
is issued to the retrieval model, and the retrieved documents along with their positions in the ranked
list are recorded. Intuitively, the retrievability of a document d is high when:

1. there are many probable queries in Q that can be expressed in order to retrieve d and
2. when retrieved, the rank r of the document d is lower than a rank cutoff (threshold) c. This is the

point at which the user would stop examining the ranked list. This is a user-dependent factor
and, thus, reflects a particular retrieval scenario in order to obtain a more accurate estimate of this
measure. For instance, in the web-search scenario, a low c would be more accurate as users are
unlikely to go beyond the first page of the results, while in the context of recall-oriented retrieval
settings (for instance, legal or patent retrieval), a high c would be more accurate.

Thus, based on the Q, r and c, we formulate the following measure for the retrievability of d.

r(d) = ∑
q∈Q

p(q) · f̂ (kdq, c) (20)

f̂ (kdq, c) is a generalized utility/cost function, where kdq is the rank of d in the result list of query
q; c denotes the maximum rank that a user is willing to proceed down in the ranked list. The function
f̂ (kdq, c) returns a value of one if kdq ≤ c and zero otherwise. p(q) denotes the likeliness that a user
actually issues query q. This probability may be hard to determine explicitly and is thus frequently set
to one, i.e., to give all queries equal probabilities. More complex heuristics considering the length of the
query, the specificity of the vocabulary, etc., may be considered. Defined in this way, the retrievability of
a document is essentially a cumulative score that is proportional to the number of times the document
can be retrieved within that cutoff c over the set Q. This fulfills our aim, in that the value of r(d) will
be high when there is a large number of (highly probable) queries that can retrieve the document d at
the rank less than c, and the value of r(d) will be low when only a few queries retrieve the document.
Furthermore, if a document is never returned at the top ranked c positions, possibly because it is
difficult to retrieve by the retrieval model, then the r(d) is zero.

The inequality between the retrievability score of documents can be further analyzed using
the Lorenz curve [36]. In economics and the social sciences, a Lorenz curve is used to visualize the
inequality of the wealth in a population. This is performed by first sorting the individuals in the
population in ascending order of their wealth and then plotting a cumulative wealth distribution. If the
wealth in the population was distributed equally, then we would expect this cumulative distribution
to be linear. The extent to which a given distribution deviates from the equality is reflected by the
amount of skewness in the distribution. The work in [9] employed a similar idea in the context of a
population of documents, where the wealth of documents is represented by the r(d) function. The
more skewed the plot, the greater the amount of inequality or bias within the population. The Gini
coefficient [36] G is used to summarize the amount of retrieval bias in the Lorenz curve and provides a
bird’s eye view. It is computed as follows.

G =
∑
|D|
i=1(2 · i− |D| − 1) · r(di)

(|D| − 1)∑
|D|
j=1 r(dj)

(21)

D represents the set of documents in the collection. If G = 0, then no bias is present because
all documents are equally retrievable. If G = 1, then only one document is retrievable, and all other
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documents have r(d) = 0. By comparing the Gini coefficients of different retrieval methods, we can
analyze the retrieval bias imposed by the underlying retrieval systems on a given document collection.

5.2. Retrievability Analysis

We consider all sections (title, abstract, claims, description, background summary) of 1.2 million
documents for both retrieval and query generation. Stop words are removed prior to indexing, and
words stemming is performed with the Porter stemming algorithm. Additionally, we do not use those
terms of the collection that have document frequency greater than 25% of the total collection size
to remove high frequency stop words. For retrievability analysis, we generate the queries with the
combinations of those terms that appear more than one time in the document. For these terms, all
three-term and four-term combinations are used in the form of Boolean AND queries for creating the
exhaustive set of queries Q, with duplicate queries being removed. Additionally, we consider only
those queries that have a query result list size of more than the rank cutoff c = 100.

For calculating retrievability, we require the processing of all queries in Q on the full 1.2
million collection. This requires large processing time and resources. Thus, in order to complete
the experiments in a reasonable time, we select a subset of two million queries from Q. However,
rather than selecting this subset randomly, we select it on the basis of query quality prediction [37,38].
This is further motivated by earlier analysis of the relationship between query quality and retrieval
bias [11]. In this method, we first order all queries in Q using the simplified query clarity score
(SCS) [39]. Then, we select the two million queries that have the highest SCS scores. These queries
are then used for document retrieval against the complete collection of 1.2 million documents as
Boolean AND queries with subsequent ranking according to the chosen retrieval model to determine
the retrievability scores of documents as defined in Equation (20).

Table 3 lists the retrieval bias of retrieval strategies using Gini coefficient for a range of rank cutoff
factors. As expected, the Gini coefficient tends to decrease slowly for all query sets and models as
the rank cutoff factor increases. This indicates that retrievability inequality within the collection is
mitigated by the willingness of the user to search deeper down into the ranking. If users examine only
the top documents, they will face a greater degree of retrieval bias. If we compare the retrieval bias of
retrieval models, then we can observe that SMART has the greatest inequality between documents,
while BM25 appears to provide the least inequality.

Table 3. Gini coefficients representing the retrieval bias of the retrieval models. High values indicate
that retrieval models have a larger retrieval bias than others.

Retrieval Model
High Quality Queries

c = 50 c = 100 c = 250

NormTFIDF 0.68 0.60 0.49
BM25 0.55 0.50 0.43
DirS 0.59 0.53 0.46
JM 0.67 0.60 0.50

AbsDis 0.64 0.57 0.48
TwoStage 0.60 0.53 0.43

TFIDF 0.89 0.84 0.72
SMART 0.95 0.92 0.85

5.3. Retrieval Bias and PRF Effectiveness

In the above experiments, we observed that retrieval models add retrieval bias in the collection
making a subset of documents more highly retrievable than others. For the first experiment, we
want to analyze if a collection has large retrievability inequality between documents; then, do high
retrievable documents of clusters decrease the effectiveness of cluster-based PRF? We want to analyze
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this hypothesis with the help of various partitions of the documents of clusters grouped according
to retrievability scores. We want to analyze which partitions contribute most to PRF effectiveness
than others. In order to perform this, we first sort the documents of the collection in ascending order
according to their retrievability scores, and then, we divide the collection into p partitions (subsets).
This means that the first subset contains (Partition 1) all those documents that accounted from the
bottom (100/p)% of the cumulative retrievability scores, and the last subset (Partition 5) would contain
the most retrievable documents containing the (100− (100/p))% percentile. Since we generate clusters
using BM25 weighting, therefore, for the experiments, we consider the retrievability scores that we
calculated using BM25. For each subset, we then individually analyze the PRF effectiveness on 1000
known prior-art topics queries as explained above by keeping only those documents of clusters that
are part of the analyzed subset and ignoring all those that are not part of the subset. The idea is to
issue each topic query to the whole collection and then to analyze which subsets add noise and which
subsets contribute most to PRF effectiveness than others.

Table 4 shows the PRF effectiveness of subsets with p = 5. This table also shows which subset
is retrieved more frequently than others within the top 500 documents. We examine this by the
retrieval probability of subsets within the top 500 documents (i.e., how many documents of a subset are
retrieved within the top 500 documents). As we can observe from the results, high retrievable subsets
have low PRF effectiveness than low retrievable subsets, although documents of high retrievable
subsets are retrieved more frequently than the documents of low retrievable subsets (see Table 4).
Although, high retrievable documents are also a relevant part of the clusters, however, when these
are frequently retrieved at top positions for many irrelevant queries just due to retrieval bias, these
decrease the effectiveness by generating noisy clusters. Low retrievable documents on the other side
are not frequently retrieved due to retrieval bias; thus, when we construct clusters by taking only low
retrievable documents, then the noise of retrieval bias does not decrease effectiveness. We found this
the main reason why low retrievable partitions have high effectiveness for PRF than high retrievable
partitions. These results confirm our hypothesis that the retrieval bias of retrieval models seriously
degrades the retrieval effectiveness of cluster-based PRF.

Table 4. Effectiveness of different subsets with p = 5. We first sort the documents of the collection
in ascending order according to their retrievability scores, and then, we divide the collection into
p partitions. Partition 5 contains high retrievable documents containing the (100 − (100/p))%
percentile, and Partition 1 contains all those documents that accounted for the bottom (100/p)%
of the cumulative retrievability scores (low retrievability documents). High retrievable subsets show
low PRF effectiveness due to retrieval bias. Subset % within the top 500 docs shows that the subset is
retrieved more frequently than others within the top 500 documents. We examine this by the retrieval
probability of subsets within the top 500 documents (i.e., how many documents of a subset are retrieved
within the top 500 documents). ? indicates results are better than others.

Retrieval Model Subset % within Top 500 Documents
Effectiveness

R@100 P@30 MAP b-pref

Partition 1 11% ?0.103 ?0.221 ?0.150 ?0.551
Partition 2 14% ?0.098 ?0.213 ?0.143 ?0.546
Partition 3 20% 0.095 0.212 0.136 0.543
Partition 4 ?25% 0.090 0.199 0.130 0.540
Partition 5 ?30% 0.091 0.191 0.129 0.540

5.4. Retrievability and Cluster-Based PRF (RetrClusPRF)

From t he above experiments, we observe that the standard approach constructs clusters for PRF
without carrying retrievability inequality between documents. Therefore, during query processing,
high retrievable documents of clusters are frequently retrieved at top positions for most of the queries,
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and these drift the PRF away from relevant documents. This decreases the effectiveness of cluster-based
PRF. In order to improve the effectiveness, we construct clusters by retrieving k-nearest neighbors on
the basis of high similarity and then using retrievability. For each cluster, first we rank the 2× k-nearest
neighbors of clusters on the basis of their high similarity with centroid documents, and then, we again
re-rank k-nearest neighbors from 2 × k list on the basis of low retrievability scores. The rationale
behind keeping low retrievable neighbors in the clusters is that we want to minimize the effect of
retrieval bias. We perform this process for all clusters, and then, we use these clusters for PRF. Tables 5
and 6 show the effectiveness of this approach (RetrClusPRF) and the standard k-nearest neighbor
approach (resampling as a baseline), where we construct clusters by retrieving only similar neighbors.
Figure 4 shows the architecture of RetrClusPRF. As we can seen from the architecture, retrievability
provides help in removing noisy (high retrievable) documents from the clusters. If we analyze the
results, then RetrClusPRF brings an improvement of (12%, 15%, 32%, 6%) on R@100, P@30, MAP
and b-pref as compared to resampling. Table 6 shows the robustness of RetrClusPRF with resampling
and also with other retrieval approaches. RetrClusPRF shows stronger robustness than resampling.
It improves 428 queries and hurts 321. As we can observe from the results, retrievability-based PRF
(RetrClusPRF) achieves significantly better effectiveness than standard cluster-based PRF technique.

Table 5. Effectiveness of RetrClusPRF and FreqNeigPRF on the TREC-CRT collection. ? indicates
improvement on the effectiveness that is gained by applying enhanced cluster construction techniques
over the baseline (resampling) approach.

Retrieval Model
Effectiveness

R@100 P@30 MAP b-pref

TFIDF 0.015 0.006 0.005 0.133
NormTFIDF 0.057 0.032 0.016 0.243

BM25 0.121 0.079 0.037 0.351
SMART 0.036 0.016 0.010 0.210

DirS 0.144 0.093 0.045 0.406
JM 0.148 0.094 0.045 0.410

AbsDis 0.145 0.094 0.044 0.392
TwoStage 0.141 0.089 0.044 0.403
TS-LM 0.180 0.112 0.063 0.500

TS-KLD 0.157 0.097 0.050 0.429
Resampling 0.199 0.138 0.081 0.523

RetrClusPRF ?0.223 (+12%) ?0.159 (+15%) ?0.107 (+32%) ?0.552 (+06%)
FreqNeigPRF ?0.235 (+18%) ?0.168 (+22%) ?0.121 (+49%) ?0.572 (+09%)

Table 6. Robustness of RetrClusPRF and FreqNeigPRF relative to others using mean average precision
(MAP). The values of the cell show that the number of queries improves or hurts by applying this
method over others. The superscript α with ? indicates statistically-significant improvements over
others. We use the paired t-test with significance at p < 0.05.

TS-LM Resampling JM TS-KLD RetrClusPRF FreqNeigPRF

TS-LM - 292/448 493/294 α 449/313 α 217/518 205/542
Resampling ?448/292 α - ?540/281 α ?523/279 α ?321/428 ?304/441

JM 294/493 281/540 - 305/371 231/589 201/608
TS-KLD 313/449 279/523 371/305 - 236/567 210/599

RetrClusPRF ?518/217 α ?428/321 α ?589/231 α ?567/236 α - ?327/401
FreqNeigPRF ?542/205 α ?441/304 α ?608/201 α ?599/210 α ?401/327 α -
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Figure 4. Architecture of retrievability and cluster-based pseudo-relevance feedback (RetrClusPRF).

5.5. Frequent Neighbor-Based PRF (FreqNeig)

The above experiments indicate that retrievability-based clustering improves PRF effectiveness.
The standard retrievability approach only analyzes individual retrievability scores of documents, but
does not discover which documents are frequently retrieved together. As a result, this approach always
penalizes high retrievable documents and can ignore many (high retrievable) relevant documents of
clusters that are frequently retrieved with documents of the cluster. Further improvement is possible
by ranking k-nearest neighbors that have a high confidence of retrieval with other documents of
the cluster.

In order to mine frequent neighbors (FreqNeig), we represent the result list of queries as
transactions and mine FreqNeig using the frequent itemset mining algorithm [40]. We mine all
those FreqNeig that have a length larger than one and support greater than 0.05%. After mining
FreqNeig, we first rank 2 × k-nearest neighbors on the basis of their high similarity with centroids, and
then, we again re-rank k-nearest neighbors from the 2 × k list that have a high confidence of retrieval
with the nearest neighbors of clusters. For each nearest neighbor, we assign a confidence score using
the following approach. For each nearest neighbor ki, we first obtain the set si of all those frequent
itemsets that contain ki. From the set si, we then remove all of those itemsets that have an item that is
not present in the 2 × k set. After pruning itemsets, we generate association rules for the remaining
itemsets using confidence support greater than 20%. For a rule Dr → di, the higher confidence for
document di implies that di is more likely to retrieve in the result lists of queries that also contain
documents of set Dr. We generate association rules for all itemsets of si, and then, we rank neighbors
in the 2 × k list on the basis of their average confidence score. Figure 5 shows the architecture of
this approach.
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Figure 5. Architecture of frequent neighbor-based pseudo-relevance feedback (FreqNeigPRF).

Tables 5 and 6 show the comparison of effectiveness of this approach (FreqNeigPRF) with the
retrievability-based PRF (RetrClusPRF) and standard k-nearest neighbor approach (resampling) (as a
baseline). FreqNeigPRF brings an improvement of (5%, 6%, 13%, 4%) on R@100, P@30, MAP and
b-pref as compared to RetrClusPRF and (18%, 22%, 49%, 9%) as compared to resampling. Table 6
shows the robustness of resampling, RetrClusPRF and FreqNeigPRF to each other. As expected,
FreqNeigPRF shows stronger robustness than resampling. It improves 441 queries and hurts 304,
whereas RetrClusPRF improves 428 queries and hurts 321. Although FreqNeigPRF improves the
effectiveness of only 13 more queries than RetrClusPRF, however, the improvement obtained by
FreqNeigPRF is large. As we can observe from the results, frequent retrieved document-based PRF
achieves significantly higher effectiveness than other two approaches.

6. Conclusions

In this paper, we studied the effect of retrieval bias on cluster-based pseudo relevance feedback
(PRF). We first showed that if we construct clusters for PRF only by retrieving highly similar neighbors
and ignore retrievability, then high retrievable documents of clusters add noise in PRF due to retrieval
bias. We then extend the standard approach by constructing clusters on the basis of high similarity
and retrievability. In this approach, we first retrieve the documents of clusters on the basis of their
similarity, and then, we re-ranked documents and keep only those documents in the clusters that do not
decrease the effectiveness due to retrieval bias. We further improve this approach by mining frequent
neighbors of clusters and keep only those documents in the clusters that are frequently retrieved with
documents of the clusters and are infrequently retrieved with those documents that are not part of
clusters. Experiments show that retrievability-based PRF is helpful for identifying better documents
for pseudo relevance feedback.
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