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Abstract: Faults in bearings and gearboxes, which are widely used in rotating machines, can lead to
heavy investment and productivity loss. Accordingly, a fault diagnosis system is necessary to ensure
a high-performance transmission. However, as mechanical fault diagnosis enters the era of big data,
it can be difficult to apply traditional fault diagnosis methods because of the massive computation
cost and excessive reliance on human labor. Meanwhile, unsupervised learning has been shown
to have excellent performance in processing machanical big data. In this paper, an unsupervised
learning method known as sparse filtering is applied, the multi-correlation of a weight matrix is
investigated, and a method that is more suitable for the feature extraction of signals is proposed.
The main contribution of our work is the modification of original method. First, to understand
the non-monotonicity testing accuracies of the original method, the physical interpretation of input
dimensions is studied. Second, using the physical interpretation, an overfitting phenomenon is
discovered and examined. Third, to reduce the overfitting phenomenon, a method which eliminates
the multi-correlation of the weight matrix is proposed. Finally, bearing and gear datasets are employed
to verify the effectiveness of the proposed method; experimental results show that the proposed
method can achieve a superior performance in comparison to the original sparse filtering model.
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1. Introduction

With the arrival of modern manufacturing systems, machines have become more automatic
and efficient, which has led to increased demands on their reliability, quality, and availability [1,2].
As a result, machinery fault diagnosis systems, which focus on the detection of health conditions
after the occurrence of certain faults, have attracted considerable attention [3,4]. Additionally, with
recent developments in both industry and the Internet, data acquisition has exponentially increased.
Thus, fault diagnosis has entered the era of Big Data [5–7]. Because mechanical big data is typically
characterized as large-volume, diverse, and of high-velocity [8], methods of extracting features rapidly
and accurately from mechanical big data has become an urgent subject of research [9,10]. Existing
fault diagnosis methods can be divided into two major categories [11]: physics-based models and
data-driven ones [12,13]. Physics-based models overly rely on high-quality domain knowledge and
necessitate massive computation costs, which reduces the overall efficiency of fault diagnosis. Thus,
it is unsuitable for big data [14–16]. The data-driven models [15], such as Artificial Neural Networks
(ANN) [17,18], Autoencoders [5], Restricted Boltzmann Machine (RBM) [19], Convolutional Neural
Networks (CNN) [20,21], and k-Nearest Neighbor [22], depend less on human knowledge and can
effectively diagnose faults in mechanical big data. However, these intelligent fault diagnosis methods
pose specific challenges, e.g., a difficulty in adjusting various hyperparameters, and good diagnosis

Appl. Sci. 2018, 8, 906; doi:10.3390/app8060906 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-8482-5234
https://orcid.org/0000-0002-1015-7920
http://www.mdpi.com/2076-3417/8/6/906?type=check_update&version=1
http://dx.doi.org/10.3390/app8060906
http://www.mdpi.com/journal/applsci


Appl. Sci. 2018, 8, 906 2 of 17

accuracy can be obtained only when the hyperparameters are set properly. For example, Autoencoder
has four hyperparameters to tune while RBM has six.

Ngiam [23] proposed a sparse filtering method: an unsupervised two-layer network which
optimizes the sparsity distribution of the features calculated by the collected data instead of modeling
the distribution of the data. It also scales well with the dimension of the input [24]. Only the number
of features needs to set; as a result, it is extremely simple to tune and easy to implement. Thanks to
this strong performance, sparse filtering has been successfully adopted in several image recognition
cases [25–27]. Recently, sparse filtering also has been introduced into the field of rotary machinery fault
diagnosis, delivering excellent performance in feature extraction from complex fault signals. As is well
known, Lei et al. [28] first made a constructive attempt to apply sparse filtering to fault diagnosis by a
two-stage learning method. As a result, sparse filtering was proved to be an excellent tool for feature
extraction. Subsequently, a physical interpretation to sparse filtering was achieved, in which trained
weight vectors could be compared directly to the Gabor filters. Zhao et al. [29] used sparse filtering
to extract multi-domain sparse features and adopted it for fault identification in a planetary gearbox.
Jiang et al. [30] proposed a multiscale representation learning (MSRL) framework, which was based on
sparse filtering, to learn useful features from a direct interpretation of raw vibration signals; the aim
was to capture rich and complementary fault pattern information at different scales. Yang et al. [31]
combined sparse filtering with a Support Vector Machine optimized by a Improved Particle Swarm to
simplify the hyperparameters.

However, as shown in Lei et al. [28], when the important parameter of input dimension increased,
an initial increase in testing accuracies was followed by a marked decrease (in this paper, the rule
is called non-monotonicity). This indicates considerable time is required to optimize the input
dimension to increase diagnosis accuracy. To avoid this unnecessary work, the motivation behind
non-monotonicity should be clearly explained. Therefore, the interpretation of input dimensions
should be studied first. Next, the nature of non-monotonicity will be explained and, finally, a method
to improve the performance of sparse filtering for fault diagnosis will be proposed.

To solve these problems, this paper is organized as follows. Section 2 introduces the algorithm
of sparse filtering. Section 3 studies the interpretation of input dimension and explains the nature of
the non-monotonicity phenomenon. Section 4 details the proposed method, which is based on the
elimination of the multi-correlation of weight matrix. In Section 5, the diagnosis cases of bearing and
gear datasets are adopted to validate the effectiveness of the proposed method. Finally, conclusions
are drawn in Section 6.

2. Sparse Filtering

Sparse filtering is an unsupervised feature learning method that attempts to ensure learning
features satisfy three principles: population sparsity, lifetime sparsity, and high dispersal [23]. To realize
these properties, sparse filtering trains a weight matrix through the optimization of a cost function.

As shown in Figure 1, the collected raw vibration signal is used as input data. Firstly, the vibration
signal is separated into M samples to compose the training set

{
xi}M

i=1, where xi ∈ <N×1 is a training
sample which contains N data points. Then, the training set is used to train the sparse filtering
model to obtain a weight matrix W ∈ <N×L. Finally, each sample is mapped into a feature vector
fi ∈ <L×1 by the weight matrix. For sparse filtering, an activation function is needed to calculate the
nonlinear features.
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We consider the situation that sparse filtering computes linear features for each sample:

f i
j = WT

j xi (1)

where f i
j is the jth feature value.

The feature matrix comprises the features f i
j . Firstly, each row is normalized to be equally activated

by its `2-norm:
f̃j = fj/‖fj‖2

(2)

Then, each column (or each sample) is normalized by its `2-norm. As a result, each feature is
constrained to lie on the unit `2-ball:

f̂i
= f̃

i
/‖̃fi‖2 (3)

Finally, the normalized features are optimized for sparseness using the `1 penalty. For the training
set
{

xi}M
i=1, the sparse filtering objective is shown as follows:

minimize J(W) =
M

∑
i=1
‖f̂i‖1 (4)

Generally, the activation function g(·) = |·| is recommended and can be rewritten as the inner
product form:

f i
l = g(WT

j xi) =
∣∣∣WT

j xi
∣∣∣ = ∣∣∣〈WT

j xi
〉∣∣∣ (5)

This suggests sparse filtering can be interpreted as a measurement of the similarity between the
input signals and a series of weight vectors, such as wavelet transform [32].

3. Nature of Input Dimension and Overfitting

In this section, the nature of non-monotonicity is studied. First, several fundamental laws are
revealed using a series of harmonic signals. Then, the bearing fault signals are applied to further verify
our interpretation. Finally, on the basis of the physical interpretation, the overfitting phenomenon is
discovered and the nature of it is investigated.

3.1. Characteristics of Harmonic Signals

A harmonic signal y(t) is defined as follows:

y(t) = A sin(2π frt + θ) (6)

where A and θ are the amplitude and phase of y(t), respectively; fr denotes the rotational frequency.
The sampling rate fs of the signals is 10,000 Hz and sampling time t is 12 s. 30 trials were carried

out for each experiment in this section to reduce the effect of randomness. In addition, 10% of samples
were randomly selected for training and the output dimension was set to 1.
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3.1.1. Consider Different Initial Phases

Two harmonic signal groups of frequency (100 Hz and 130 Hz) with different initial phases are
exploited through sparse filtering, where A = 1; θ = 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦. The classification
results of different input dimensions are displayed in Figure 2. It was determined that, when the
input dimension Nin = 50, 100, 150, 200; fr = 100 Hz, the testing accuracies reached 100%. However,
the majority of the testing accuracies were quite low. It is possible that sparse filtering was unable to
recognize the information of the initial phase.
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3.1.2. Consider Different Amplitudes

A batch of harmonic signals with different amplitudes were processed based on sparse filtering
without loss of generality, where A = 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2; θ = 0◦; fr = 100 Hz. 100% accuracies were
obtained with different input dimensions. Figure 3, shows the relationship between the amplitudes
of samples and the learned features with different input dimensions. It indicates that the learned
features are proportional to the amplitudes of samples. The scales are irregular and do not depend
on input dimension. It means that sparse filtering could classify different types by the amplitude
information; however, the input dimension does not affect the learned features of sparse filtering.
Thus, the amplitude was set at one in the follow-up study.
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3.1.3. Consider Different Rotational Frequencies

A set of rotational speeds were used to describe the frequency distinguishing ability of sparse
filtering, where A = 1; θ = 0◦; fr = 100, 150, 200, 250, 300, 350, 400 Hz. Figure 4 shows the diagnosis
accuracies using various input dimensions. The testing accuracy of all input dimensions achieved
100%. This suggests that the learned features of sparse filtering could reflect the frequency information
of vibration signals. However, when the input dimension increased, the averaged testing accuracy
was higher.
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different frequencies.

To illustrate this phenomenon, we selected two different output dimensions of weight matrixes
for comparison analysis, i.e., 100 and 200. The learned features and the spectra of weight matrixes
are shown in Figure 5. It is seen in Figure 5a that the frequency interval in the spectra of weight
matrixes was equal to that in the samples, and the amplitudes of spectra were proportional to the
features with the corresponding frequency. This resulted in steady, clear, and different learned features
within the various samples. However, the frequency interval of weight matrixes was equal to 100
Hz in Figure 5b, twice the size of the frequency interval of samples. The features of several samples,
whose frequencies were 150, 250, 350 Hz, depended on the amplitudes of adjacent frequencies in the
spectra of the weight matrix. This also resulted in unclear learned features, as in Figure 5b. Therefore,
the frequency resolution of weight matrix depends on the input dimension.

From the inspection of the properties of a series of harmonic signals, several conclusions
can be summarized:

(1) Sparse filtering is unable to classify the initial phase information.
(2) Sparse filtering can recognize the amplitude information, but the input dimension does not affect

the learned features of sparse filtering.
(3) The learned features of sparse filtering can reflect the frequency information. Additionally,

the frequency resolution of weight matrix depends on the input dimension. The features are
unstable when the input dimension reduces in size.



Appl. Sci. 2018, 8, 906 6 of 17

Appl. Sci. 2018, 8, x 6 of 17 

100 150 200 250 300 350 400

0.0

0.2

0.4

0.6

0.8

1.0

 FFT of weight matrix       Extracted feature
A

m
p

lit
u

d
e

Frequency (Hz)  

100 150 200 250 300 350 400

0.0

0.2

0.4

0.6

0.8

1.0

Aborted feature

A
m

p
lit

u
d
e

Frequency (Hz)

 FFT of weight matrk     Extracted Feature

 
(a) (b) 

Figure 5. Relationship between the frequencies of samples and the learned features: (a) Nin = 200;  

(b) Nin = 100. 

3.2. Explanation for the Input Dimension Based on Vibration Signals 

3.2.1. Data Description  

In this section, the bearing dataset [33] provided by Case Western Reserve University were 

employed for analysis. The vibration signals were collected using accerometers from the drive end 

of a motor under four different operating conditions: normal condition (NC), inner race fault (IF), 

outer race fault (OF), and roller fault (RF). There were three different severity levels (0.18, 0.36, and 

0.53 mm) for IF, OF, and RF cases, respectively. All the samples were collected under four different 

loads (0, 1, 2, and 3 hp) and the sampling frequency was 12 kHz. Therefore, the dataset included ten 

health states under four loads, and we treated the same health state under different loads as one 

class.  

3.2.2. The influence of Input Dimension of Sparse Filtering 

The method of Lei et al. [28] was adopted to engage with the experiment signals described 

above. The selection of input dimension Nin of sparse filtering was investigated. Softmax regression 

was adopted as a classifier and the diagnosis results are shown in Figure 6. It can be seen that the 

testing accuracy decreased after an initial increase with the input dimension. Therefore, excessive 

human labor was required to select the input dimension for the high testing accuracy. To overcome 

this deficiency, we decided to provide a clear explanation of the nature of the input dimension. 

The bearing signals were employed to verify the above explanation of the input dimension on 

the basis of harmonic signals. As shown in Figure 7a, two weight vectors of Nin = 50 and 100 were 

selected respectively, and their spectra are shown in Figure 7b. It was determined that the weight 

vectors were striking similar to the one-dimensional Gabor filter which served as an excellent 

band-pass filter for signals. The Gabor function is shown as follows [34]: 

BDd
Dd

Adf ++−
−

−= ))(2cos()
2

)(
exp()(

2

2




 (7) 

where A, ω, and ϕ are the amplitude, spatial frequency, and phase of the cosine term, respectively, 

σ is the standard deviation of the Gaussian, D denotes a position offset, and B is an offset parameter. 

The two different weight vectors exert the same bandwidth, which means that the features 

extracted by them theoretically have the same frequency information. However, when the input 

dimension diminishes, the frequency interval of weight matrix also shrinks. As a result, the energy 

of frequency is dispersed, learning to unclear learned features, which results in lower testing 

accuracy. 

Figure 5. Relationship between the frequencies of samples and the learned features: (a) Nin = 200;
(b) Nin = 100.

3.2. Explanation for the Input Dimension Based on Vibration Signals

3.2.1. Data Description

In this section, the bearing dataset [33] provided by Case Western Reserve University were
employed for analysis. The vibration signals were collected using accerometers from the drive end of
a motor under four different operating conditions: normal condition (NC), inner race fault (IF), outer
race fault (OF), and roller fault (RF). There were three different severity levels (0.18, 0.36, and 0.53 mm)
for IF, OF, and RF cases, respectively. All the samples were collected under four different loads (0, 1, 2,
and 3 hp) and the sampling frequency was 12 kHz. Therefore, the dataset included ten health states
under four loads, and we treated the same health state under different loads as one class.

3.2.2. The influence of Input Dimension of Sparse Filtering

The method of Lei et al. [28] was adopted to engage with the experiment signals described above.
The selection of input dimension Nin of sparse filtering was investigated. Softmax regression was
adopted as a classifier and the diagnosis results are shown in Figure 6. It can be seen that the testing
accuracy decreased after an initial increase with the input dimension. Therefore, excessive human labor
was required to select the input dimension for the high testing accuracy. To overcome this deficiency,
we decided to provide a clear explanation of the nature of the input dimension.

The bearing signals were employed to verify the above explanation of the input dimension on the
basis of harmonic signals. As shown in Figure 7a, two weight vectors of Nin = 50 and 100 were selected
respectively, and their spectra are shown in Figure 7b. It was determined that the weight vectors were
striking similar to the one-dimensional Gabor filter which served as an excellent band-pass filter for
signals. The Gabor function is shown as follows [34]:

f (d) = A exp(− (d− D)2

2σ2 ) cos(2πω(d− D) + ϕ) + B (7)

where A, ω, and φ are the amplitude, spatial frequency, and phase of the cosine term, respectively,
σ is the standard deviation of the Gaussian, D denotes a position offset, and B is an offset parameter.
The two different weight vectors exert the same bandwidth, which means that the features extracted
by them theoretically have the same frequency information. However, when the input dimension
diminishes, the frequency interval of weight matrix also shrinks. As a result, the energy of frequency
is dispersed, learning to unclear learned features, which results in lower testing accuracy.
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3.3. The Nature of the Overfitting Phenomenon

As seen in the above discussion, the change of input dimension affects testing accuracy through its
influence on the frequency resolution of the weight matrix. When the input dimension increased, the
testing accuracy also should have increased. However, as seen in Figure 6, when the input dimension
was larger than 100, testing accuracy was reduced. Training accuracy did not reduce when the input
dimension was increased, suggesting that sparse filtering cannot extract discriminative features for a
testing dataset, even though the weight matrix has perfect frequency resolution. This phenomenon is
called overfitting.

To explain the nature of overfitting, we use WWT to measure the similarity of the row vectors
respectively when Nin = 100 and Nin = 200. The results can be seen in Figure 8a,b; when the input
dimension is 100, the inner product of the same row vector of approaches 1, and the inner product
between the two different vectors is close to 0. However, when the input dimension is 200, the inner
product of vectors of the weight matrix indicates that they have similar patterns. This suggests that
sparse filtering can encourage the learned weight matrix to display clear and distinct patterns when
the input dimension is smaller. 15 row vectors of W, trained by sparse filtering with Nin = 100, were
randomly selected and plotted in Figure 9a. The corresponding frequency spectra of these row vectors
are displayed in Figure 9b. The row vectors show local striking in the time domain and they also
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dominate the narrow spectral bandwidth in the frequency domain. Accordingly, these row vectors
exhibit time-frequency properties and show similarities to one-dimensional Gabor functions, which
serve as good band-pass bases for mechanical signals. For comparison, we randomly plotted 15 row
vectors of W trained by sparse filtering of Nin = 200 in Figure 9c,d. These vectors also exhibited
some time-frequency properties and wide spectral bandwidth in the frequency domain. The results
demonstrate that the clearer and more distinct the time-frequency properties of the trained weight
matrix are, the better the diagnosis performance of the method. Therefore, sparse filtering encourages
learned features to be discriminative to improve the testing accuracy.
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4. Modified Sparse Filtering and Two-Stage Learning Method

In this section, a novel method known as modified sparse filtering is proposed, which aims to
resolve the problem of overfitting. From the above discussion, the nature of the overfitting phenomenon
is that different vectors of the weight matrix exhibit similar patterns. To suppress the similarity of the
row vector, a constraint condition is applied to the cost function, which is shown as follows:

minimize J(W) =
M

∑
i=1
‖f̂i‖1 + λ∑

i 6=j

∣∣∣ωiω
T
j

∣∣∣ (8)

where λ is the tuning parameter, ωiωj are the vectors of the weight matrix. The constraint condition
represents the sum of the inner product among different row vectors.

A two-stage learning method is proposed for intelligent fault diagnosis of machines based on the
modified sparse filtering. The illustration and flowchart of the method are shown in Figure 10. In the
first learning stage, modified sparse filtering is used to extract local discriminative features from raw
vibration signals and the learned features of the signals are obtained by averaging these local features.
In the second stage, softmax regression is applied to classify mechanical health conditions using the
learned features.

1. Collect signals. The vibration signals of machines are obtained under different health conditions.

These signals compose the training set
{

xi, yi}M
i=1, where xi ∈ <N×1 is the ith sample containing

M vibration data points and yi is the health condition label. We collect Ns segments from each
sample to compose the training set

{
sj}Ns

j=1 by an overlapped manner, where sj ∈ <Nin×1 is the jth

segment containing Nin data points. The set
{

sj}Ns
j=1 is rewritten as a matrix form Sj ∈ <Nin×Ns .

2. Whitening. It is necessary to pre-process S by whitening. Whitening uses the eigenvalue
decomposition of the covariance matrix

cov(ST) = EDET (9)
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where E denotes the orthogonal matrix of eigenvectors of the covariance matrix cov(ST), and D
is the diagonal matrix of the eigenvalues. The whitened training set Sw can then be obtained as
follows:

Sw = ED−1/2ETS (10)

3. Train sparse filtering. Sw is employed to train the modified sparse filtering model; as a result,
the weight matrix W is obtained by minimizing Equation (8).

4. Calculate the local features. The training sample xi is alternately divided into K segments, where

K = N/Nin. These segments constitute a set
{

xk
i

}K

k=1
, where xk

i ∈ <Nin×1. The local features

fi
k ∈ <1×Nin can be calculated from each training sample xk

i by the weight matrix W.
5. Obtain the learned features. The local features fk

i are combined into a feature vector fi by
averaging, and fi is the learned feature vector:

fi =

(
1
K

K

∑
k=1

fi
k

)T

(11)

6. Train softmax regression. Once the learned feature set
{

fi
}M

i=1
is obtained, we combine it with

the label set
{

yi}M
i=1 to train softmax regression.
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5. Fault Diagnosis Using the Proposed Method

5.1. Case Study 1: Fault Diagnosis of Motor Bearing

The bearing dataset provided by Case Western Reserve University [25] is analyzed in this section.
The dataset is detailed in Section 3.2.1. The dataset included ten health classes under four loads, and
we treated the same health state under different loads as one class. Additionally, 15 trials were carried
out for each experiment to reduce the randomness effect.

First, we investigated the selection of the input dimension Nin of modified sparse filtering.
10% of the samples were randomly selected to train the proposed model. The remaining samples
were equally divided into testing (to adjust the parameters) and validation dataset. The weight decay
term of softmax regression was equal to 1 × 10−5 and λ = 1. The output dimension Nout was half of
the input dimension. The diagnosis results, in comparison to the original method with different Nin,
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are displayed in Figure 11. As seen in the figure, all testing accuracies of the proposed method were
over 98.1%. Although the non-monotonicity phenomenon was still present, the testing accuracies
of the proposed method were higher than the original method. This suggests that the deficiency of
parameter selection was improved.

Appl. Sci. 2018, 8, x 11 of 17 

50 100 150 200 300

92

93

94

95

96

97

98

99

100

A
c
c
u
ra

c
y
 (

%
)

Input dimension 

 Training accuracy of sparse filtering   Training accuracy of modified sparse filtering

 Testing accuracy of sparse filtering     Testing accuracy of modified sparse filtering

 

Figure 11. Diagnosis results using various input dimensions of modified and original sparse filtering. 

The overfitting phenomenon always arises when the training dataset is small. Therefore, we 

investigated the selection of proper percentages in training samples. The diagnosis accuracies are 

shown in Figure 12. The testing accuracies of the proposed method are higher than the original 

method in each condition. Furthermore, the proposed method obtained 95.3% accuracy, with a 

small standard deviation of 1.03% using only 1% of samples for training. Such results indicate that 

the proposed method performs well and can overcome the overfitting problem. 

We selected the parameters of Nin = 100, Nout = 100, and λ = 1; softmax regression was equal to 1 × 

10−5. The average accuracy of validation dataset was 99.85%, higher than the 99.66% obtained by the 

original method. To compare features, t-SNE [35] is used. This technique enabled us to embed these 

100-D vectors in a 3D image in such a way that the vectors which were in close proximity to each other 

in the 100-D space were also in close proximity in the 3D plot [36]. The results of validation dataset 

processed by t-SNE are shown in Figure 13. The mapped features of the different types are 

demonstrably separated, and the features of the same type are gathered together; the distance between 

each type is large enough to distinguish different health conditions. 

1 2 3 4 5 6 7 8 9 10
80

85

90

95

100

T
e
s
ti
n
g
 a

c
c
u
ra

c
y
 (

%
)

Percentage of sample for training (%)

 Sparse filtering     Modified sparse filtering

 

Figure 12. Diagnosis results obtained by different percentages of samples using modified and 

original sparse filtering. 

Figure 11. Diagnosis results using various input dimensions of modified and original sparse filtering.

The overfitting phenomenon always arises when the training dataset is small. Therefore,
we investigated the selection of proper percentages in training samples. The diagnosis accuracies are
shown in Figure 12. The testing accuracies of the proposed method are higher than the original method
in each condition. Furthermore, the proposed method obtained 95.3% accuracy, with a small standard
deviation of 1.03% using only 1% of samples for training. Such results indicate that the proposed
method performs well and can overcome the overfitting problem.
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sparse filtering.

We selected the parameters of Nin = 100, Nout = 100, and λ = 1; softmax regression was equal to
1 × 10−5. The average accuracy of validation dataset was 99.85%, higher than the 99.66% obtained
by the original method. To compare features, t-SNE [35] is used. This technique enabled us to embed
these 100-D vectors in a 3D image in such a way that the vectors which were in close proximity to
each other in the 100-D space were also in close proximity in the 3D plot [36]. The results of validation
dataset processed by t-SNE are shown in Figure 13. The mapped features of the different types are
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demonstrably separated, and the features of the same type are gathered together; the distance between
each type is large enough to distinguish different health conditions.Appl. Sci. 2018, 8, x 12 of 17 
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As shown in Section 3, the nature of overfitting produces unclear and similar patterns for
different vectors of the weight matrix. Figure 14 shows the inner product result of the weight
matrix of the proposed method when the input dimension is equal to 200. 15 row vectors of W
were randomly selected and plotted in Figure 15a. The corresponding frequency spectra of them are
displayed in Figure 15b; notably, most of the row vectors are approximately orthogonal. Additionally,
the bandwidths of the row vectors are narrow in the frequency domain, as shown in Figure 15b.
This suggests that the modified sparse filtering can extract more discriminative features with less
redundancy. As a result, the accuracies obtained by the proposed method are higher because the
learned features are constrained to be more meaningful and dissimilar.
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5.2. Case Study 2: Fault Diagnosis of Gearbox

The common faults of gears include local faults (pitting and teeth broken), distribution faults
of worn types, and multiple coupled faults. Accurate fault identification is necessary for the safety
of a mechanical system. In this section, a gearbox experimental dataset under different speeds was
employed to validate the robustness of the proposed method. The test data were gathered on the
gearbox platform shown in Figure 16, which consisted of a gearbox, a diesel engine, a bearing seat,
a flexible coupling, a base, etc. The speed of the test system was controlled by electrical machinery.
The gearbox contained two gears (pinion and wheel gear); their parameters are shown in Table 1.
When the diesel engine ran, the Signal-Noise-Ratio was small. Therefore, the dataset validated the
robustness to the noise of the proposed algorithm.
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Table 1. Gear parameters of the test gearbox.

Gear Name Teeth Number Gear Modulus (mm) Gear Pressure Angle (◦) Gear Material

Pinion gear 55 2 20 S45C
Wheel gear 75 2 20 S45C

The gear dataset contained four kinds of faults: a coupled fault of wheel pit and pinion worn,
a single pit of wheel, coupled fault of wheel broken and pinion worn, and a single worn of pinion.
For convenience, the above four types of gear faults are named Type-2, Type-3, Type-4 and Type-5,
respectively. In addition, the normal state of the gear is referred to as Type-1. Each fault type was
tested under three different speeds. Note that the speed fluctuations also existed among different
faults and the values of speeds are shown in Table 2. The dataset of gearbox was averagely divided
into two non-overlapping parts which were used as the training set and testing set.

Table 2. Speeds of different fault types.

Speed Type-1 Type-2 Type-3 Type-4 Type-5

Speed1 (rpm) 800 825 834 812 822
Speed2 (rpm) 820 849 850 842 845
Speed3 (rpm) 852 864 866 860 861

The proposed method achieved excellent performance in its application to the gearbox fault
diagnosis. The diagnosis results, compared with the original method by using different Nin,
are displayed in Figure 17; notably, the paramater setting is the same as the bearing case. As seen in
the figure, testing accuracies improved greatly. In addition, the non-montonicity phenomenon was
significantly weak. The diagnosis accuracies with different percentages of training samples are shown
in Figure 18. The experimental results show that the proposed method can effectively identify the gear
health conditions with different fault types and severities, exhibiting a better performance than the
original method.
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sparse filtering.

To demonstrate the diagnosis information, the confusion matrix of the proposed method is
displayed in Figure 19. Notably, the proposed method misclassifies 0.01% of testing samples of Type-2
as Type-1 and 0.02% of testing samples of Type-5 as Type-4. It is possible that the concurrent types
were similar, making it more difficult to classify the two faults than other types.
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6. Conclusions

This paper proposed a modified sparse filtering for machinery intelligent fault diagnosis by
studying the nature of input dimension and overfitting. As illustrated in the experiments, the proposed
method can effectively extract useful features from different fault types and achieve a higher diagnosis
accuracy than the original method. The following major conclusions can be drawn.

1. The interpretation of input dimension is studied based on the harmonic signal groups and bearing
vibration signals. It can be concluded that the frequency resolution of weight matrix depends on
input dimension.

2. The phenomenon known as non-monotonicity in this paper is explained as overfitting, which
results from row vectors of weight matrix which are not orthogonal.
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3. The modified sparse filtering with a constraint term in the cost function can effectively handle
the overfitting problem and eliminate the multi-correlation of the weight matrix.
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