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Abstract: The existing unsupervised change detection methods using full-polarimetric synthetic
aperture radar (PolSAR) do not use all the polarimetric information, and the results are subject
to the influence of noise. In order to solve these problems, a novel automatic and unsupervised
change detection approach based on multi-temporal full PolSAR images is presented in this paper.
The proposed method integrates the advantages of the test statistic, generalized statistical region
merging (GSRM), and generalized Gaussian mixture model (GMM) techniques. It involves three
main steps: (1) the difference image (DI) is obtained by the likelihood-ratio parameter based on a test
statistic; (2) the GSRM method is applied to the DI; and (3) the DI, after segmentation, is automatically
analyzed by the generalized GMM to generate the change detection map. The generalized GMM
is derived under a non-Gaussian assumption for modeling the distributions of the changed and
unchanged classes, and automatically identifies the optimal number of components. The efficiency of
the proposed method is demonstrated with multi-temporal PolSAR images acquired by Radarsat-2
over the city of Wuhan in China. The experimental results show that the overall accuracy of the
change detection results is improved and the false alarm rate reduced, when compared with some of
the traditional change detection methods.

Keywords: PolSAR; unsupervised change detection; test statistic; generalized statistical region
merging (GSRM); generalized Gaussian mixture model (GMM)

1. Introduction

In the field of remote sensing, change detection techniques are applied to recognize changes of
the ground by analyzing remote sensing images taken at different times in the same geographical
area [1,2]. Due to its all-time and all-weather mapping capability, which is independent of, for instance,
cloud cover, night-time, and severe weather, the change detection of synthetic aperture radar (SAR)
has played an important role in understanding the relationships and interactions between people
and natural phenomena in recent years [3]. Change detection with SAR images has been used
in applications such as disaster monitoring [4,5], ecological monitoring [6,7], regulatory policy
development [8,9], and environmental impact assessment [10]. Meanwhile, full-polarimetric synthetic
aperture radar (PolSAR) images contain both phase and amplitude information from radar returns
transmitted in two different polarizations, and more scattering information can be obtained than with
single-channel SAR images [11]. Therefore, many researchers have focused on change detection using
multi-temporal PolSAR images [12–15].

Based on whether training data are accessed or not, change detection based on PolSAR images
can be generally classified into two categories: unsupervised approaches and supervised approaches.
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Most of the supervised change detection approaches are dependent on the classification accuracy of the
multi-temporal PolSAR images, and are liable to be affected by the significant cumulative error caused
by the single remote sensing image classification during change detection [16,17]. Because of the
impact of speckle noise, it is difficult to obtain high-precision classification results from multi-temporal
PolSAR images, which limits the use of change detection based on PolSAR images. Unlike supervised
change detection approaches, the unsupervised change detection methods implement change detection
by directly comparing images acquired at different times, and these methods are widely used in change
detection based on multi-temporal PolSAR images [18].

The traditional unsupervised methods based on PolSAR images usually take the pixel as the
basic processing unit. The process of the state-of-the-art unsupervised change detection methods
includes: (1) preprocessing; (2) generation of the difference image (DI); and (3) making a decision
(thresholding algorithm or clustering algorithm) based on the analysis of the DI [19]. The preprocessing
of multi-temporal PolSAR images mainly consists of radiometric calibration, speckle filtering,
and image co-registration, which are all critical to the change detection. In particular, speckle filtering
is usually carried out to suppress the speckle before the change detection of PolSAR images.
Despite preprocessing, the result is still subject to the influence of noise and false alarms, which are
caused by the pixel-based change detection method [20]. In generating the DI step, two preprocessed
images of the same geographical area at different times are compared to generate the DI. There are
many methods used to generate the DI using two co-registered images, including the ratio or log-ratio
operator of SAR amplitudes or intensities [11,13,14], the hidden Markov chain model [16,17], and the
Kullback–Leibler divergence method [18]. These methods are usually applied in multi-temporal
single-channel SAR change detection. Unlike the above methods, test statistics can be applied not only
to single-channel SAR data, but also to full PolSAR images [19]. Using multichannel PolSAR data
(coherency C3 or covariance matrix T3) can obtain a more accurate DI [5]. In the step of change detection
analysis, the change detection map can be obtained by a thresholding algorithm or a clustering
algorithm. A number of different algorithms can be used to automatically make a decision, such as
the k-means algorithm [21], the fuzzy c-means (FCM) algorithm [22], Otsu’s thresholding method [23],
Kapur’s entropy algorithm [24], the Kittler and Illingworth (K&I) algorithm [25], and two-dimensional
entropic segmentation (TDES) [26]. However, most of the methods of making a decision are based
on the condition of a Gaussian assumption for the probability density function (PDF) of the DI for
modeling the distributions of the changed and unchanged classes. Fortunately, the Gaussian mixture
model (GMM) is capable of better fitting the arbitrarily conditional densities of the classes in the
DI [27,28], but it is still difficult to select the optimal number of components for the GMM [29].

Above all, the existing pixel-based unsupervised change detection methods using full PolSAR
images all show certain deficiencies, such as not taking advantage of the full-polarimetric information
and being subject to the influence of noise and false alarms [17]. Meanwhile, the existing object-based
unsupervised change detection methods using PolSAR images can suppress the influence of noise
and improve the overall accuracy (OA) of the change detection results [30], but they have difficulty in
capturing the global property of the image. The results are also sensitive to segmentation, and this
is difficult to accomplish due to the degradation of spatial details and fine structures [31]. To solve
the above problems, a novel method of unsupervised change detection is proposed in this paper,
integrating the respective advantages of the test statistic, generalized statistical region merging (GSRM),
and generalized GMM techniques. The use of a test statistic is a good strategy for obtaining the DI
from multi-temporal PolSAR images. We use the GSRM algorithm to separate the same parts of the DI,
which helps us to choose the threshold by generalized GMM.

This paper is organized into five sections. In Section 2, the proposed change detection framework
is described, and the methods of test statistic, GSRM, and generalized GMM techniques are introduced.
Section 3 details the results of the proposed approach on multi-temporal PolSAR images from the city
of Wuhan, China. Section 4 discusses the results of the case study. Finally, the conclusions are drawn
in Section 5.
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2. Theories and Methods

2.1. Test Statistic

The full PolSAR system measures the amplitude and phase of each pixel’s four basic
polarization scattering echoes in four combinations of linear receive and transmit polarizations:
horizontal-horizontal (hh), horizontal–vertical (hv), vertical-horizontal (vh), and vertical-vertical
(vv) [32]. Assuming that the target reciprocity condition is satisfied [33], the polarimetric information
can be expressed by a complex vector:

Ω = [Shh,
√

2Shv, Svv]
T

(1)

where vector Ω follows a complex multivariate normal distribution. For multi-look processed PolSAR
images, the covariance matrix follows a complex Wishart distribution, denoted as X ∈W(p, m, ∑X).
The covariance matrix C is defined as:

C =
〈

Ω ·Ω∗T
〉

=

〈 |Shh|2 ShhS∗hv ShhS∗vv
ShvS∗hh |Shv|2 ShvS∗vv
SvvS∗hh SvvS∗hv |Svv|2

〉 (2)

The frequency function of the covariance matrix C is shown as follows:

f (C) = 1
Γn(p)

1
|∑C |

n |C|n−p exp
{
−tr[∑−1

C C]
}

Γp(n) = πp(p−1)/2
p

∏
j = 1

Γ(n− j + 1)
(3)

where tr(·) is the trace operator, n is the number of looks, Γp(n) is a normalization factor,

and ∑C = E
[〈

Ω ·Ω∗T
〉]

.
Let us consider two full PolSAR images (X1, X2), which are independent, and both follow a

complex Wishart distribution:
X1 ∈W(p, m, ∑X1

)

X2 ∈W(p, n, ∑X2
)

(4)

where p represents the dimension of X1, X2; and m, n represent the number of looks of X1, X2,
respectively. ∑X1

and ∑X2
represent the dispersion matrix of X1, X2. Their sum then has the same

distribution S ∈W(p, m + n, ∑). The maximum likelihood estimation (MLE) of ∑X1
, ∑X2

, and ∑Xs is
shown as follows:

∑MLE
X1

=
1
m

X1,∑MLE
X2

=
1
n

X2 and ∑MLE
S =

1
m + n

(X1 + X2) (5)

According to test statistic theory [5], we make the hypothesis that the null hypothesis
H0 : ∑X1

= ∑X2
means that the two matrices are equal and there is a strong possibility of no change,

and the alternative hypothesis H1 : ∑X1
6= ∑X2

means that the two matrices are different and there is a
strong possibility of change [7].

Supposing that the test statistic based on MLE has a joint density f (∑X1
, ∑X2

, θ), where θ is the
set of parameters of the probability function that has generated the data. H0 then states that θ ∈ H0,
and the likelihood ratio of the test statistic is shown as follows:

Q =
maxθ∈H0 L(θ)
maxθ∈ΩL(θ)

=
L(∑S)

LX1(∑X1
)LX2(∑X2

)
(6)

where
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LX1(∑X1
)LX2(∑X2

) = 1
Γp(n)Γp(m)

.|∑X1
|−n|∑X2

|−m|X1|n−p|X2|m−p exp
{
−tr

[
∑−1

X1
X1 + ∑−1

X2
X2

]}
L(∑S) = 1

Γp(n)Γp(m)
.|∑ |−(n+m)|X1|n−p|X2|m−p exp

{
−tr

[
∑−1(X1 + X2)

]}
This leads to the desired likelihood-ratio test statistic:

Q =
(n + m)p(n+m)

npnmpm
|X1|n|Y1|m|X2|n|Y2|m

|X1 + Y1|n+m|X2 + Y2|n+m =
(n + m)p(n+m)

npnmpm
|X|n|Y|m

|X + Y|n+m (7)

If m = n, Equation (7) is changed as follows:

InQ = n(2qIn2 + In|X|+ In|Y| − In|X + Y|) (8)

where InQ describes the similarity of the corresponding features, and its range is (−∞, 0]. The closer
InQ is to 0, the more similar the corresponding features, which means that change is less likely, and
vice versa [30].

2.2. Generalized Statistical Region Merging (GSRM)

Speckle filtering is usually carried out to suppress the speckle before the change detection of
PolSAR images. Despite the speckle filtering, the change detection result is still subject to the influence
of noise and false alarms, which are caused by the pixel-based change detection method [20]. To solve
the above problem, the GSRM algorithm [31] is applied to suppress the influence of noise.

The GSRM algorithm has been shown to perform well in solving significant noise corruption,
and it does not depend on data distribution [31]. These advantages make GSRM suitable for the
segmentation of the DI, which is characterized by speckle noise and different distributions of the
various data types and spatial resolutions.

The GSRM algorithm belongs to the family of region growing and merging techniques.
Accordingly, two essential components define a region merging algorithm: the merging predicate
confirming whether adjacent regions are merged or not; and the order followed to test the merging of
regions. Suppose I is the DI that contains |I| pixels, where | · | stands for the cardinal number. QR is
a parameter that enables the quantification of the statistical complexity of I.

2.2.1. Merging Predicate

From the Nock and Nielsen model, the following merging predicate is derived for the DI [31]:

P(R, R′) =

{
true.
f alse.

i f |R′ − R| ≤
√

b2(R) + b2(R′)
otherwise

(9)

where

b(R) = g

√
1

2QR|R|
ln
|R|R||

δ
(10)

where R is the observed average for the DI in region R; R’ is the adjacent region of region R; δ is the
maximum probability when P(R, R’) = false, which is usually set as a very small value; QR is a
parameter which makes it possible to quantify the statistical complexity of the ideal segmentation,
and also the statistical hardness of the task; |R| is the pixel number in region R; |·| stands for the
cardinal number; and Rn stands for the set of regions with n pixels.
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2.2.2. Merging Order

For an observed image I, there are N < 2|I| pairs of adjacent pixels in 4-connectivity. SI is the set
of these pairs, and f (p, p’) is a real-valued function, with p and p’ a couple of adjacent pixels in I. Instead
of stepwise optimization tactics, Nock and Nielsen proposed a pre-ordering strategy [32,33]. With this
strategy, the GSRM algorithm can be described as follows: firstly, sort the pairs of SI in increasing
order of f (p, p’); and then traverse this order only once. For any current pair of pixels (p, p’) ∈ SI,
if R(p) = R(p’), where R(p) stands for the region to which p belongs. Make the test P(R(p), R’(p’),
and merge R and R’ if the result is true. The gradient function f is defined as follows:

f (p, p′) = ‖ p− p′

p + p′
‖

1
(11)

Figure 1 shows the procedure of the GSRM algorithm.
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2.3. The Generalized Gaussian Mixture Model (GMM) and Expectation Maximization (EM)

The GMM [28] is an unsupervised statistical learning approach that is widely used in statistical
pattern recognition. This parametric model is chosen because it is capable of better fitting the arbitrarily
conditional densities of the classes in the DI after segmentation and it is suitable to fit an unknown
data distribution of the DI after segmentation. The finite GMM with k components can be written as:

f (X|θ) =
k

∑
m = 1

αm p(x|θm) (12)

where αm represent the mixing probabilities of the m-th component, which must be positive and sum
to one; θ =

{
µ1, ..., µm, σ2

1
, ..., σ2

m

}
; µk are the means; σ2

k are the variances; and p(x|θm) is a normalized
Gaussian with specified mean and variance.

In general, the data distribution of DI p(xd) after segmentation can be modeled as a
weighted sum of two distributions representing the “changed” class and “unchanged” class data
distributions [34], i.e.,

p(xd) = p(wu)p(xd|wu) + p(wc)p(xd|wc) (13)
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where p(xd|wu) and p(xd|wc) are the a posteriori PDFs, and p(wc) and p(wu) are the a priori
probabilities of classes wu and wc, respectively. The data distribution p(xd) can also be modeled
using the k-component GMM [35], i.e.,

p(xd) =
K

∑
k = 1

p(k)p(xd|k) = ∑
∀θu∈Mu

p(θu)p(x|θu) + ∑
∀θc∈Mc

p(θc)p(x|θc) (14)

where p(k) is the prior probability of the data point having been generated from component n of
the mixture, and p(xd|k) is the n-th component density modeled with a Gaussian density function.
The data distribution modeled with Equation (15) can be separated into two distributions representing
the data distributions of “changed” and “unchanged” classes.

In order to estimate θ, it is usual to introduce the log-likelihood function defined as shown
in Equation (15):

log p(x|θ) = log
n

∏
i = 1

p(x(i)|θ) =
n

∑
i = 1

log
k

∑
m = 1

αm p(x(i)|θm) (15)

The MLE is:
θ̂ML = argmax

θ
{log p(x|θ)} (16)

However, x =
{

x(1), ..., x(n)
}

are incomplete data, and Equation (16) cannot be solved using a
derivative of 0. It is worth noting that the expectation maximization (EM) algorithm [36] is a special
case of the GMM algorithm when the feature vector for each pixel constructed with no contextual
information is used for the GMM representation [37].

The EM algorithm is an iterative method used to find the maximum likelihood or the maximum
a posteriori estimates of the components in the GMM [36]. The EM iteration alternates between
performing an expectation (E) step and a maximization (M) step. The E-step creates a function for the
expectation of the log-likelihood evaluated using the current estimate for the parameters:

Q(θ, θ̂(t)) ≡ E[log p(X, γ|θ)|X, θ̂(t)] = log p(X, γ̂|θ) (17)

where

γ̂im ≡ E[γim|x, θ̂(t)] =
α̂m(t)p(xi|θ̂m(t))
k
∑

j = 1
α̂j(t)p(xi|θ̂j(t))

(18)

The M-step computes the parameters maximizing the expected log-likelihood found in the E-step.

∂(Q(θ, θ̂(t)))
∂θ

= 0 (19)

We update the parameter estimates according to Equation (20):

αi =
n

∑
i = 1

γ̂im/n (20)

µi =
n

∑
i = 1

γ̂imxi/
n

∑
i = 1

γ̂im (21)

σ2
i =

n

∑
i = 1

γ̂im(xi − µi)
T(xi − µi)/d

n

∑
i = 1

γ̂im (22)
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The EM algorithm of the criterion of convergence is defined as shown in Equation (23):

‖θ − θ̂(t)‖ < δ (23)

For a certain class of traditional GMM algorithm, there is an important parameter commonly
referred to as K that specifies the number of components to detect [27,28]. However, the correct choice
of K is often ambiguous. Furthermore, it is essential to find the optimal number of components K,
for which the elbow method [38] is introduced in this paper.

The elbow method is a method of interpretation and validation of the consistency within cluster
analysis that is designed to help find the appropriate number of clusters in a dataset. It looks at the
percentage of variance explained as a function of the number of clusters, i.e., one should choose a
number of clusters so that adding another cluster does not give a much better modeling of the data.
However, this “elbow” cannot always be unambiguously identified [38]. K is the cluster number,
and it corresponds to 90% of the variance, explained as the ratio of the between-group variance to the
total variance, which is also known as an F-test [39]. The elbow method is shown as follows:

F =
between_group variance(FB)

total variance(FT)
(24)

where

FB =
K

∑
i = 1

ni(Yi −Y)
2

/(K− 1) (25)

FT =
K

∑
i = 1

ni

∑
j = 1

(Yij −Yi)
2/(N − K) (26)

where Yi denotes the sample mean in the i-th group, ni is the number of observations in the i-th group,
Y denotes the overall mean of the data, and K denotes the number of groups. Yij is the j-th observation
in the i-th out of K groups, and N is the overall sample size.

Figure 2 shows the procedure of the GMM and EM algorithms.
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2.4. The Proposed Method of TS_srm_GMM

The basic process flow of the proposed method consists of: (1) data preprocessing, which consists
of speckle filtering and image co-registration; (2) generation of the DI using the test statistic;
(3) segmentation of the DI by GSRM; and (4) obtaining the PDF of the changed and unchanged
classes using generalized GMM and making a decision based on Equation (27):

CD(i, j) =

{
1, p(wu)p(x|wu) < p(wc)p(x|wc)

0, otherwise
(27)

where “1” represents changed classes and “0” represents unchanged classes. The process flow of the
proposed method is shown in Figure 3.
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Firstly, speckle noise is removed by a 7 × 7 refined Lee filter for the two registered full PolSAR
images. The DI is obtained by the likelihood-ratio parameter, which is built using coherency matrix C3
or covariance matrix T3 of the full PolSAR images based on the test statistic. To suppress the influence
of speckle noise in the DI, the GSRM algorithm is applied to segment the DI. The data distribution
of the DI after segmentation computed from satellite images of the same scene acquired at different
times is modeled using the generalized GMM. It also becomes possible to automatically extract change
information based on Equation (27). Finally, the precision of the change detection result is evaluated.

2.5. Evaluation Criterion

Quantitative evaluation is important to determine the result of change detection. When the
ground reference is available, quantitative evaluation can be performed [40,41]. In order to verify the
performance of the proposed method, we calculated the false alarm (FA) rate, omission factor (OF)
rate, overall accuracy (OA), and Kappa coefficient [42] of the experimental results. These indicators are
calculated as follows: 

FA = FP
Nu

OF = FN
Nc

OA = TP+TN
N

Kappa = OA−Pe
1−Pe

Pe = (TP+FN)(TP+FP)+(FP+TN)(FN+TN)
N2

(28)

where FP means the number of unchanged points incorrectly detected as changed; FN means the
number of changed points incorrectly detected as unchanged; TP means the number of changed points
correctly detected; TN means the number of unchanged points correctly detected; Nu and Nc are the
number of unchanged points and changed points of the ground-truth change map; N is the sum of Nu

and Nc , respectively.
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3. Experiments and Results

3.1. Study Area and Data

The city of Wuhan is the capital of Hubei province in China. It is situated between latitude
29◦58′–31◦22′N and longitude 113◦41′–115◦05′E. Wuhan lies in the eastern part of the Jianghan Plain,
and is located at the confluence of the Hanshui and Yangtze rivers, along the middle reaches of the
latter. Most of the area is plain, with scattered hills and a great number of lakes and pools, as shown
in Figure 4. The climate is humid subtropical, with abundant rainfall and four distinct seasons.
In July 2016, 50-year return period rainfall occurred, and the rainfall was significantly higher than
the average annual precipitation. According to reports, the city of Wuhan was badly affected by
the continuous heavy rain, and some areas showed dramatic change, especially YanDong Lake and
LiangZi Lake. Optical sensors are of limited use in such severe weather. In order to detect the flooded
regions, multi-temporal PolSAR images were acquired, allowing a rapid emergency response [42].
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Figure 4. Location of the study area.

In order to assess the effectiveness of the change detection algorithms for the analysis of the DI,
multi-temporal Radarsat-2 data of the flood disaster in Wuhan in 2016 are considered in this paper.
The two C-band quad-polarimetric Radarsat-2 images (single look complex) are composed of two
images which are regions from two SAR images acquired by Radarsat-2 over an area near the city
of Wuhan, China, on 25 June 2015 and 6 July 2016, respectively. The Pauli-RGB images (|Shh − Svv|
for red, |Shv| for green, and |Shh + Svv| for blue) are shown in Figure 5 (YanDong Lake) and Figure 6
(LiangZi Lake). The ground reference of the changed areas was obtained by visual interpretation of
the PolSAR data and corresponding optical images.
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and (b) 6 July 2016. (c) Ground reference.

The multi-temporal PolSAR images of YanDong Lake shown in Figure 5a,b were acquired on
25 June 2015, and 6 July 2016, respectively. The image size is 400 × 400 pixels. The area of YanDong
Lake includes some grassland, city, and water bodies. The main changes occurred in the water bodies,
because of the heavy rain.

The multi-temporal PolSAR images of LiangZi Lake shown in Figure 6a,b were acquired on
25 June 2015, and 6 July 2016, respectively. The image size is 300 × 500 pixels. The ground reference of
the changed areas was obtained by visual interpretation of the PolSAR data and corresponding optical
images. The area of LiangZi Lake includes some grassland, city, and water bodies. The main changes
again occurred in the water bodies.

3.2. Implementation of the Change Detection Algorithms

The DI for YanDong Lake based on the test statistic uses all the information of polarimetric SAR.
The DI is shown in Figure 7a and the histogram of the DI is shown in Figure 7b.

In Figure 7a, the DI for YanDong Lake based on the test statistic can accurately detect the
difference in information among the multi-temporal PolSAR images, but it still contains speckle noise.
Figure 7b shows the histogram of the DI based on pixels, and we can see that the DI still contains many
isolated outliers. Moreover, the probability distribution of the DI is far from a Gaussian distribution.
To suppress the influence of noise, the GSRM algorithm was applied to the DI of YanDong Lake,
and the result is shown in Figure 8.
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Figure 8. (a) The DI based on pixels; (b) The result of GSRM.

The DI for YanDong Lake was segmented based on GSRM, which is shown in Figure 9a. It can
be seen that the GSRM technique produces smooth results and suppresses the influence of noise
in the DI. The histogram is shown in Figure 9b, where many isolated outliers can be picked out.
Moreover, the probability distribution of the DI is under a non-Gaussian distribution.
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3.3. Results

In order to assess the effectiveness of the proposed approach, contrast experiments were designed.
The contrast experiments included unsupervised change detection based on pixels (test statistic and
GMM, named TS_GMM_pixel), based on objects (test statistic and GMM, named TS_GMM_object)
and the approach proposed in this paper, including Log_ratio and GMM (named Log_srm_GMM),
test statistic and K&I (named TS_srm_KI), test statistic and TDES (named TS_srm_TDES), test statistic
and k-means (named TS_srm_kmeans), test statistic and FCM (named TS_srm_FCM), and test statistic
and GMM (named TS_srm_GMM). The results for the multi-temporal PolSAR images of YanDong
Lake based on the eight methods are shown in Figure 10. The change detection map shows change
(white) and no-change (black) information.
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Figure 10. Change detection results of the different algorithms over YanDong Lake.

The change detection results of the different algorithms over YanDong Lake are shown in Figure 10.
Figure 10a shows the change detection result using the test statistic and generalized GMM algorithm
based on pixels, which can detect the spatial details and fine structures of the change, but it causes
a noisy change detection map, with holes in connected regions and jagged boundaries. Figure 10b
shows the change detection result using the test statistic and generalized GMM algorithm based on
objects, which can suppress the speckle noise; however, this is accompanied with degradation of the
spatial details and it is more time-consuming. Figure 10c shows the change detection result using
the Log_ratio algorithm and generalized GMM algorithm based on the approach proposed in this
paper, which can better suppress the speckle noise; however, it does have a higher OF. Figure 10d–g
show the change detection results using the test statistic and the traditional algorithms (KI, TDES’s,
k-means, FCM) based on the approach proposed in this paper, which can better suppress the speckle
noise; however, they contain more fallout information. Figure 10h shows the change detection result
using the test statistic and generalized GMM algorithm based on the approach proposed in this paper,
which not only better suppresses the speckle noise, but also has a higher OA than the results of the
traditional algorithms.

In order to compare each of the different results with ground reference over YanDong Lake,
we overlaid each of the different results with ground reference which improved the readability of
Figure 10 and are shown in Figure 11. Where the green represents the match of proposed result in
comparison to the ground reference (overall accuracy), the red represents the underestimation of
the proposed methodology in comparison with the ground reference (omission factor (OF) rate) and
the blue represents the overestimation of the proposed methodology in comparison with the ground
reference (false alarm (FA) rate).
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Figure 11. The qualitative comparisons change detection results of the different algorithms over
YanDong Lake.

Several conclusions can be obtained from Figure 11. The TS_srm_GMM approach shows a
better performance than the other approaches and it obtains a lower FA than other approaches
(such as TS_GMM_pixel, TS_GMM_object, Log_srm_GMM and TS_srm_KI). It also obtains a lower
OF than other approaches (such as Log_srm_GMM, TS_srm_KI, TS_srm_kmeans and TS_srm_FCM)
in qualitative comparisons over YanDong Lake.

The quantitative comparisons of the eight detection schemes shown in Table 1 indicate that the
proposed approach shows a better performance than the other approaches. The proposed approach
achieves the best results on two indicators (OA (94.47%) and Kappa (0.75)), and it obtains a lower
FA (1.68%) than the pixel-based (2.95%) and object-based (3.63%) approaches. Moreover, the OA
of the change detection results is improved (0.83%) and the false alarm rate reduced (1.27%) using
the proposed method, compared with some of the traditional methods. Both the qualitative and
quantitative analyses demonstrate that the proposed method is more effective and shows a significant
improvement over the traditional methods.

In order to further assess the effectiveness and feasibility of the proposed approach,
the multi-temporal PolSAR images from LiangZi Lake were used to test the proposed approach.
The change detection results of the different algorithms over LiangZi Lake are shown in Figure 11.

Figure 12a shows the change detection result using the test statistic and generalized GMM
algorithm based on pixels, which can detect the spatial details and fine structures of the change,
but it causes a noisy change detection map, with holes in connected regions and jagged boundaries.
Figure 12b shows the change detection result using the test statistic and generalized GMM algorithm
based on objects, which can suppress the speckle noise; however, it is accompanied with degradation
of the spatial details and it is more time-consuming. Figure 12c shows the change detection result using
the Log_ratio algorithm and generalized GMM algorithm based on the approach proposed in this
paper, which can also suppress the speckle noise; however, it does have a higher OF. Figure 12d–g show
the change detection result using the test statistic and the traditional algorithms (KI, TDES’s, k-means,
FCM) based on the approach proposed in this paper, which can better suppress the speckle noise;
however, they contain more fallout information. Figure 12h shows the change detection result using the
test statistic and generalized GMM algorithm based on the approach proposed in this paper, which not
only better suppresses the speckle noise, but also has a higher OA than the traditional algorithms.

Table 1. Performance evaluation of the change detection over YanDong Lake.

Method OA FA OF Kappa

TS_GMM_pixel 93.64% 2.95% 3.41% 0.72
TS_GMM_object 93.55% 3.63% 2.82% 0.73
Log_srm_GMM 92.80% 2.13% 5.07% 0.68

TS_srm_KI 93.39% 2.47% 4.13% 0.70
TS_srm_TDES 93.99% 1.31% 4.70% 0.72

TS_srm_kmeans 93.32% 0.88% 6.24% 0.70
TS_srm_FCM 93.92% 0.75% 5.31% 0.69
TS_srm_GMM 94.47% 1.68% 3.84% 0.75
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In the same way, several conclusions can be obtained from Figure 13. The TS_srm_GMM approach
shows a better performance than the other approaches and it obtains a lower FA than other approaches
(such as TS_GMM_pixel, TS_GMM_object, Log_srm_GMM and TS_srm_KI) and it also obtains a
lower OF than other approaches (such as Log_srm_GMM, TS_GMM_pixel, TS_GMM_object and
TS_srm_TDES) in qualitative comparisons over LiangZi Lake.

The quantitative comparison of the eight detection schemes shown in Table 2 indicates that the
proposed approach shows a better performance than the other approaches. The proposed approach
achieves the best results on two indicators (OA (96.22%) and Kappa (0.76)), and it obtains a lower FA
(1.56%) than the pixel-based (2.07%) and object-based approaches. Moreover, the OA of the change
detection results is improved (1.10%) and the false alarm rate reduced (1.95%) using the proposed
method, compared with some of the traditional methods. Both the qualitative and quantitative analyses
demonstrate that the proposed method is effective and shows a significant improvement over the
other methods.
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Table 2. Performance evaluation of the change detection over LiangZi Lake.

Method OA FA OF Kappa

TS_GMM_pixel 95.12% 2.07% 2.97% 0.70
TS_GMM_object 95.41% 1.90% 2.74% 0.73
Log_srm_GMM 95.52% 1.87% 2.60% 0.72

TS_srm_KI 95.30% 3.51% 1.17% 0.74
TS_srm_TDES 95.49% 2.12% 2.38% 0.74

TS_srm_kmeans 94.29% 4.58% 1.12% 0.71
TS_srm_FCM 94.22% 4.67% 1.10% 0.71
TS_srm_GMM 96.22% 1.56% 2.20% 0.76

4. Discussion

The existing pixel-based unsupervised change detection methods using PolSAR images show
certain deficiencies, such as not taking full advantage of the polarimetric information or being subject
to the influence of noise and a high false alarm rate. Meanwhile, existing object-based unsupervised
change detection methods using PolSAR images have difficulty in capturing the global property of the
image, and the results are sensitive to segmentation. Furthermore, the results are often accompanied by
degradation of the spatial details and fine structures. In this paper, to solve the problems of the existing
unsupervised change detection methods using full PolSAR images, we have explored a novel approach
to unsupervised change detection using multi-temporal Radarsat-2 images from the city of Wuhan.

The proposed approach integrates the respective advantages of the test statistic, GSRM, and
generalized GMM techniques to develop a new approach, named TS_srm_GMM, which can make
full use of the polarimetric information and suppress the speckle noise. In the first step, the two
filtered multi-temporal images are compared to generate a DI based on a test statistic that can make
full use of the polarimetric information. The second step is aimed at reducing the speckle noise in a
controlled way in order to maximize the discriminative capability between changed and unchanged
classes through a segmentation strategy. The third step produces the change detection map according
to a statistical clustering model based on a reformulation of the GMM. The results showed that the
proposed approach achieves the best results on two indicators (OA and Kappa) and it obtains a lower
FA than the pixel-based and object-based approaches. Moreover, the OA of the change detection results
is improved and the false alarm rate is reduced using the proposed method, compared with some of
the traditional methods.

The results obtained in this study are in agreement with the results of previous studies, despite
the fact that the studies cannot be compared directly because of the differences in the data used.
For example, Conradsen et al. [5] showed that the test statistic based on PolSAR images is much
more sensitive to the differences than the test statistics based only on the backscatter coefficients, and
Yang et al. [30] reported that object-based change detection can suppress the speckle noise.

The generalized GMM is derived under a non-Gaussian assumption for modeling the distributions
of changed and unchanged classes. This parametric model is chosen because it is capable of better
fitting the arbitrarily conditional densities of the classes in the DI after segmentation. In order to
obtain a better change detection map, we automatically identify the optimal number of components
(k) for the GMM by the elbow method. This automatic change detection approach avoids the use of
empirical methods for the selection of the number of components for the GMM. Both the qualitative
and quantitative analyses of the results demonstrate that the efficiency of the proposed method is high,
and that it shows a significant improvement over some of the traditional methods of change detection.

5. Conclusions

A novel method of automatic and unsupervised change detection using multi-temporal PolSAR
images has been presented in this paper. The proposed approach is based on automatic generation of
the DI using a test statistic and an object-based statistical clustering approach. Full PolSAR images
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contain both phase and amplitude information from the radar returns transmitted in two different
polarizations, and more scattering information can be obtained than with single-channel SAR images.
The test statistic is also a good strategy for obtaining the DI from multi-temporal PolSAR images.
We use the GSRM algorithm to separate the same parts of the DI, which helps us to choose the threshold
by generalized GMM. Two novel methodological contributions characterize this work, compared to
the traditional unsupervised change detection techniques: (1) the influence of speckle noise in the
DI is suppressed in the object-based statistical clustering approach; and (2) the optimal number of
components for the GMM can be automatically selected. Regarding the first contribution, as a result of
the speckle noise being suppressed, the proposed algorithm improves the OA of the change detection
and reduces the false alarm rate, compared with some of the traditional methods of change detection.
The second contribution of estimating the optimal number of components for the GMM results in the
minimum time consumption and the highest change detection accuracy. The experimental results
obtained on two different multi-temporal SAR images (YanDong Lake and LiangZi Lake near the
city of Wuhan, China) confirm the effectiveness of the proposed approach. Although the results
obtained are very encouraging, further experiments with additional scenes should be conducted and
the method should be improved. For example, the EM algorithm in the generalized GMM based on
the clustering technique is prone to falling into local optima, and it can be time-consuming to arrive at
the convergence criterion.
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