
 information

Article

Design of a Quaternary Query Tree ALOHA Protocol
Based on Optimal Tag Estimation Method

Zhihui Fu, Fangming Deng * and Xiang Wu

School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China;
fuzhihui@sohu.com (Z.F.); zgxiangyu@163.com (X.W.)
* Correspondence: dengfangming@ecjtu.jx.cn; Tel.: +86-791-8704-6203

Academic Editor: Willy Susilo
Received: 30 October 2016; Accepted: 26 December 2016; Published: 30 December 2016

Abstract: Radio Frequency Identification (RFID) technology is one of the most promising technologies
in the IoT (The Internet of Things) era. Many RFID systems have been used in supermarkets or
warehouses. There are two challenges for RFID anti-collision algorithms. The first challenge is
accurately estimating the number of tags; the other is improving the efficiency of RFID systems.
This paper proposes an optimal tag estimation method in which tags respond to the reader in assigned
time slots instead of responding randomly. In order to improve the performance of the RFID system,
a 4-ary query tree Additive Link On-line HAwaii (ALOHA) protocol is presented that combines the
merits of query tree algorithm and frame slotted ALOHA, and avoids their weaknesses. Simulation
results show that the proposed algorithm has a higher tag identification efficiency compared to other
dynamic frame slotted ALOHA algorithms, and it can overcome the tag starvation phenomenon,
because it traces each tag until all of them are identified successfully.

Keywords: RFID technology; anti-collision algorithms; 4-ary query tree

1. Introduction

Many large-sized chain supermarkets, such as Wal-Mart and Metro AG invest in innovative
technology to improve the shopping experience for consumers. Supermarket smart payment systems
(SSPS) based on Radio Frequency Identification (RFID) technology is an outstanding substitute for
traditional payment patterns. With the development of low-cost RFID tags [1–3], the bar code
will soon be eliminated [4]. RFID technology enables objects to be distinguished from a long
distance [5], and furthermore, passive RFID tags which collect energy from the RFID reader offer
several advantages such as battery-less operation, wireless communication, high flexibility, low cost,
and fast deployment [6]. Because there is only one communication channel between RFID reader and
RFID tags, collision is a familiar problem in RFID systems, easily resulting in missing information and
inefficient use of resources—particularly hardware resources [7].

Anti-collision is essential for an RFID system. According to the difference of channel classification
method, tag anti-collision algorithms can be divided into four types: Frequency Division Multiple
Access (FDMA), Code Division Multiple Access (CDMA), Space Division Multiple Access (SDMA),
and Time Division Multiple Access (TDMA). Most RFID anti-collision algorithms in previous works
have adopted TDMA. Among them, Additive Link On-line HAwaii (ALOHA)-based algorithms and
tree-based algorithms are more popular. A slotted ALOHA algorithm can decrease the probability of
collision compared to a pure ALOHA algorithm [8]. In dynamic frame-slotted ALOHA (DFSA) [9–11],
the length of the frame dynamically changes with the number of unidentified tags. In frame slotted
ALOHA protocols, when the length of the frame is equal to the number of tags, the maximum system
efficiency is attained, which is about 36.8% [7,12]. Tags select time slots to send their data packages

Information 2017, 8, 5; doi:10.3390/info8010005 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
http://www.mdpi.com/journal/information

Information 2017, 8, 5 2 of 10

randomly, so the performances of existing frame slotted ALOHA protocols are not stable, and the tag
starvation phenomenon may occur.

Recently, plenty of improved ALOHA-based anti-collision algorithms have been published.
Reference [10] proposes a new Enhanced Dynamic Framed Slotted (EDFSA) ALOHA algorithm in
which the unread tags are divided into different groups, and only one group responds meanwhile.
An anti-collision algorithm named Collision-Group-Based (CGA) was proposed in [13]. This algorithm
has two reading cycles. In the first cycle, the reader sets frame size. In the second cycle, the reader
decides the group size. The tag randomly selects a group, then it selects a slot to send its ID to the
reader. EDFSA and CGA can improve the efficiency to some extent, but they still cannot avoid the tag
starvation phenomenon and break through the restriction of 36.8%. Reference [14] presents a splitting
Binary Tree Slotted ALOHA (BTSA) algorithm, which can adjust the frame length to a value close to
the number of tags, and as a result, its identification efficiency can achieve the restriction of 42.5%.
However, some tags may not be identified for a long time.

The tree-based algorithms are deterministic algorithms which can accurately identify all tags.
Among them, the binary tree anti-collision algorithm (BT) [15] and the query tree algorithm
(QTA) [16,17] are more well-known. Tree-based algorithms can be expressed as a B-ary tree, where
B should be in the form of 2n (n ≥ 1) [17]. The 4-ary tree algorithm can decrease the number of
collision cycles, and the efficiency of 4-ary tree outperforms that of 2-ary tree algorithm. This paper
presents a novel algorithm to break through the restriction of existing methods, where tags respond
to the reader in assigned time slots instead of responding randomly. Considering the advantages of
ALOHA-based algorithms and tree-based algorithms, this paper proposes an improved 4-ary query
tree ALOHA protocol that combines 4-ary query tree with dynamic frame slotted ALOHA. Simulation
results indicate that the proposed algorithm can improve the efficiency of RFID systems to a great
extent, and it can make sure the reader identifies all tags accurately.

The remainder of the article is organized as follows. First, the architecture of SSPS will be
presented. Secondly, the optimal tag estimation method based on assigned time slots will be detailed.
Thirdly, a 4-ary query tree ALOHA protocol based on optimal tag estimation method will be described.
Then, simulation results will be provided and compared with previous algorithms. Finally, the main
conclusions will be highlighted.

2. An Optimal Tag Estimation Method

When we estimate the number of unidentified tags, we should calculate optimal frame size that
will maximize system efficiency. The frame size greatly influences the system efficiency. If the frame
size is too large, plenty of idle time slots will occur; if the frame size is too small, there will be many
collided time slots. In existing frame slotted algorithms, tags select time slots of a frame to send their
data packages randomly, which will cause uncertainty in the number of collided time slots and idle
time slots.

Schoute presented a method to estimate the number of unrecognized tags in multi-access RFID
system in which tags choose time slot i of a frame to transmit their data packets that is Poisson
distributed, the estimation of the number of tags (n’) which have not been recognized by the reader
after the current frame is n’ = 2.39C, where C is the number of slots in which collisions arise [9].
Reference [10] proposes a new tag estimation method. Thus, if the number of tags is relatively small,
it works well; however, if the number becomes large, it begins to show poor performance. Now,
we will introduce a tag estimation method based on more reasonable probability analysis.

2.1. Description of Tag Estimation Method

Given the number of unread tags is N, the number of time slots in a frame (the length of a frame)
is L and p bit serial binary digits (named as assignment bits) in tag ID are used by each tag to select
assigned time slot in a frame (as shown in Figure 1).

Information 2017, 8, 5 3 of 10

The frame length is decided by the number of assignment bits, the relationship between p and L is:

L = 2p or p = log2 L (1)

When there are m tags responding in a time slot simultaneously, it means that their p assignment
bits of tag ID are same. The probability can be defined as:

P(m, p) =
(

1
L

)m
(2)

If there are m of all tags responding in a certain timeslot, the probability can be defined as:

P(N, m, p) = Cm
N ×

(
1
L

)m
×
(

1− 1
L

)N−m
(3)

If there is only one tag responding in a certain slot of frame (m = 1), the probability is:

P(N, 1, L) = C1
N ×

(
1
L

)1
×
(

1− 1
L

)N−1
(4)

where CX
Y is a binomial expression.

S is the number of time slots in each one of which only one tag transmits its data packet
successfully; E denotes the number of time slots in each one of which no tag transmits its data
packet; and C denotes the number of time slots in each one of which more than one tag transmits their
data packet.

S = E(N, 1, p) = L× C1
N ×

(
1
L

)1
×
(

1− 1
L

)N−1
= C1

N ×
(

1− 1
L

)N−1
(5)

E = L× P(N, 0, p) = L×
(

1− 1
L

)N
(6)

C = N − S− E (7)

We define the throughput T as follows:

T =
S
L
=

N
L
×
(

1− 1
L

)N−1
(8)

We can obtain the number of assignment bits (p) that gives the maximum throughput by
differentiating Equation (6).

dT
dL

= − N
L2

(
1− 1

L

)N−1
+

N
L
(N − 1)

(
1− 1

L

)N−2
× 1

L2 = 0 (9)

Log2N may not be an integer, hence in order to getting more a reasonable frame length,
we command that:

p =

{
blog2 Nc; when log2N − blog2 Nc < 0.5
dlog2 Ne; when log2N − blog2 Nc ≥ 0.5

}
(10)

As shown in Figure 1, when there are collided tags in a frame, all collided tags will respond to the
reader in the next frame. If the start bit of assignment bits is fixed, the tags colliding once may collide
again, which will result in the tag starvation phenomenon. So, the start bit of p1 is the start bit of tag
ID, and the start bit of pn+1 is next bit of the end bit of pn.

Information 2017, 8, 5 4 of 10

Information 2017, 8, 5 3 of 10

When there are m tags responding in a time slot simultaneously, it means that their p assignment
bits of tag ID are same. The probability can be defined as:

1(,)
m

P m p
L

 =

 (2)

If there are m of all tags responding in a certain timeslot, the probability can be defined as:

1 1(, ,) 1
m N m

m
NP N m p C

L L

−
 = × × −

 (3)

If there is only one tag responding in a certain slot of frame (m = 1), the probability is:
1 1

1 1 1(,1,) 1
N

NP N L C
L L

−
 = × × −

 (4)

where X
YC is a binomial expression.

S is the number of time slots in each one of which only one tag transmits its data packet successfully;
E denotes the number of time slots in each one of which no tag transmits its data packet; and C denotes
the number of time slots in each one of which more than one tag transmits their data packet.

1 1 1
1 11 1 1(,1,) 1 1

N N

N NS E N p L C C
L L L

− −
 = = × × × − = × −

 (5)

1(,0,) 1
N

E L P N p L
L

 = × = × −

 (6)

C N S E= − − (7)

We define the throughput T as follows:
1

11
N

S NT
L L L

−
 = = × −

 (8)

We can obtain the number of assignment bits (p) that gives the maximum throughput by
differentiating Equation (6).

()
1 2

2 2

1 1 11 1 1 0
N N

dT N N N
dL L L LL L

− −
 = − − + − − × =

 (9)

Log2N may not be an integer, hence in order to getting more a reasonable frame length, we command that:

2 2 2

2 2 2

log ; when log log 0.5
log ;when log log 0.5

N N N
p

N N N

 − < = − ≥
 (10)

As shown in Figure 1, when there are collided tags in a frame, all collided tags will respond to
the reader in the next frame. If the start bit of assignment bits is fixed, the tags colliding once may
collide again, which will result in the tag starvation phenomenon. So, the start bit of p1 is the start bit
of tag ID, and the start bit of pn+1 is next bit of the end bit of pn.

Figure 1. Schematic diagram of assignment bits in tag ID.

Figure 1. Schematic diagram of assignment bits in tag ID.

2.2. Example Analysis

We suppose that there are 10 tags A–J. A: 1101010101, B: 1010000011, C: 1011111111, D: 0111011010,
E: 0111110001, F: 1001010100, G: 0101011101, H: 1010101100, I: 0111000000, J: 1110001010. We can get
the tag identification process as shown in Figure 2.

Information 2017, 8, 5 4 of 10

2.2. Example Analysis

We suppose that there are 10 tags A–J. A: 1101010101, B: 1010000011, C: 1011111111,
D: 0111011010, E: 0111110001, F: 1001010100, G: 0101011101, H: 1010101100, I: 0111000000,
J: 1110001010. We can get the tag identification process as shown in Figure 2.

Figure 2. Tag identification process.

3. A 4-Ary Query Tree ALOHA Protocol Based on Optimal Tag Estimation

3.1. QTA and 4-Ary QTA

Query Tree Algorithms (QTA) have the advantage of easy execution due to their simple
structure and operating mode. In QTA protocol, the reader asks the tags whether their IDs contain
the same prefix as the query strings q. If the prefix of tag ID is the same as the query strings q, the tag
will respond to the reader, but when more than one tag answers, a collision is detected [13]. The
reader then attaches bit 0 or 1 to generate the longer prefixes in a queue, and the reader repeats the
process until all tags are uniquely identified. In 4-ary QTA, if a collision occurs in a tree node, two
bits 00, 01, 10, and 11 are used by the reader to generate the longer prefixes in the queue, and it can
decrease the collided cycles compared to 2-ary QTA.

Table 1 shows the identification process. We suppose there are four tags in the reader capture
range; their tag IDs are 0001, 0011, 1000, and 1101, respectively. In round 1, the collision occurs
because more than one tag responds, and in rounds 2, 5, and 7, there are no tags responding to the
reader. In rounds 3, 4, 6, and 8, only one tag can be successfully identified.

Table 1. The operating process of 4-ary query tree algorithm (QTA).

Round
Query

(R to T)
Response
(T to R)

Tag1
(0001)

Tag2
(0011)

Tag3
(1000)

Tag4
(1101) Queue

1 Collision 0001 0011 1000 1101 00,01,10,11
2 00 Collision 0010 0011 - - 01,10,11,0000,0001,0010,0011
3 01 Empty - - - - 10,11,0000,0001,0010,0011
4 10 Success - - 1000 - 11,0000,0001,0010,0011
5 11 Success - - - 1101 0000,0001,0010,0011
6 0000 Empty - - - - 0001,0010,0011
7 0001 Success 0001 - - - 0010,0011
8 0010 Empty - - - - 0011
9 0011 Success - 0011 - - Empty

Figure 2. Tag identification process.

3. A 4-Ary Query Tree ALOHA Protocol Based on Optimal Tag Estimation

3.1. QTA and 4-Ary QTA

Query Tree Algorithms (QTA) have the advantage of easy execution due to their simple structure
and operating mode. In QTA protocol, the reader asks the tags whether their IDs contain the same
prefix as the query strings q. If the prefix of tag ID is the same as the query strings q, the tag will
respond to the reader, but when more than one tag answers, a collision is detected [13]. The reader
then attaches bit 0 or 1 to generate the longer prefixes in a queue, and the reader repeats the process
until all tags are uniquely identified. In 4-ary QTA, if a collision occurs in a tree node, two bits 00, 01,
10, and 11 are used by the reader to generate the longer prefixes in the queue, and it can decrease the
collided cycles compared to 2-ary QTA.

Table 1 shows the identification process. We suppose there are four tags in the reader capture
range; their tag IDs are 0001, 0011, 1000, and 1101, respectively. In round 1, the collision occurs because
more than one tag responds, and in rounds 2, 5, and 7, there are no tags responding to the reader.
In rounds 3, 4, 6, and 8, only one tag can be successfully identified.

Table 1. The operating process of 4-ary query tree algorithm (QTA).

Round Query (R to T) Response (T to R) Tag1 (0001) Tag2 (0011) Tag3 (1000) Tag4 (1101) Queue

1 - Collision 0001 0011 1000 1101 00,01,10,11

2 00 Collision 0010 0011 - - 01,10,11,0000,0001,0010,0011

3 01 Empty - - - - 10,11,0000,0001,0010,0011

4 10 Success - - 1000 - 11,0000,0001,0010,0011

5 11 Success - - - 1101 0000,0001,0010,0011

6 0000 Empty - - - - 0001,0010,0011

7 0001 Success 0001 - - - 0010,0011

8 0010 Empty - - - - 0011

9 0011 Success - 0011 - - Empty

Information 2017, 8, 5 5 of 10

3.2. Description of the Proposed Algorithm

QTA can accurately identify all tags, but in each tree node, only one tag can be identified.
ALOHA-based algorithms are more efficient than the tree-based algorithms, but tag starvation
phenomena may occur. In this part, we present a 4-ary query tree ALOHA protocol (4QTAP) which
combines 4-ary QTA with the dynamic frame slotted ALOHA. Firstly, the proposed algorithm is based
on a 4-ary tree structure. Secondly, all the tree nodes adopt dynamic frame slotted ALOHA, and the tag
estimation method presented in Section 3 is adopted in each node. Thirdly, if the tag IDs are known,
the identification process can be predicted accurately, all tags can be identified efficiently.

In 4QTAP, the 4-ary tree is composed of the initial node and the leaf nodes, and they are frames
consisting of some time slots. Each leaf node in the query tree corresponds to each the prefix in the
queue, and the status of each node can be classified as follows.

• Empty node (En): There is no tag responding to the reader’s query, resulting in a waste of the
time slot.

• Success node (Sn): All response tags are successfully identified by the reader, and there are no
collided tags in Sn. The success node does not have branch nodes in the query tree, and the
corresponding prefix will not generate new prefixes in the queue.

• Collision node (Cn): The collision occurs as multiple tags respond to the reader’s query
simultaneously. The collided tags in Cn will be recognized in its branch nodes, and the reader will
attach two binary bits 00, 01, 10, 11 to the corresponding prefix to generate the longer prefixes
in queue.

Before the initial node works, the query string is null, so the procedure of the initial node is
identical to the example presented in Section 3; each tag needs pinitial serial binary digits to assign
a response time slot, and the number of time slots in initial node is Linitial = 2pinitial . If the initial node is Sn,
it means that all tags have been successfully identified by the reader, and the process of identification
is over. If the initial node is Cn, two bits 00, 01, 10, and 11 are added to queue as the longer query bits.
We suppose the number of collided tags is Cinitial, the number of unread tags in each branch node of
initial node is Cinitial/4 on average. The number of unread tags in each branch node of the initial node is
expressed as notation Rxx, where xx is two serial binary digits on behalf of four branch nodes. Each
collided tag in the initial node needs pxx serial binary digits of tag ID to assign a response time slot,
and the pxx assignment bits are adjacent to the pinitial assignment bits in tag ID. The reader sends the
query bits and assignment bits pxx to all unread tags; if the prefix of a tag matches the query bits, it
selects a branch node and a response time slot, then transmits its ID to the reader.

We suppose that a leaf node is determined by the query bits q1q2 . . . qxqx+1qx+2qx+3, the number of
unread tags in this node is Rq1q2 ...qxqx+1qx+2qx+3 , it is equal to (1/4) Cq1q2 ...qxqx+1 based on the probability
(where Cq1q2 ...qxqx+1 is the number of collided tags in tree node q1q2 . . . qxqx+1). Each tag needs
pq1q2 ...qxqx+1qx+2qx+3 assignment bits to select a response time slot. The reader sends the query bits
q1q2 . . . qxqx+1qx+2qx+3 and assignment bits pq1q2 ...qxqx+1qx+2qx+3 to all unread tags; eligible tags will
respond to the reader.

The assignment bits p are set from the beginning of tag ID like Figure 1. Some collided tags in
a tree node may have the same prefixes, which generates a tag starvation phenomenon. In order
to avoid this phenomenon, the assignment bits should be set from the end of tag ID (as shown in
Figure 3), and they should keep away from the prefixes of tags. The tag ID is composed of a series of
binary bits r1r2r3r4 . . . rb, where b is the number of bits in tag ID. When the query bits from the reader
is q1q2 . . . qx, the prefix of a tag is r1r2 . . . rx, where 1 ≤ x ≤ b.

Information 2017, 8, 5 6 of 10

Information 2017, 8, 5 6 of 10

Figure 3. The prefix and assignment bits in tag ID during the implementation of 4-ary query tree
ALOHA protocol (4QTAP).

3.3. Flowchart of 4QTAP

The reader’s query and the tag’s response of 4QTAP is an iterative processes as shown in
Figures 4 and 5. In order to implement 4QTAP, the necessary notations are listed as follows.

 Qb: The shorthand notation of query bits. It is a serial binary bits 1 2 xq q q , where qx is 0 or 1,
and 1 ≤ x ≤ b, b is the number of bits in the tag ID. Every Qb determines a leaf node in the 4-ary
tree, and Qb has two statuses—in initial node of 4-ary tree, Qb is null; in leaf nodes of 4-ary tree,
Qb is valid.

 p: The assignment bits of a tag; a tag can select a time slot according to p. In the initial node, it is
expressed as pinitial; In leaf nodes of the 4-ary tree, it is expressed as pQb. The reader can calculate
p based on Equation (11).

 Queue: The storage space in the reader, where all the Qbs are stored. If a Qb is used, it will be
deleted from the Queue. If a node is Cn, four longer query bits Qb00, Qb01, Qb10, and Qb11 will
be added to the Queue, and the reader will broadcast the longer Qbs to the unread tags in the
subsequent process.

 Lookup table: In the process of identification, a lookup table is used to store all the assignment
bits pQb.

Initially
Qb=null,Pinitial

Reader broadcasts query
package{Qb,Pinitial}

Tags select a time slot between 1～2Pinitial

According to the assignment bits Pinitial

Add xx(00,01,10 and 11) to Qb respectively,
Reader calculates PQb and records them.

Cn?

Reader broadcasts query package{Qb, PQb }
 to all unread tags. Delete Qb from queue.

Cn?

Is the queue empty?

END

NO

NO
NO

YES

YES

YES

Figure 4. The reader’s flowchart of 4QTAP.

The status of each tag can be divided into four types:

Figure 3. The prefix and assignment bits in tag ID during the implementation of 4-ary query tree
ALOHA protocol (4QTAP).

3.3. Flowchart of 4QTAP

The reader’s query and the tag’s response of 4QTAP is an iterative processes as shown in
Figures 4 and 5. In order to implement 4QTAP, the necessary notations are listed as follows.

• Qb: The shorthand notation of query bits. It is a serial binary bits q1q2 . . . qx, where qx is 0 or 1,
and 1 ≤ x ≤ b, b is the number of bits in the tag ID. Every Qb determines a leaf node in the 4-ary
tree, and Qb has two statuses—in initial node of 4-ary tree, Qb is null; in leaf nodes of 4-ary tree,
Qb is valid.

• p: The assignment bits of a tag; a tag can select a time slot according to p. In the initial node, it is
expressed as pinitial; In leaf nodes of the 4-ary tree, it is expressed as pQb. The reader can calculate
p based on Equation (11).

• Queue: The storage space in the reader, where all the Qbs are stored. If a Qb is used, it will be
deleted from the Queue. If a node is Cn, four longer query bits Qb00, Qb01, Qb10, and Qb11 will
be added to the Queue, and the reader will broadcast the longer Qbs to the unread tags in the
subsequent process.

• Lookup table: In the process of identification, a lookup table is used to store all the assignment
bits pQb.

Information 2017, 8, 5 6 of 10

Figure 3. The prefix and assignment bits in tag ID during the implementation of 4-ary query tree
ALOHA protocol (4QTAP).

3.3. Flowchart of 4QTAP

The reader’s query and the tag’s response of 4QTAP is an iterative processes as shown in
Figures 4 and 5. In order to implement 4QTAP, the necessary notations are listed as follows.

 Qb: The shorthand notation of query bits. It is a serial binary bits 1 2 xq q q , where qx is 0 or 1,
and 1 ≤ x ≤ b, b is the number of bits in the tag ID. Every Qb determines a leaf node in the 4-ary
tree, and Qb has two statuses—in initial node of 4-ary tree, Qb is null; in leaf nodes of 4-ary tree,
Qb is valid.

 p: The assignment bits of a tag; a tag can select a time slot according to p. In the initial node, it is
expressed as pinitial; In leaf nodes of the 4-ary tree, it is expressed as pQb. The reader can calculate
p based on Equation (11).

 Queue: The storage space in the reader, where all the Qbs are stored. If a Qb is used, it will be
deleted from the Queue. If a node is Cn, four longer query bits Qb00, Qb01, Qb10, and Qb11 will
be added to the Queue, and the reader will broadcast the longer Qbs to the unread tags in the
subsequent process.

 Lookup table: In the process of identification, a lookup table is used to store all the assignment
bits pQb.

Initially
Qb=null,Pinitial

Reader broadcasts query
package{Qb,Pinitial}

Tags select a time slot between 1～2Pinitial

According to the assignment bits Pinitial

Add xx(00,01,10 and 11) to Qb respectively,
Reader calculates PQb and records them.

Cn?

Reader broadcasts query package{Qb, PQb }
 to all unread tags. Delete Qb from queue.

Cn?

Is the queue empty?

END

NO

NO
NO

YES

YES

YES

Figure 4. The reader’s flowchart of 4QTAP.

The status of each tag can be divided into four types:

Figure 4. The reader’s flowchart of 4QTAP.

Information 2017, 8, 5 7 of 10

Information 2017, 8, 5 7 of 10

 Waiting status: Tags wait to receive the reader’s query package {Qb, pQb}.
 Activated status: If the prefix of a tag matches the query bits (Qb), the tag is activated, and it

select an assigned time slot to send its ID to the reader.
 Success status: There is only one tag responding in a time slot, the tag is identified successfully.
 Collision status: More than one tag responds in a time slot, a collision occurs, and all collided

tags in this time slot are not identified by the reader.

Waiting status

Receive query package
{Qb,p} from the reader

Tag compares its prefix
to Qb

Activated
status

Matched?

Tag selects a time slot according
to assignment bits p, and sends

its ID to the reader

Collision status?

Success status

END

NO

YES

NO

YES

Figure 5. A tag’s flowchart of 4QTAP.

3.4. Example Analysis

We suppose that there are 10 tags A–J. A: 1101010101, B: 1010000011, C: 1011111111,
D: 0111011010, E: 0111110001, F: 1001010100, G: 0101011101, H: 1010101100, I: 0111000000,
J: 1110001010. We can get the tag identification process as shown in Figure 6.

Figure 6. Identification process of 4QTAP.

4. Simulation Results and Discussion

We evaluate the performances of 4QTAP and other former ALOHA-based algorithms by matlab
simulation. The total time to identify all tags is equal to the total number of time slots multiplied by
the slot time, which is an important evaluation factor for RFID anti-collision algorithms. Since the slot
time is constant, we only take the total number of time slots into consideration. The smaller the total
number of time slots, the better the performance of the algorithm. The system efficiency (throughput)
is defined as the ratio of the slots filled with one tag to the number of all time slots, which is another

Figure 5. A tag’s flowchart of 4QTAP.

The status of each tag can be divided into four types:

• Waiting status: Tags wait to receive the reader’s query package {Qb, pQb}.
• Activated status: If the prefix of a tag matches the query bits (Qb), the tag is activated, and it select

an assigned time slot to send its ID to the reader.
• Success status: There is only one tag responding in a time slot, the tag is identified successfully.
• Collision status: More than one tag responds in a time slot, a collision occurs, and all collided tags

in this time slot are not identified by the reader.

3.4. Example Analysis

We suppose that there are 10 tags A–J. A: 1101010101, B: 1010000011, C: 1011111111, D: 0111011010,
E: 0111110001, F: 1001010100, G: 0101011101, H: 1010101100, I: 0111000000, J: 1110001010. We can get
the tag identification process as shown in Figure 6.

Information 2017, 8, 5 7 of 10

 Waiting status: Tags wait to receive the reader’s query package {Qb, pQb}.
 Activated status: If the prefix of a tag matches the query bits (Qb), the tag is activated, and it

select an assigned time slot to send its ID to the reader.
 Success status: There is only one tag responding in a time slot, the tag is identified successfully.
 Collision status: More than one tag responds in a time slot, a collision occurs, and all collided

tags in this time slot are not identified by the reader.

Waiting status

Receive query package
{Qb,p} from the reader

Tag compares its prefix
to Qb

Activated
status

Matched?

Tag selects a time slot according
to assignment bits p, and sends

its ID to the reader

Collision status?

Success status

END

NO

YES

NO

YES

Figure 5. A tag’s flowchart of 4QTAP.

3.4. Example Analysis

We suppose that there are 10 tags A–J. A: 1101010101, B: 1010000011, C: 1011111111,
D: 0111011010, E: 0111110001, F: 1001010100, G: 0101011101, H: 1010101100, I: 0111000000,
J: 1110001010. We can get the tag identification process as shown in Figure 6.

Figure 6. Identification process of 4QTAP.

4. Simulation Results and Discussion

We evaluate the performances of 4QTAP and other former ALOHA-based algorithms by matlab
simulation. The total time to identify all tags is equal to the total number of time slots multiplied by
the slot time, which is an important evaluation factor for RFID anti-collision algorithms. Since the slot
time is constant, we only take the total number of time slots into consideration. The smaller the total
number of time slots, the better the performance of the algorithm. The system efficiency (throughput)
is defined as the ratio of the slots filled with one tag to the number of all time slots, which is another

Figure 6. Identification process of 4QTAP.

4. Simulation Results and Discussion

We evaluate the performances of 4QTAP and other former ALOHA-based algorithms by matlab
simulation. The total time to identify all tags is equal to the total number of time slots multiplied by
the slot time, which is an important evaluation factor for RFID anti-collision algorithms. Since the slot
time is constant, we only take the total number of time slots into consideration. The smaller the total

Information 2017, 8, 5 8 of 10

number of time slots, the better the performance of the algorithm. The system efficiency (throughput)
is defined as the ratio of the slots filled with one tag to the number of all time slots, which is another
evaluation factor that should be taken into consideration in our simulations. When the durations of
collision slot, idle slot, and successful slot are the same (t0 = t1 = tk), the system efficiency is the same as
the channel usage efficiency presented in paper [18], so the system efficiency in our paper is a special
case of channel usage efficiency.

We compare 4QTAP with the Schoute DFSA algorithm [9], EDFSA [10], Query Tree Split (QTS)
ALOHA protocol [19], and Q algorithm [20]. The basic ideas of these algorithms are described
as follows:

(1) EDFSA: The algorithm estimates the number of unidentified tags first, then compares with the
given maximum frame size. If the number of tags is much larger than the one that gives the
optimal system efficiency, it divides the unread tags into some groups and allows only one group
to respond.

(2) QTS ALOHA: The length of a frame is chosen in the set (8, 16, 32, 64, 128, 256). If the size of
the next identification frame is selected, the total number of time slots will equal to all frames
multiplied by their size.

(3) Schoute DFSA: The DFSA algorithm was presented by Schoute in 1983, and the number of
collided tags is equal to 2.39 times the number of collided time slots.

(4) Q algorithm: In this algorithm, the value of Q is updated slot by slot according to the status
of the preceding received slot, which can determine the frame size that can maximize the tag
identification efficiency.

Figure 7a plots the number of total time slots, success time slots, idle time slots, and collision
time slots in 4QTAP when the number of tags increases from 5 to 100. Figure 7b further describes the
relationship between the number of time slots and the number of tags in the range 100 to 1000.
Firstly, the number of total time slots is equal to the sum of success time slots, idle time slots,
and collision time slots. Secondly, as the number of tags increases, the total number of time slots may
be invariant, because when there is a small difference in the number of tags, corresponding frames
may have the same number of time slots.

Information 2017, 8, 5 8 of 10

evaluation factor that should be taken into consideration in our simulations. When the durations of
collision slot, idle slot, and successful slot are the same (t0 = t1 = tk), the system efficiency is the same
as the channel usage efficiency presented in paper [18], so the system efficiency in our paper is a
special case of channel usage efficiency.

We compare 4QTAP with the Schoute DFSA algorithm [9], EDFSA [10], Query Tree Split (QTS)
ALOHA protocol [19], and Q algorithm [20]. The basic ideas of these algorithms are described as
follows:

(1) EDFSA: The algorithm estimates the number of unidentified tags first, then compares with the
given maximum frame size. If the number of tags is much larger than the one that gives the
optimal system efficiency, it divides the unread tags into some groups and allows only one
group to respond.

(2) QTS ALOHA: The length of a frame is chosen in the set (8, 16, 32, 64, 128, 256). If the size of the
next identification frame is selected, the total number of time slots will equal to all frames
multiplied by their size.

(3) Schoute DFSA: The DFSA algorithm was presented by Schoute in 1983, and the number of
collided tags is equal to 2.39 times the number of collided time slots.

(4) Q algorithm: In this algorithm, the value of Q is updated slot by slot according to the status of
the preceding received slot, which can determine the frame size that can maximize the tag
identification efficiency.

Figure 7a plots the number of total time slots, success time slots, idle time slots, and collision
time slots in 4QTAP when the number of tags increases from 5 to 100. Figure 7b further describes the
relationship between the number of time slots and the number of tags in the range 100 to 1000. Firstly,
the number of total time slots is equal to the sum of success time slots, idle time slots, and collision
time slots. Secondly, as the number of tags increases, the total number of time slots may be invariant,
because when there is a small difference in the number of tags, corresponding frames may have the
same number of time slots.

Figure 7. The number of total timeslots, success timeslots, idle timeslots, and collision timeslots in
4QTAP vs. the number of tags. (a) The number of tags increases from 5 to 100; (b) The number of tags
increases from 100 to 1000.

Figure 8 shows the efficiency of tag identification for different algorithms. When the number of
tags increases from 5 to 100, the efficiency of Schoute DFSA and Q algorithms rapidly become stable,
but the efficiency of EDFSA and QTS ALOHA slowly increase. When the number of tags is beyond
100, we can observe that the efficiency of each of 4QTAP, Schoute DFSA, QTS ALOHA, and Q
algorithm becomes stable. For a large number of tags, the efficiency of 4QTAP varies around 40%,
and that of the other four algorithms is only about 30%. In general, 4QTAP has better performance

Figure 7. The number of total timeslots, success timeslots, idle timeslots, and collision timeslots in
4QTAP vs. the number of tags. (a) The number of tags increases from 5 to 100; (b) The number of tags
increases from 100 to 1000.

Figure 8 shows the efficiency of tag identification for different algorithms. When the number of
tags increases from 5 to 100, the efficiency of Schoute DFSA and Q algorithms rapidly become stable,

Information 2017, 8, 5 9 of 10

but the efficiency of EDFSA and QTS ALOHA slowly increase. When the number of tags is beyond 100,
we can observe that the efficiency of each of 4QTAP, Schoute DFSA, QTS ALOHA, and Q algorithm
becomes stable. For a large number of tags, the efficiency of 4QTAP varies around 40%, and that of
the other four algorithms is only about 30%. In general, 4QTAP has better performance than other
ALOHA protocols. When all the tag IDs are determinate, the procedure of 4-ary query tree and tag
estimation method presented in this paper can be accurately predicted, so all tags will be traced in
4QTAP until each of them is identified.

Information 2017, 8, 5 9 of 10

than other ALOHA protocols. When all the tag IDs are determinate, the procedure of 4-ary query tree
and tag estimation method presented in this paper can be accurately predicted, so all tags will be
traced in 4QTAP until each of them is identified.

Figure 8. Throughput of different algorithms vs. the number of tags. (a) The number of tags increases
from 5 to 100; (b) The number of tags increases from 100 to 1000.

5. Conclusions

This paper presents a novel RFID anti-collision algorithm. When an RFID system identifies
multiple tags, tag collision will happen. A 4-ary query tree ALOHA protocol with optimal tag
estimation method is proposed, demonstrated, and discussed. In order to break through the
constraint of traditional frame slotted ALOHA protocols, we design an optimal tag estimation
method. The frame length changes with the number of tags, and each tag selects an assigned time
slot to respond to the reader according to the assignment bits p. Simulation results indicate that the
tag estimation method is more efficient. ALOHA-based algorithms have the tag starvation
phenomenon. We combined a 4-ary query tree algorithm with the dynamical frame slotted ALOHA.
Collision tags in a frame (node) will be identified in the branch nodes. The simulation results show
that the whole performances of 4QTAP is better than the performances of current ALOHA-based
algorithms.

Acknowledgment: This work was supported by the National Natural Science Foundation of China (61663013),
the Natural Science Foundation of Jiangxi Province (20161BAB212051) and the Key Research and Development
Program of Jiangxi Province (20161BBE50076)

Author Contributions: Zhihui Fu and Xiang Wu undertake most of this work. Fangming Deng provides the
instructions and helps during the design. All authors provide the helps in revisions of this manuscript. All
authors have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dagan, H.; Shapira, A.; Teman, A.; Mordakhay, A.; Jameson, S.; Pikhay, E.; Dayan, V.; Roizin, Y.; Socher, E.;
Fish, A. A Low-Power Low-Cost 24 GHz RFID Tag With a C-Flash Based Embedded Memory. IEEE J.
Solid-State Circuits 2014, 49, 1942–1957.

Figure 8. Throughput of different algorithms vs. the number of tags. (a) The number of tags increases
from 5 to 100; (b) The number of tags increases from 100 to 1000.

5. Conclusions

This paper presents a novel RFID anti-collision algorithm. When an RFID system identifies
multiple tags, tag collision will happen. A 4-ary query tree ALOHA protocol with optimal tag
estimation method is proposed, demonstrated, and discussed. In order to break through the constraint
of traditional frame slotted ALOHA protocols, we design an optimal tag estimation method. The frame
length changes with the number of tags, and each tag selects an assigned time slot to respond to the
reader according to the assignment bits p. Simulation results indicate that the tag estimation method is
more efficient. ALOHA-based algorithms have the tag starvation phenomenon. We combined a 4-ary
query tree algorithm with the dynamical frame slotted ALOHA. Collision tags in a frame (node) will
be identified in the branch nodes. The simulation results show that the whole performances of 4QTAP
is better than the performances of current ALOHA-based algorithms.

Acknowledgments: This work was supported by the National Natural Science Foundation of China (61663013),
the Natural Science Foundation of Jiangxi Province (20161BAB212051) and the Key Research and Development
Program of Jiangxi Province (20161BBE50076).

Author Contributions: Zhihui Fu and Xiang Wu undertake most of this work. Fangming Deng provides the
instructions and helps during the design. All authors provide the helps in revisions of this manuscript. All authors
have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Information 2017, 8, 5 10 of 10

References

1. Dagan, H.; Shapira, A.; Teman, A.; Mordakhay, A.; Jameson, S.; Pikhay, E.; Dayan, V.; Roizin, Y.; Socher, E.;
Fish, A. A Low-Power Low-Cost 24 GHz RFID Tag With a C-Flash Based Embedded Memory. IEEE J.
Solid-State Circuits 2014, 49, 1942–1957. [CrossRef]

2. Jang, S.; Kim, S.; Tentzeris, M.M. Low-cost flexible RFID tag for on-metal applications. In Proceedings of
the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science
Meeting, Memphis, TN, USA, 6–11 July 2014; pp. 1298–1299.

3. Wang, J.; Li, H.; Yu, F. Design of Secure and Low-cost RFID Tag Baseband. In Proceedings of the
International Conference on Wireless Communications, Networking and Mobile Computing, Shanghai,
China, 21–25 September 2007; pp. 2066–2069.

4. Preradovic, S.; Karmakar, N.C. Chipless RFID: Bar code of the future. IEEE Microw. Mag. 2010, 11, 87–97.
[CrossRef]

5. Want, R. An Introduction to RFID Technology. IEEE Pervasive Comput. 2006, 5, 25–33. [CrossRef]
6. Deng, F.; He, Y.; Li, B.; Zuo, L.; Wu, X.; Fu, Z. A CMOS pressure sensor tag chip for passive wireless

applications. Sensors 2015, 15, 6872–6884. [CrossRef] [PubMed]
7. Liu, L.; Lai, S. ALOHA-Based Anti-Collision Algorithms Used in RFID System. In Proceedings of the

International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM 2006,
Wuhan, China, 22–24 September 2006; pp. 1–4.

8. Cheng, T.; Jin, L. Analysis and Simulation of RFID Anti-collision Algorithms. In Proceedings of the 9th
International Conference on Advanced Communication Technology, Gangwon-Do, Korea, 12–14 February
2007; pp. 697–701.

9. Schoute, F.C. Dynamic frame length ALOHA. IEEE Trans. Commun. 1983, 31, 565–568. [CrossRef]
10. Lee, S.R.; Joo, S.D.; Lee, C.W. An enhanced dynamic framed slotted ALOHA algorithm for RFID tag

identification. In Proceedings of the International Conference on Mobile and Ubiquitous Systems:
Networking and Services, MOBIQUITOUS 2005, San Diego, CA, USA, 17–21 July 2005; pp. 166–174.

11. Chen, W.T. An Accurate Tag Estimate Method for Improving the Performance of an RFID Anticollision
Algorithm Based on Dynamic Frame Length ALOHA. IEEE Trans. Autom. Sci. Eng. 2009, 6, 9–15. [CrossRef]

12. He, Y.; Wang, X. An ALOHA-based improved anti-collision algorithm for RFID systems. IEEE Wirel. Commun.
2013, 20, 152–158.

13. Lin, C.F.; Lin, Y.S. Efficient Estimation and Collision-Group-Based Anticollision Algorithms for Dynamic
Frame-Slotted ALOHA in RFID Networks. IEEE Trans. Autom. Sci. Eng. 2010, 7, 840–848. [CrossRef]

14. Wu, H.; Zeng, Y.; Feng, J.; Gu, Y. Binary Tree Slotted ALOHA for Passive RFID Tag Anticollision. IEEE Trans.
Parallel Distrib. Syst. 2013, 24, 19–31. [CrossRef]

15. Myung, J.; Lee, W.; Srivastava, J. Adaptive Binary Splitting for Efficient RFID Tag Anti-Collision.
IEEE Commun. Lett. 2006, 10, 144–146. [CrossRef]

16. Yang, C.N.; Hu, L.J.; Lai, J.B. Query Tree Algorithm for RFID Tag with Binary-Coded Decimal EPC.
IEEE Commun. Lett. 2012, 16, 1616–1619. [CrossRef]

17. Kim, Y.; Kim, S.; Lee, S.; Ahn, K. Improved 4-ary Query Tree Algorithm for Anti-Collision in RFID System.
In Proceedings of the 2009 International Conference on Advanced Information Networking and Applications,
Bradford, UK, 26–29 May 2009; pp. 699–704.

18. Shakiba, M.; Singh, M.J.; Sundararajan, E.; Zavvari, A.; Islam, M.T. Extending birthday paradox theory to
estimate the number of tags in RFID systems. PLoS ONE 2014, 9, e95425. [CrossRef] [PubMed]

19. Yan, X.; Yin, Z.; Xiong, Y. QTS ALOHA: A Hybrid Collision Resolution Protocol for Dense RFID Networks.
In Proceedings of the 2008 IEEE International Conference on E-Business Engineering, Xi’an, China,
22–24 October 2008; pp. 557–562.

20. EPCglobal Standard Specification. EPC™ Radio-Frequency Identification Protocols Class-1 Generation-2 UHF
RFID Protocol for Communications at 860 MHz–960 MHz Ver. 1.0.9; EPCglobal Inc.: Lawrenceville, NJ, USA,
2005; pp. 1–94.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSSC.2014.2323352
http://dx.doi.org/10.1109/MMM.2010.938571
http://dx.doi.org/10.1109/MPRV.2006.2
http://dx.doi.org/10.3390/s150306872
http://www.ncbi.nlm.nih.gov/pubmed/25806868
http://dx.doi.org/10.1109/TCOM.1983.1095854
http://dx.doi.org/10.1109/TASE.2008.917093
http://dx.doi.org/10.1109/TASE.2010.2042806
http://dx.doi.org/10.1109/TPDS.2012.120
http://dx.doi.org/10.1109/LCOMM.2006.1603365
http://dx.doi.org/10.1109/LCOMM.2012.090312.121213
http://dx.doi.org/10.1371/journal.pone.0095425
http://www.ncbi.nlm.nih.gov/pubmed/24752285
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	An Optimal Tag Estimation Method
	Description of Tag Estimation Method
	Example Analysis

	A 4-Ary Query Tree ALOHA Protocol Based on Optimal Tag Estimation
	QTA and 4-Ary QTA
	Description of the Proposed Algorithm
	Flowchart of 4QTAP
	Example Analysis

	Simulation Results and Discussion
	Conclusions

