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Abstract: In order to improve the performance of an inertial navigation system, many aiding sensors
can be used. Among these aiding sensors, a vision sensor is of particular note due to its benefits in
terms of weight, cost, and power consumption. This paper proposes an inertial and vision integrated
navigation method for poor vision navigation environments. The proposed method uses focal plane
measurements of landmarks in order to provide position, velocity and attitude outputs even when
the number of landmarks on the focal plane is not enough for navigation. In order to verify the
proposed method, computer simulations and van tests are carried out. The results show that the
proposed method gives accurate and reliable position, velocity and attitude outputs when the number
of landmarks is insufficient.

Keywords: vision navigation system; inertial navigation system; integrated navigation; focal plane
measurements; landmark

1. Introduction

The inertial navigation system (INS) is a self-contained dead-reckoning navigation system that
provides continuous navigation outputs with high-bandwidth and short-term stability. Due to its
navigation characteristics, the accuracy of the navigation output degrades as time passes. In order to
improve the performance of the INS, a navigation aid can be integrated into the INS. The GPS/INS
integrated navigation system is one of the most generally used integrated navigation systems [1,2].
However, the GPS/INS integrated navigation system may not produce reliable navigation outputs,
since the GPS signal is vulnerable to interference such as jamming and spoofing [3,4]. In recent
years, many alternative navigation systems to GPS such as vision, radar, laser, ultrasonic sensor,
UWB (Ultra-Wide Band) and eLoran (enhanced Long range navigation) have been studied in order to
provide continuous, reliable navigation outputs [4].

Vision sensors have recently been used for navigation of vehicles such as cars, small-sized
low-cost airborne systems and mobile robots due to their benefits in terms of weight, cost and power
consumption [5–7]. Navigations using vision sensors can be classified into three methods [4,7].
The first method determines the position of the vehicle by comparing the measured image of a
camera with the stored image or stored information of a map [8]. The second method, which is
called landmark-based vision navigation, determines position and attitude by calculating directions
to landmarks from the measured image of the landmarks [9,10]. The third method, called visual
odometry, determines the motion of the vehicle from successive images of the camera [11]. Among
these three methods, the landmark-based approach is known to have the advantages of bounded
navigation parameter error and simple computation [7].
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In order to integrate an inertial navigation system with a vision navigation system,
several methods have been proposed [12–16]. The method in [12] uses gimbal angle and/or bearing
information calculated from camera images. In this case, the integrated navigation method may not
give an optimal navigation output since the inputs to the integration filter are processed outputs
from raw measurements from the vision sensor. When the visual odometry is used for the integrated
navigation system as in [13], the error of the navigation output from the vision navigation system
increases with time. The integrated navigation method proposed in [14–16] uses the position and
attitude, velocity or heading information from the vision navigation system. This integrated navigation
method may not give a reliable navigation output when the number of landmarks in the camera image
is not enough for the navigation output.

This paper proposes an inertial and vision integrated navigation method for poor vision
environments, in which position and attitude outputs cannot be obtained from a vision navigation
system due to the limited number of landmarks. The proposed method uses focal plane measurements
of landmarks in the camera and INS outputs. Since there is no need to have navigation output from
the vision navigation system, the proposed method can give integrated navigation output even when
the number of landmarks in the camera is not enough for the navigation output. In addition to this,
since the integration method uses raw measurements for integration filter, the navigation output may
have better performance. In Section 2, a brief description of landmark-based vision navigation is given.
The proposed integration method is presented in Section 3. Results of computer simulations and
vehicle experiments are given in Section 4. The concluding remarks and further studies are mentioned
in Section 5.

2. Landmark-Based Vision Navigation

Vision navigation output is computed from the projected landmarks on the focal plane in
landmark-based vision navigation [7,13,14]. Figure 1 shows projected landmarks on the focal plane
when the pin hole camera model is adopted. The xc axis of the camera frame is aligned with the optical
axis of the camera. The yc and zc axes are in the horizontal and vertical direction of the focal plane,
respectively. The focal plane is placed at a distance of focal length, f , on the xc axis.
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Figure 1. Landmark measurements in the vision navigation.

As shown in Figure 1, the landmark at position Pc
k (Xc

k, Yc
k , Zc

k) is projected into the point
pc

k( f , uk, vk) on the focal plane in the camera frame. Equations (1) and (2) represent the relationship
between the measurements on the focal plane and landmark coordinate values.

uk = f
Yc

k
Xc

k
(1)
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vk = f
Zc

k
Xc

k
(2)

Equation (3) is the navigation equation to obtain navigation output from landmark measurement
on the focal plane of the camera.

Pn
k − Pn

u = rkCn
b Cb

c pc
k (3)

where the subscript k denotes index of landmarks and Pn
k is a known position vector of the kth

landmark. b, c and n denote the body frame, the camera frame and the navigation frame, respectively.
Pn

u is the vehicle’s three-dimensional position vector in the navigation frame. rk is the distance ratio
of the projected landmark on the focal plane to the actual landmark in the camera frame. Cn

b and Cb
c

are the direction cosine matrix from the body frame to the navigation frame and the direction cosine
matrix from the camera frame to the body frame, respectively. Here, Cb

c is a constant matrix since the
camera is fixed to the body.

It can be seen from Equation (3) that at least three measurements are required in order to determine
a navigation output of six variables, which are three-dimensional position and attitude [14]. In this
paper, more than 0 and less than 3 landmarks are available in the poor vision environments.

3. Vision/INS Integrated Navigation System

3.1. Vision/INS Integrated Navigation System

Figure 2 describes the proposed method of a vision/INS integrated navigation system. The inertial
navigation system computes vehicle’s position (PINS), velocity (VINS) and attitude (ΨINS) from
outputs of IMU (Inertial Measurement Unit) (∆v, ∆θ). The vision navigation system gives projected
landmark measurements on the focal plane (uk, VIS, vk, VIS). Kalman filter estimates the INS errors
(δxnav, ∇ and ε) and the vision sensor errors (δu, δv and δ f ).
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Figure 2. Proposed method of the vision/INS integrated navigation system.

3.2. Process Model of the Kalman Filter

INS error equation can be obtained by perturbing the navigation equation of the INS [17].
The process model based on the INS error equation and the sensor error equation for the proposed
method is given in Equation (4).

.
δx(t) = F(t)δx(t) + w(t), w(t) ∼ N(0, Q(t)) (4)

where w(t) is process noise vector with covariance Q(t). Equation (4) can be rewritten into Equation (5).
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[ .
δxnav.
δxsen

]
=

[
F11 F12

09×9 09×9

] [
δxnav

δxsen

]
+

[
wnav

wsen

]
(5)

where wnav and wsen are the navigation parameter error vector noise and sensor error vector noise v,
respectively. State vector δx is composed of navigation parameter error vector δxnav and sensor error
vector δxsen. 0m×n denotes an m by n zero matrix. The navigation parameter error vector is composed
of position error, velocity error and attitude error of the INS as given in Equation (6).

δxnav = [δPN δPE δPD δVN δVE δVD 6ϕN ϕE ϕD]
T (6)

where δP, δV, and ϕ are position error, velocity error and attitude error expressed in the rotation vector,
respectively. The subscripts N, E and D are the north, the east and the down axes in the navigation
frame, respectively. The sensor error vector includes six inertial sensor errors and three vision sensor
errors as in Equation (7).

δxsen = [∇x ∇y ∇z εx εy εz δu δv δ f ]T (7)

where∇ and ε are accelerometer and the gyro error, respectively. δu and δv are errors of the coordinate
values on the focal plane and δ f is focal length error. The subscripts x, y and z denote roll, pitch and
yaw direction in the body frame, respectively. Submatrix F11 in Equation (5) is given in Equation (8).

F11 =

 −Ωn
en I3×3 O3×3

O3×3 Ωn
ie + Ωn

in f n×
O3×3 O3×3 −Ωn

in

 (8)

where Ωn
en, Ωn

ie and Ωn
in are the skew-symmetric matrix of the vehicle’s craft-rate in the navigation

frame, the skew-symmetric matrix of the earth rate in the navigation frame and the skew-symmetric
matrix of the rotation rate of the navigation frame relative to the inertial frame represented in the
navigation frame, respectively. f n× is the skew-symmetric matrix of the vehicle’s specific force in the
navigation frame. Submatrix F12 in Equation (5) is given in Equation (9).

F12 =

 O3×3 O3×3 O3×3

Cn
b O3×3 O3×3

O3×3 −Cn
b O3×3

 (9)

The accelerometer sensor error and the gyro error are modeled as random constants and are given
in Equations (10) and (11), respectively.

.

∇b = 0 (10)
.

εb = 0 (11)

The vision senor errors are also modeled as random constants and are given in Equations (12)–(14).
.

δu = 0 (12)
.

δv = 0 (13)
.

δ f = 0 (14)

3.3. Measurement Model of the Kalman Filter

The measurement equation for the Kalman filter is given in Equation (15).

δz(t) = H(t)δx(t) + v(t), v(t) ∼ N(0, R(t)) (15)

where H(t) is the observation matrix and v(t) is the measurement noise vector with covariance R(t).
The measurement vector δz(t) is given in Equation (16).
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δz = [δu1 δu2 · · · δun δv1 δv2 · · · δvn]
T (16)

where δuk and δvk denote the differences between the INS-based estimates and measurements on the
focal plane for the k-th landmark. n denotes the number of the landmarks on the focal plane of the
camera. The INS-based estimates for each element in Equation (16) are calculated from position and
attitude outputs of INS and the position information of the landmarks. The observation matrix is given
in Equation (17).

H ≡ [H1 H2 H3] (17)

Each sub-matrix in the observation matrix can be obtained from computing the Jacobian.
The submatrix H1 is given in Equation (18).
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𝜕𝑢1

𝜕𝑥

𝜕𝑢1

𝜕𝑦

𝜕𝑢1

𝜕𝑧
𝑂1×3

⋮ ⋮ ⋮ ⋮
𝜕𝑢𝑛

𝜕𝑥

𝜕𝑢𝑛

𝜕𝑦

𝜕𝑢𝑛

𝜕𝑧
𝑂1×3

𝜕𝑣1

𝜕𝑥

𝜕𝑣1

𝜕𝑦

𝜕𝑣1

𝜕𝑧
𝑂1×3

⋮ ⋮ ⋮ ⋮
𝜕𝑣𝑛

𝜕𝑥

𝜕𝑣𝑛

𝜕𝑦

𝜕𝑣𝑛

𝜕𝑧
𝑂1×3]
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where [𝑥 𝑦 𝑧]𝑇 is the position vector in the navigation frame. The submatrix 𝐻2 is given in Equation (19). 
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[
 
 
 
 
 
 
 
 
 
 
𝜕𝑢1

𝜕𝛼
𝐴11 +

𝜕𝑢1

𝜕𝛽
𝐴21 +

𝜕𝑢1

𝜕𝛾
𝐴31

𝜕𝑢1

𝜕𝛼
𝐴12 +

𝜕𝑢1

𝜕𝛽
𝐴22 +

𝜕𝑢1

𝜕𝛾
𝐴32 

⋮ ⋮
𝜕𝑢𝑛

𝜕𝛼
𝐴11 +

𝜕𝑢𝑛

𝜕𝛽
𝐴21 +

𝜕𝑢𝑛

𝜕𝛾
𝐴31

𝜕𝑢𝑛

𝜕𝛼
𝐴12 +

𝜕𝑢𝑛

𝜕𝛽
𝐴22 +

𝜕𝑢𝑛

𝜕𝛾
𝐴32    

𝜕𝑣1

𝜕𝛼
𝐴11 +

𝜕𝑣1

𝜕𝛽
𝐴21 +

𝜕𝑣1

𝜕𝛾
𝐴31

𝜕𝑣1

𝜕𝛼
𝐴12 +

𝜕𝑣1

𝜕𝛽
𝐴22 +

𝜕𝑣1

𝜕𝛾
𝐴32

⋮ ⋮
𝜕𝑣𝑛

𝜕𝛼
𝐴11 +

𝜕𝑣𝑛

𝜕𝛽
𝐴21 +

𝜕𝑣𝑛

𝜕𝛾
𝐴31

𝜕𝑣𝑛

𝜕𝛼
𝐴12 +

𝜕𝑣𝑛

𝜕𝛽
𝐴22 +

𝜕𝑣𝑛

𝜕𝛾
𝐴32

 

𝜕𝑢1

𝜕𝛼
𝐴13 +

𝜕𝑢1

𝜕𝛽
𝐴23 +

𝜕𝑢1

𝜕𝛾
𝐴33 𝑂1×6

⋮ ⋮
𝜕𝑢𝑛

𝜕𝛼
𝐴13 +

𝜕𝑢𝑛

𝜕𝛽
𝐴23 +

𝜕𝑢𝑛

𝜕𝛾
𝐴33 𝑂1×6

𝜕𝑣1

𝜕𝛼
𝐴13 +

𝜕𝑣1

𝜕𝛽
𝐴23 +

𝜕𝑣1

𝜕𝛾
𝐴33 𝑂1×6

⋮ ⋮
𝜕𝑣𝑛

𝜕𝛼
𝐴13 +

𝜕𝑣𝑛

𝜕𝛽
𝐴23 +

𝜕𝑣𝑛

𝜕𝛾
𝐴33 𝑂1×6]

 
 
 
 
 
 
 
 
 
 

 (19) 

where [𝛼 𝛽 𝛾]𝑇 is the attitude vector expressed in the Euler angle in the navigation frame. The attitude error in the process model Equation (6) is 

represented in the rotation vector, whereas the attitude error in Equation (19) is represented in the Euler angle. The relationship between the rotation vector 

and the Euler angle is expressed in Equation (26) [18]. The 𝐴𝑖𝑗(𝑖 = 1,2,3, 𝑗 = 1,2,3) in Equation (19) are the same as those in Equation (20). 

[
𝛿𝛼
𝛿𝛽
𝛿𝛾

] ≡ 𝐴 [

𝜑𝑁

𝜑𝐸

𝜑𝐷

] = [

𝐴11 𝐴12 𝐴31

𝐴21 𝐴22 𝐴32

𝐴31 𝐴23 𝐴11

] [

𝜑𝑁

𝜑𝐸

𝜑𝐷

] = [
−𝑐𝑜𝑠𝛾/𝑐𝑜𝑠𝛽 −𝑠𝑖𝑛𝛾/𝑐𝑜𝑠𝛽 0

𝑠𝑖𝑛𝛾 −𝑐𝑜𝑠𝛾 0
−𝑡𝑎𝑛𝛽𝑐𝑜𝑠𝛾 −𝑡𝑎𝑛𝛽𝑠𝑖𝑛𝛾 −1

] [

𝜑𝑁

𝜑𝐸

𝜑𝐷

] (20) 

The submatrix 𝐻3 is given in Equation (21). 

𝐻3 =

[
 
 
 
 
 
 
 
 
 
 −1 0 −

𝑌1

𝑋1

⋮ ⋮ ⋮

−1 0 −
𝑌𝑛

𝑋𝑛

0 −1 −
𝑍1

𝑋1

⋮ ⋮ ⋮

0 −1 −
𝑍𝑛

𝑋𝑛]
 
 
 
 
 
 
 
 
 
 

 (21) 

where [𝑋𝑘 𝑌𝑘 𝑍𝑘]
𝑇 is the position vector of the 𝑘th landmark in the camera frame and can be expressed in Equation (22). 

[

𝑋𝑘

𝑌𝑘

𝑍𝑘

] = 𝐶𝑛
𝑐 [

𝑥𝑘 − 𝑥
𝑦𝑘 − 𝑦
𝑧𝑘 − 𝑧

] = [

𝐶11 𝐶12 𝐶13

𝐶21 𝐶22 𝐶23

𝐶31 𝐶32 𝐶33

] [

𝑥𝑘 − 𝑥
𝑦𝑘 − 𝑦
𝑧𝑘 − 𝑧

] (22) 

Then, [𝜕𝑢𝑘 𝜕𝑥⁄ 𝜕𝑢𝑘 𝜕𝑦⁄ 𝜕𝑢𝑘 𝜕𝑧⁄ ] in Equation (18) can be expressed in Equation (23). 

[
𝜕𝑢𝑘

𝜕𝑥

𝜕𝑢𝑘

𝜕𝑦

𝜕𝑢𝑘

𝜕𝑧
] = [𝑓

𝑌𝑘

𝑋𝑘
2 −𝑓

1

𝑋𝑘
0] [

𝐶11 𝐶12 𝐶13

𝐶21 𝐶22 𝐶23

𝐶31 𝐶32 𝐶33

] (23) 

And [𝜕𝑢𝑘 𝜕𝛼⁄ 𝜕𝑢𝑘 𝜕𝛽⁄ 𝜕𝑢𝑘 𝜕𝛾⁄ ] in Equation (19) can be expressed in Equation (24). 

[
𝜕𝑢𝑘

𝜕𝛼

𝜕𝑢𝑘

𝜕𝛽

𝜕𝑢𝑘

𝜕𝛾
] = [−𝑓

𝑌𝑘

𝑋𝑘
2 𝑓

1

𝑋𝑘
0]

[
 
 
 
 
 
 
𝜕𝑋𝑘

𝜕𝛼

𝜕𝑋𝑘

𝜕𝛽

𝜕𝑋𝑘

𝜕𝛾
𝜕𝑌𝑘

𝜕𝛼

𝜕𝑌𝑘

𝜕𝛽

𝜕𝑌𝑘

𝜕𝛾
𝜕𝑍𝑘

𝜕𝛼

𝜕𝑍𝑘

𝜕𝛽

𝜕𝑍𝑘

𝜕𝛾 ]
 
 
 
 
 
 

 (24) 

(18)

where [x y z]T is the position vector in the navigation frame. The submatrix H2 is given in
Equation (19).
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𝐻 ≡ [𝐻1 𝐻2 𝐻3] (17) 

Each sub-matrix in the observation matrix can be obtained from computing the Jacobian. The submatrix 𝐻1 is given in Equation (18). 

𝐻1 =

[
 
 
 
 
 
 
 
 
 
 
𝜕𝑢1

𝜕𝑥

𝜕𝑢1

𝜕𝑦

𝜕𝑢1

𝜕𝑧
𝑂1×3

⋮ ⋮ ⋮ ⋮
𝜕𝑢𝑛

𝜕𝑥

𝜕𝑢𝑛

𝜕𝑦

𝜕𝑢𝑛

𝜕𝑧
𝑂1×3

𝜕𝑣1

𝜕𝑥

𝜕𝑣1

𝜕𝑦

𝜕𝑣1

𝜕𝑧
𝑂1×3

⋮ ⋮ ⋮ ⋮
𝜕𝑣𝑛

𝜕𝑥

𝜕𝑣𝑛

𝜕𝑦

𝜕𝑣𝑛

𝜕𝑧
𝑂1×3]

 
 
 
 
 
 
 
 
 
 

 (18) 

where [𝑥 𝑦 𝑧]𝑇 is the position vector in the navigation frame. The submatrix 𝐻2 is given in Equation (19). 

𝐻2 =

[
 
 
 
 
 
 
 
 
 
 
𝜕𝑢1

𝜕𝛼
𝐴11 +

𝜕𝑢1

𝜕𝛽
𝐴21 +

𝜕𝑢1

𝜕𝛾
𝐴31

𝜕𝑢1

𝜕𝛼
𝐴12 +

𝜕𝑢1

𝜕𝛽
𝐴22 +

𝜕𝑢1

𝜕𝛾
𝐴32 

⋮ ⋮
𝜕𝑢𝑛

𝜕𝛼
𝐴11 +

𝜕𝑢𝑛

𝜕𝛽
𝐴21 +

𝜕𝑢𝑛

𝜕𝛾
𝐴31

𝜕𝑢𝑛

𝜕𝛼
𝐴12 +

𝜕𝑢𝑛

𝜕𝛽
𝐴22 +

𝜕𝑢𝑛

𝜕𝛾
𝐴32    

𝜕𝑣1

𝜕𝛼
𝐴11 +

𝜕𝑣1

𝜕𝛽
𝐴21 +

𝜕𝑣1

𝜕𝛾
𝐴31

𝜕𝑣1

𝜕𝛼
𝐴12 +

𝜕𝑣1

𝜕𝛽
𝐴22 +

𝜕𝑣1

𝜕𝛾
𝐴32

⋮ ⋮
𝜕𝑣𝑛

𝜕𝛼
𝐴11 +

𝜕𝑣𝑛

𝜕𝛽
𝐴21 +

𝜕𝑣𝑛

𝜕𝛾
𝐴31

𝜕𝑣𝑛

𝜕𝛼
𝐴12 +

𝜕𝑣𝑛

𝜕𝛽
𝐴22 +

𝜕𝑣𝑛

𝜕𝛾
𝐴32

 

𝜕𝑢1

𝜕𝛼
𝐴13 +

𝜕𝑢1

𝜕𝛽
𝐴23 +

𝜕𝑢1

𝜕𝛾
𝐴33 𝑂1×6

⋮ ⋮
𝜕𝑢𝑛

𝜕𝛼
𝐴13 +

𝜕𝑢𝑛

𝜕𝛽
𝐴23 +

𝜕𝑢𝑛

𝜕𝛾
𝐴33 𝑂1×6

𝜕𝑣1

𝜕𝛼
𝐴13 +

𝜕𝑣1

𝜕𝛽
𝐴23 +

𝜕𝑣1

𝜕𝛾
𝐴33 𝑂1×6

⋮ ⋮
𝜕𝑣𝑛

𝜕𝛼
𝐴13 +

𝜕𝑣𝑛

𝜕𝛽
𝐴23 +

𝜕𝑣𝑛

𝜕𝛾
𝐴33 𝑂1×6]

 
 
 
 
 
 
 
 
 
 

 (19) 

where [𝛼 𝛽 𝛾]𝑇 is the attitude vector expressed in the Euler angle in the navigation frame. The attitude error in the process model Equation (6) is 

represented in the rotation vector, whereas the attitude error in Equation (19) is represented in the Euler angle. The relationship between the rotation vector 

and the Euler angle is expressed in Equation (26) [18]. The 𝐴𝑖𝑗(𝑖 = 1,2,3, 𝑗 = 1,2,3) in Equation (19) are the same as those in Equation (20). 

[
𝛿𝛼
𝛿𝛽
𝛿𝛾

] ≡ 𝐴 [

𝜑𝑁

𝜑𝐸

𝜑𝐷

] = [

𝐴11 𝐴12 𝐴31

𝐴21 𝐴22 𝐴32

𝐴31 𝐴23 𝐴11

] [

𝜑𝑁

𝜑𝐸

𝜑𝐷

] = [
−𝑐𝑜𝑠𝛾/𝑐𝑜𝑠𝛽 −𝑠𝑖𝑛𝛾/𝑐𝑜𝑠𝛽 0

𝑠𝑖𝑛𝛾 −𝑐𝑜𝑠𝛾 0
−𝑡𝑎𝑛𝛽𝑐𝑜𝑠𝛾 −𝑡𝑎𝑛𝛽𝑠𝑖𝑛𝛾 −1

] [

𝜑𝑁

𝜑𝐸

𝜑𝐷

] (20) 

The submatrix 𝐻3 is given in Equation (21). 

𝐻3 =

[
 
 
 
 
 
 
 
 
 
 −1 0 −

𝑌1

𝑋1

⋮ ⋮ ⋮

−1 0 −
𝑌𝑛

𝑋𝑛

0 −1 −
𝑍1

𝑋1

⋮ ⋮ ⋮

0 −1 −
𝑍𝑛

𝑋𝑛]
 
 
 
 
 
 
 
 
 
 

 (21) 

where [𝑋𝑘 𝑌𝑘 𝑍𝑘]
𝑇 is the position vector of the 𝑘th landmark in the camera frame and can be expressed in Equation (22). 

[

𝑋𝑘

𝑌𝑘

𝑍𝑘

] = 𝐶𝑛
𝑐 [

𝑥𝑘 − 𝑥
𝑦𝑘 − 𝑦
𝑧𝑘 − 𝑧

] = [

𝐶11 𝐶12 𝐶13

𝐶21 𝐶22 𝐶23

𝐶31 𝐶32 𝐶33

] [

𝑥𝑘 − 𝑥
𝑦𝑘 − 𝑦
𝑧𝑘 − 𝑧

] (22) 

Then, [𝜕𝑢𝑘 𝜕𝑥⁄ 𝜕𝑢𝑘 𝜕𝑦⁄ 𝜕𝑢𝑘 𝜕𝑧⁄ ] in Equation (18) can be expressed in Equation (23). 

[
𝜕𝑢𝑘

𝜕𝑥

𝜕𝑢𝑘

𝜕𝑦

𝜕𝑢𝑘

𝜕𝑧
] = [𝑓

𝑌𝑘

𝑋𝑘
2 −𝑓

1

𝑋𝑘
0] [

𝐶11 𝐶12 𝐶13

𝐶21 𝐶22 𝐶23

𝐶31 𝐶32 𝐶33

] (23) 

And [𝜕𝑢𝑘 𝜕𝛼⁄ 𝜕𝑢𝑘 𝜕𝛽⁄ 𝜕𝑢𝑘 𝜕𝛾⁄ ] in Equation (19) can be expressed in Equation (24). 

[
𝜕𝑢𝑘

𝜕𝛼

𝜕𝑢𝑘

𝜕𝛽

𝜕𝑢𝑘

𝜕𝛾
] = [−𝑓

𝑌𝑘

𝑋𝑘
2 𝑓

1

𝑋𝑘
0]

[
 
 
 
 
 
 
𝜕𝑋𝑘

𝜕𝛼

𝜕𝑋𝑘

𝜕𝛽

𝜕𝑋𝑘

𝜕𝛾
𝜕𝑌𝑘

𝜕𝛼

𝜕𝑌𝑘

𝜕𝛽

𝜕𝑌𝑘

𝜕𝛾
𝜕𝑍𝑘

𝜕𝛼

𝜕𝑍𝑘

𝜕𝛽

𝜕𝑍𝑘

𝜕𝛾 ]
 
 
 
 
 
 

 (24) 
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Each sub-matrix in the observation matrix can be obtained from computing the Jacobian. The submatrix 𝐻1 is given in Equation (18). 

𝐻1 =

[
 
 
 
 
 
 
 
 
 
 
𝜕𝑢1

𝜕𝑥

𝜕𝑢1

𝜕𝑦

𝜕𝑢1

𝜕𝑧
𝑂1×3

⋮ ⋮ ⋮ ⋮
𝜕𝑢𝑛

𝜕𝑥

𝜕𝑢𝑛

𝜕𝑦

𝜕𝑢𝑛

𝜕𝑧
𝑂1×3

𝜕𝑣1

𝜕𝑥

𝜕𝑣1

𝜕𝑦

𝜕𝑣1

𝜕𝑧
𝑂1×3

⋮ ⋮ ⋮ ⋮
𝜕𝑣𝑛

𝜕𝑥

𝜕𝑣𝑛

𝜕𝑦

𝜕𝑣𝑛

𝜕𝑧
𝑂1×3]

 
 
 
 
 
 
 
 
 
 

 (18) 

where [𝑥 𝑦 𝑧]𝑇 is the position vector in the navigation frame. The submatrix 𝐻2 is given in Equation (19). 

𝐻2 =

[
 
 
 
 
 
 
 
 
 
 
𝜕𝑢1

𝜕𝛼
𝐴11 +

𝜕𝑢1

𝜕𝛽
𝐴21 +

𝜕𝑢1

𝜕𝛾
𝐴31

𝜕𝑢1

𝜕𝛼
𝐴12 +

𝜕𝑢1

𝜕𝛽
𝐴22 +

𝜕𝑢1

𝜕𝛾
𝐴32 

⋮ ⋮
𝜕𝑢𝑛

𝜕𝛼
𝐴11 +

𝜕𝑢𝑛

𝜕𝛽
𝐴21 +

𝜕𝑢𝑛

𝜕𝛾
𝐴31

𝜕𝑢𝑛

𝜕𝛼
𝐴12 +

𝜕𝑢𝑛

𝜕𝛽
𝐴22 +

𝜕𝑢𝑛

𝜕𝛾
𝐴32    

𝜕𝑣1

𝜕𝛼
𝐴11 +

𝜕𝑣1

𝜕𝛽
𝐴21 +

𝜕𝑣1

𝜕𝛾
𝐴31

𝜕𝑣1

𝜕𝛼
𝐴12 +

𝜕𝑣1

𝜕𝛽
𝐴22 +

𝜕𝑣1

𝜕𝛾
𝐴32

⋮ ⋮
𝜕𝑣𝑛

𝜕𝛼
𝐴11 +

𝜕𝑣𝑛

𝜕𝛽
𝐴21 +

𝜕𝑣𝑛

𝜕𝛾
𝐴31

𝜕𝑣𝑛

𝜕𝛼
𝐴12 +

𝜕𝑣𝑛

𝜕𝛽
𝐴22 +

𝜕𝑣𝑛

𝜕𝛾
𝐴32

 

𝜕𝑢1

𝜕𝛼
𝐴13 +

𝜕𝑢1

𝜕𝛽
𝐴23 +

𝜕𝑢1

𝜕𝛾
𝐴33 𝑂1×6

⋮ ⋮
𝜕𝑢𝑛

𝜕𝛼
𝐴13 +

𝜕𝑢𝑛

𝜕𝛽
𝐴23 +

𝜕𝑢𝑛

𝜕𝛾
𝐴33 𝑂1×6

𝜕𝑣1

𝜕𝛼
𝐴13 +

𝜕𝑣1

𝜕𝛽
𝐴23 +

𝜕𝑣1

𝜕𝛾
𝐴33 𝑂1×6

⋮ ⋮
𝜕𝑣𝑛

𝜕𝛼
𝐴13 +

𝜕𝑣𝑛

𝜕𝛽
𝐴23 +

𝜕𝑣𝑛

𝜕𝛾
𝐴33 𝑂1×6]

 
 
 
 
 
 
 
 
 
 

 (19) 

where [𝛼 𝛽 𝛾]𝑇 is the attitude vector expressed in the Euler angle in the navigation frame. The attitude error in the process model Equation (6) is 

represented in the rotation vector, whereas the attitude error in Equation (19) is represented in the Euler angle. The relationship between the rotation vector 

and the Euler angle is expressed in Equation (26) [18]. The 𝐴𝑖𝑗(𝑖 = 1,2,3, 𝑗 = 1,2,3) in Equation (19) are the same as those in Equation (20). 

[
𝛿𝛼
𝛿𝛽
𝛿𝛾

] ≡ 𝐴 [

𝜑𝑁

𝜑𝐸

𝜑𝐷

] = [

𝐴11 𝐴12 𝐴31

𝐴21 𝐴22 𝐴32

𝐴31 𝐴23 𝐴11

] [

𝜑𝑁

𝜑𝐸

𝜑𝐷

] = [
−𝑐𝑜𝑠𝛾/𝑐𝑜𝑠𝛽 −𝑠𝑖𝑛𝛾/𝑐𝑜𝑠𝛽 0

𝑠𝑖𝑛𝛾 −𝑐𝑜𝑠𝛾 0
−𝑡𝑎𝑛𝛽𝑐𝑜𝑠𝛾 −𝑡𝑎𝑛𝛽𝑠𝑖𝑛𝛾 −1

] [

𝜑𝑁

𝜑𝐸

𝜑𝐷

] (20) 

The submatrix 𝐻3 is given in Equation (21). 

𝐻3 =

[
 
 
 
 
 
 
 
 
 
 −1 0 −

𝑌1

𝑋1

⋮ ⋮ ⋮

−1 0 −
𝑌𝑛

𝑋𝑛

0 −1 −
𝑍1

𝑋1

⋮ ⋮ ⋮

0 −1 −
𝑍𝑛

𝑋𝑛]
 
 
 
 
 
 
 
 
 
 

 (21) 

where [𝑋𝑘 𝑌𝑘 𝑍𝑘]
𝑇 is the position vector of the 𝑘th landmark in the camera frame and can be expressed in Equation (22). 

[

𝑋𝑘

𝑌𝑘

𝑍𝑘

] = 𝐶𝑛
𝑐 [

𝑥𝑘 − 𝑥
𝑦𝑘 − 𝑦
𝑧𝑘 − 𝑧

] = [

𝐶11 𝐶12 𝐶13

𝐶21 𝐶22 𝐶23

𝐶31 𝐶32 𝐶33

] [

𝑥𝑘 − 𝑥
𝑦𝑘 − 𝑦
𝑧𝑘 − 𝑧

] (22) 

Then, [𝜕𝑢𝑘 𝜕𝑥⁄ 𝜕𝑢𝑘 𝜕𝑦⁄ 𝜕𝑢𝑘 𝜕𝑧⁄ ] in Equation (18) can be expressed in Equation (23). 

[
𝜕𝑢𝑘

𝜕𝑥

𝜕𝑢𝑘

𝜕𝑦

𝜕𝑢𝑘

𝜕𝑧
] = [𝑓

𝑌𝑘

𝑋𝑘
2 −𝑓

1

𝑋𝑘
0] [

𝐶11 𝐶12 𝐶13

𝐶21 𝐶22 𝐶23

𝐶31 𝐶32 𝐶33

] (23) 

And [𝜕𝑢𝑘 𝜕𝛼⁄ 𝜕𝑢𝑘 𝜕𝛽⁄ 𝜕𝑢𝑘 𝜕𝛾⁄ ] in Equation (19) can be expressed in Equation (24). 

[
𝜕𝑢𝑘

𝜕𝛼

𝜕𝑢𝑘

𝜕𝛽

𝜕𝑢𝑘

𝜕𝛾
] = [−𝑓

𝑌𝑘

𝑋𝑘
2 𝑓

1

𝑋𝑘
0]

[
 
 
 
 
 
 
𝜕𝑋𝑘

𝜕𝛼

𝜕𝑋𝑘

𝜕𝛽

𝜕𝑋𝑘

𝜕𝛾
𝜕𝑌𝑘

𝜕𝛼

𝜕𝑌𝑘

𝜕𝛽

𝜕𝑌𝑘

𝜕𝛾
𝜕𝑍𝑘

𝜕𝛼

𝜕𝑍𝑘

𝜕𝛽

𝜕𝑍𝑘

𝜕𝛾 ]
 
 
 
 
 
 

 (24) 

(19)

where [α β γ]T is the attitude vector expressed in the Euler angle in the navigation frame.
The attitude error in the process model Equation (6) is represented in the rotation vector, whereas the
attitude error in Equation (19) is represented in the Euler angle. The relationship between the
rotation vector and the Euler angle is expressed in Equation (26) [18]. The Aij(i = 1, 2, 3, j = 1, 2, 3) in
Equation (19) are the same as those in Equation (20).
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(16). 

𝛿𝑧 = [𝛿𝑢1 𝛿𝑢2 ⋯ 𝛿𝑢𝑛 𝛿𝑣1      𝛿𝑣2 ⋯ 𝛿𝑣𝑛]𝑇 (16) 

where 𝛿𝑢𝑘 and 𝛿𝑣𝑘 denote the differences between the INS-based estimates and measurements on the focal plane for the 𝑘-th landmark. 𝑛 denotes the 

number of the landmarks on the focal plane of the camera. The INS-based estimates for each element in Equation (16) are calculated from position and 

attitude outputs of INS and the position information of the landmarks. The observation matrix is given in Equation (17). 

𝐻 ≡ [𝐻1 𝐻2 𝐻3] (17) 

Each sub-matrix in the observation matrix can be obtained from computing the Jacobian. The submatrix 𝐻1 is given in Equation (18). 

𝐻1 =

[
 
 
 
 
 
 
 
 
 
 
𝜕𝑢1

𝜕𝑥

𝜕𝑢1

𝜕𝑦

𝜕𝑢1

𝜕𝑧
𝑂1×3

⋮ ⋮ ⋮ ⋮
𝜕𝑢𝑛

𝜕𝑥

𝜕𝑢𝑛

𝜕𝑦

𝜕𝑢𝑛

𝜕𝑧
𝑂1×3

𝜕𝑣1

𝜕𝑥

𝜕𝑣1

𝜕𝑦

𝜕𝑣1

𝜕𝑧
𝑂1×3

⋮ ⋮ ⋮ ⋮
𝜕𝑣𝑛

𝜕𝑥

𝜕𝑣𝑛

𝜕𝑦

𝜕𝑣𝑛

𝜕𝑧
𝑂1×3]

 
 
 
 
 
 
 
 
 
 

 (18) 

where [𝑥 𝑦 𝑧]𝑇 is the position vector in the navigation frame. The submatrix 𝐻2 is given in Equation (19). 

𝐻2 =

[
 
 
 
 
 
 
 
 
 
 
𝜕𝑢1

𝜕𝛼
𝐴11 +

𝜕𝑢1

𝜕𝛽
𝐴21 +

𝜕𝑢1

𝜕𝛾
𝐴31

𝜕𝑢1

𝜕𝛼
𝐴12 +

𝜕𝑢1

𝜕𝛽
𝐴22 +

𝜕𝑢1

𝜕𝛾
𝐴32 

⋮ ⋮
𝜕𝑢𝑛

𝜕𝛼
𝐴11 +

𝜕𝑢𝑛

𝜕𝛽
𝐴21 +

𝜕𝑢𝑛

𝜕𝛾
𝐴31

𝜕𝑢𝑛

𝜕𝛼
𝐴12 +

𝜕𝑢𝑛

𝜕𝛽
𝐴22 +

𝜕𝑢𝑛

𝜕𝛾
𝐴32    

𝜕𝑣1

𝜕𝛼
𝐴11 +

𝜕𝑣1

𝜕𝛽
𝐴21 +

𝜕𝑣1

𝜕𝛾
𝐴31

𝜕𝑣1

𝜕𝛼
𝐴12 +

𝜕𝑣1

𝜕𝛽
𝐴22 +

𝜕𝑣1

𝜕𝛾
𝐴32

⋮ ⋮
𝜕𝑣𝑛

𝜕𝛼
𝐴11 +

𝜕𝑣𝑛

𝜕𝛽
𝐴21 +

𝜕𝑣𝑛

𝜕𝛾
𝐴31

𝜕𝑣𝑛

𝜕𝛼
𝐴12 +

𝜕𝑣𝑛

𝜕𝛽
𝐴22 +

𝜕𝑣𝑛

𝜕𝛾
𝐴32

 

𝜕𝑢1

𝜕𝛼
𝐴13 +

𝜕𝑢1

𝜕𝛽
𝐴23 +

𝜕𝑢1

𝜕𝛾
𝐴33 𝑂1×6

⋮ ⋮
𝜕𝑢𝑛

𝜕𝛼
𝐴13 +

𝜕𝑢𝑛

𝜕𝛽
𝐴23 +

𝜕𝑢𝑛

𝜕𝛾
𝐴33 𝑂1×6

𝜕𝑣1

𝜕𝛼
𝐴13 +

𝜕𝑣1

𝜕𝛽
𝐴23 +

𝜕𝑣1

𝜕𝛾
𝐴33 𝑂1×6

⋮ ⋮
𝜕𝑣𝑛

𝜕𝛼
𝐴13 +

𝜕𝑣𝑛

𝜕𝛽
𝐴23 +

𝜕𝑣𝑛

𝜕𝛾
𝐴33 𝑂1×6]

 
 
 
 
 
 
 
 
 
 

 (19) 

where [𝛼 𝛽 𝛾]𝑇 is the attitude vector expressed in the Euler angle in the navigation frame. The attitude error in the process model Equation (6) is 

represented in the rotation vector, whereas the attitude error in Equation (19) is represented in the Euler angle. The relationship between the rotation vector 

and the Euler angle is expressed in Equation (26) [18]. The 𝐴𝑖𝑗(𝑖 = 1,2,3, 𝑗 = 1,2,3) in Equation (19) are the same as those in Equation (20). 

[
𝛿𝛼
𝛿𝛽
𝛿𝛾

] ≡ 𝐴 [

𝜑𝑁

𝜑𝐸

𝜑𝐷

] = [

𝐴11 𝐴12 𝐴31

𝐴21 𝐴22 𝐴32

𝐴31 𝐴23 𝐴11

] [

𝜑𝑁

𝜑𝐸

𝜑𝐷

] = [
−𝑐𝑜𝑠𝛾/𝑐𝑜𝑠𝛽 −𝑠𝑖𝑛𝛾/𝑐𝑜𝑠𝛽 0

𝑠𝑖𝑛𝛾 −𝑐𝑜𝑠𝛾 0
−𝑡𝑎𝑛𝛽𝑐𝑜𝑠𝛾 −𝑡𝑎𝑛𝛽𝑠𝑖𝑛𝛾 −1

] [

𝜑𝑁

𝜑𝐸

𝜑𝐷

] (20) 

The submatrix 𝐻3 is given in Equation (21). 

𝐻3 =

[
 
 
 
 
 
 
 
 
 
 −1 0 −

𝑌1

𝑋1

⋮ ⋮ ⋮

−1 0 −
𝑌𝑛

𝑋𝑛

0 −1 −
𝑍1

𝑋1

⋮ ⋮ ⋮

0 −1 −
𝑍𝑛

𝑋𝑛]
 
 
 
 
 
 
 
 
 
 

 (21) 

where [𝑋𝑘 𝑌𝑘 𝑍𝑘]
𝑇 is the position vector of the 𝑘th landmark in the camera frame and can be expressed in Equation (22). 

[

𝑋𝑘

𝑌𝑘

𝑍𝑘

] = 𝐶𝑛
𝑐 [

𝑥𝑘 − 𝑥
𝑦𝑘 − 𝑦
𝑧𝑘 − 𝑧

] = [

𝐶11 𝐶12 𝐶13

𝐶21 𝐶22 𝐶23

𝐶31 𝐶32 𝐶33

] [

𝑥𝑘 − 𝑥
𝑦𝑘 − 𝑦
𝑧𝑘 − 𝑧

] (22) 

Then, [𝜕𝑢𝑘 𝜕𝑥⁄ 𝜕𝑢𝑘 𝜕𝑦⁄ 𝜕𝑢𝑘 𝜕𝑧⁄ ] in Equation (18) can be expressed in Equation (23). 

[
𝜕𝑢𝑘

𝜕𝑥

𝜕𝑢𝑘

𝜕𝑦

𝜕𝑢𝑘

𝜕𝑧
] = [𝑓

𝑌𝑘

𝑋𝑘
2 −𝑓

1

𝑋𝑘
0] [

𝐶11 𝐶12 𝐶13

𝐶21 𝐶22 𝐶23

𝐶31 𝐶32 𝐶33

] (23) 

And [𝜕𝑢𝑘 𝜕𝛼⁄ 𝜕𝑢𝑘 𝜕𝛽⁄ 𝜕𝑢𝑘 𝜕𝛾⁄ ] in Equation (19) can be expressed in Equation (24). 

[
𝜕𝑢𝑘

𝜕𝛼

𝜕𝑢𝑘

𝜕𝛽

𝜕𝑢𝑘

𝜕𝛾
] = [−𝑓

𝑌𝑘

𝑋𝑘
2 𝑓

1

𝑋𝑘
0]

[
 
 
 
 
 
 
𝜕𝑋𝑘

𝜕𝛼

𝜕𝑋𝑘

𝜕𝛽

𝜕𝑋𝑘

𝜕𝛾
𝜕𝑌𝑘

𝜕𝛼

𝜕𝑌𝑘

𝜕𝛽

𝜕𝑌𝑘

𝜕𝛾
𝜕𝑍𝑘

𝜕𝛼

𝜕𝑍𝑘

𝜕𝛽

𝜕𝑍𝑘

𝜕𝛾 ]
 
 
 
 
 
 

 (24) 

(20)
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The submatrix H3 is given in Equation (21).

H3 =



−1 0 − Y1

X1
...

...
...

−1 0 − Yn

Xn

0 −1 −Z1

X1
...

...
...

0 −1 −Zn

Xn


(21)

where [Xk Yk Zk]
T is the position vector of the kth landmark in the camera frame and can be

expressed in Equation (22). Xk
Yk
Zk

 = Cc
n

 xk − x
yk − y
zk − z

 =

 C11 C12 C13

C21 C22 C23

C31 C32 C33


 xk − x

yk − y
zk − z

 (22)

Then, [∂uk/∂x ∂uk/∂y ∂uk/∂z] in Equation (18) can be expressed in Equation (23).

[
∂uk
∂x

∂uk
∂y

∂uk
∂z

]
=

[
f

Yk

X2
k
− f

1
Xk

0
]  C11 C12 C13

C21 C22 C23

C31 C32 C33

 (23)

And [∂uk/∂α ∂uk/∂β ∂uk/∂γ] in Equation (19) can be expressed in Equation (24).

[
∂uk
∂α

∂uk
∂β

∂uk
∂γ

]
=

[
− f

Yk

X2
k

f
1

Xk
0
]


∂Xk
∂α

∂Xk
∂β

∂Xk
∂γ

∂Yk
∂α

∂Yk
∂β

∂Yk
∂γ

∂Zk
∂α

∂Zk
∂β

∂Zk
∂γ


(24)

Also, [∂vk/∂x ∂vk/∂y ∂vk/∂z] in Equation (18) and [∂vk/∂α ∂vk/∂β ∂vk/∂γ] in
Equation (19) are expressed in Equations (25) and (26), respectively.

[
∂vk
∂x

∂vk
∂y

∂vk
∂z

]
=

[
f

Zk

X2
k

0 − f
1

Xk

]  C11 C12 C13

C21 C22 C23

C31 C32 C33

 (25)

[
∂vk
∂α

∂vk
∂β

∂vk
∂γ

]
=

[
− f

Zk

X2
k

0 f
1

Xk

]


∂Xk
∂α

∂Xk
∂β

∂Xk
∂γ

∂Yk
∂α

∂Yk
∂β

∂Yk
∂γ

∂Zk
∂α

∂Zk
∂β

∂Zk
∂γ


(26)

It can be seen from Equation (16) that the proposed method can provide an integrated navigation
output even though the number of landmarks is not sufficient for a vision navigation output.

4. Computer Simulation and Experimental Result

The proposed method is verified through computer simulations and van tests.
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4.1. Computer Simulation

Computer simulations of the proposed integrated navigation method were carried out for a
low medium-grade inertial sensor and a low-cost commercial camera. Figure 3 shows the scheme
of the simulations. Reference trajectory and inertial sensor data were generated using MATLAB
and INS tool box manufactured by GPSoft LLC. True camera measurement data of the landmarks
were first generated using the pinhole camera model given in Equations (1) and (2). The camera
measurement data on the focal plane of the landmarks were finally generated by adding noises into
the true camera measurement data. Zero to ten landmarks to be observed on every image are placed
by a random generator. The IMU measurement data were also generated by adding noises into the
true IMU measurement data. Tables 1 and 2 show the specifications of the IMU and the vision sensor
for the simulation.
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Figure 3. Scheme of simulation.

Table 1. IMU specification and INS initial attitude error for simulation.

Specification Description

Accelerometer bias 5 mg
Accelerometer random walk 0.1 m/s/

√
h

Gyro bias 100◦/h
Gyro random walk 0.5◦/

√
h

Data rate 100 Hz
Roll Error 0.1◦
Pitch Error 0.1◦
Yaw Error 5.0◦

Table 2. Vision sensor specification for simulation.

Specification Description Specification Description

Focal length 25 mm Avg. of focal lengh error 200 um

No. of horizontal pixels 4000 Avg. of horizontal optical
axis coordinate error 200 um

No. of vertical pixels 3000 Avg. of vertical optical axis
coordinate error 200 um

Field of view 90◦ Focal lengh error (1σ) 200 um

Horizontal pixel pitch 8 um Horizontal optical axis
coordinate error (1σ) 200 um

Vertical pixel pitch 8 um Vertical optical axis
coordinate error (1σ) 200 um

Data rate 10 Hz
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50 Monte-Carlo simulations were performed for an eight-shaped flight path with constant height
as shown in Figure 4. Less than three landmarks were intentionally placed randomly in a specific area
in order to create a poor vision navigation environment.

Results of the proposed method were compared with those of another integration method in [14].
In the integration method in [14], the outputs of the vision navigation system are position and attitude
and state vector is given in Equation (27).

δx = [δPN δPE δPD δVN δVE δVD ϕN ϕE ϕD ∇x ∇y ∇z εx εy εz]
T (27)

The measurement vector is given in Equation (28).

δz = [δPN δPE δPD δα δβ δγ]T (28)
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Figure 4. Vehicle trajectory and landmarks in simulation.

As with the loosely coupled GPS/INS integrated navigation method, the method in [14] has
redundancy in the navigation output. The vision navigation system can provide a stand-alone
navigation output even when the INS and/or the integrated navigation system cannot provide a
navigation output. However, as described in Section 2, the vision system cannot give navigation
output when less than three landmarks are available on the focal plane. In this case, performance
of integrated navigation system can deteriorate since the measurement update process cannot be
performed in the integration Kalman filter. As shown in Equation (15), the measurement update
process can be performed even when only one landmark is visible on the focal plane in the proposed
method. Only the time update in Kalman filtering is performed when no landmarks are visible at all.

Figure 5 shows results of the estimated vision sensor errors of the proposed method in the
simulation. It can be seen from the results that the vision sensor errors are well estimated and the
performance of the vision navigation system is improved.
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Figure 5. Camera sensor error estimation results of the simulation.

In Figure 6, navigation results of the proposed method are compared with those of the pure INS
and the method in [14]. Figure 7 shows the position errors in the north, east and down direction of the
proposed method and the method in [14].
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Table 3 shows RMS errors for the pure INS, the method in [14] and the proposed method. It can be
observed that error of the pure INS becomes large as the navigation operation continues. It can also be
observed that the method in [14] gives relatively large navigation parameter errors in the area where
the number of the landmarks are not enough for vision navigation output. The proposed method gives
approximately 50 and 10 times better performance in the position and the attitude than the method
in [14] in this area, respectively.

Table 3. RMS navigation parameter error of the simulation.

Error Pure INS Method in [14] Propsosed Method

Position error (m)
N 1026.88 18.59 0.99
E 3350.72 15.90 1.12
D 1370.55 5.34 0.45

Velocity error (m/s)
N 22.04 3.46 2.73
E 22.09 2.88 3.07
D 15.15 0.97 1.14

Attitude error (◦)
Roll 0.69 2.02 0.06
Pitch 0.65 2.44 0.37
Yaw 8.42 3.14 0.63

4.2. Van Test

Figure 8 shows the experimental setup and a reference navigation system. The experimental setup
consists of a camera and an IMU and is installed on an optical bench. The reference navigation system,
which is a carrier-phase differential GPS (CDGPS)/INS integrated navigation system, is installed
together. Outputs of the reference navigation system are regarded as true values in the evaluation
of the experimental results. A low-cost commercial camera and a micro electro mechanical system
(MEMS) IMU given in Tables 4 and 5 were used in the experiment. Database of the landmarks was
made in advance with the help of large-scale maps and aerial photographs.
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Table 4. IMU specification and initial attitude error for the experiment.

Specification Description

Manufacturer Crossbow Ltd.
Accelerometer bias 10 mg

Accelerometer random walk 0.1 m/s/
√

h
Accelerometer scaling factor error 10,000 ppm

Gyro bias 3600◦/h
Gyro random walk 1.0◦/

√
h

Gyro scaling factor error 1000 ppm
Data rate 135 Hz
Roll error 0.61◦

Pitch error 0.01◦

Yaw error 4.30◦

Table 5. Vision sensor specification for the experiment.

Specification Description

Manufacturer Axis Ltd.

Image sensor

Sensor type CMOS-color
No. of horizontal pixel 1280

No. of vertical pixel 800
Horizontal pixel pitch 3 um

Vertical pixel pitch 3 um

Lens
Focal length 1.7 mm
Field of view 99◦

Data rate (frame rate) Max 30 Hz (1.4 Hz is used in experiment)

Figure 9 shows the position of the vehicle’s reference trajectory in the experiment. The results of the
proposed method of the experiment were compared with those of the pure INS and the method in [14].
Figures 10 and 11 show the navigation results and Table 6 shows the errors in the experiment. As with
the results of the computer simulations, it can be seen from the experimental result that the proposed
method provides reliable solutions with approximately 5 times better positioning performance than
the method in [14] even in poor vision environments.
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Table 6. RMS navigation parameter error of the experiment.

Error Pure INS Method in [14] Propsosed Method

Position error (m)
N 7110.95 9.29 6.50
E 1228.32 16.44 6.47
D 6973.98 15.34 3.25

Velocity error (m/s)
N 52.02 2.58 1.65
E 166.06 4.13 1.87
D 200.25 7.83 4.67

Attitude error (◦)
Roll 32.54 4.04 2.31
Pitch 20.82 3.53 2.91
Yaw 53.05 5.61 4.68

5. Concluding Remarks and Further Studies

This paper proposed an inertial and landmark-based vision integrated navigation method
using focal plane measurements of landmarks. An integration model was derived to use the raw
measurements on the focal plane in the integration Kalman filter. The proposed method has been
verified through computer simulations and van tests. Performance of the proposed method has
been compared with other integration method which used a vision navigation output, i.e., position
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and attitude output from a vision navigation system. It has been observed from the results that
the proposed system gives reliable navigation outputs even when the number of landmarks is not
sufficient for vision navigation.

An integration method to use continuous images to improve navigation performance and an
integration model to efficiently detect and recognize landmarks will be studied. As future works,
other filtering methods such as the particle filter and unscented Kalman filter, artificial neural
network-based filtering and the application of a vision/INS integrated navigation system for sea
navigation can be considered.
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