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Abstract: The just noticeable distortion (JND) model plays an important role in measuring the visual
visibility for spread transform dither modulation (STDM) watermarking. However, the existing JND
model characterizes the suprathreshold distortions with an equal saliency level. Visual saliency (VS)
has been widely studied by psychologists and computer scientists during the last decade, where the
distortions are more likely to be noticeable to any viewer. With this consideration, we proposed a
novel STDM watermarking method for a monochrome image by exploiting a visual saliency-based
JND model. In our proposed JND model, a simple VS model is employed as a feature to reflect the
importance of a local region and compute the final JND map. Extensive experiments performed on
the classic image databases demonstrate that the proposed watermarking scheme works better in
terms of the robustness than other related methods.
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1. Introduction

With the development of imaging devices, such as digital cameras, smartphones, and medical
imaging equipments, our world has been witnessing a tremendous growth in the quantity, availability,
and importance of images. Image recognition, image retrieval, information hiding, fingerprint
detection, and watermarking have caused more and more scholars’ concerns [1].

In recent years, with rapid growth within content management systems, blind watermarking
schemes (i.e., algorithms in which the watermark can be extracted without resorting to the original
unmarked signal) provide a robust and imperceptible technique to enhance image security. Among the
well-designed watermarking schemes, fidelity and robustness are the most conflicting issues.
Usually, we can increase the watermark strength to improve robustness at the expense of losing
fidelity, and vice versa. Consequently, how to maintain a balance between imperceptibility and
robustness is important for a sophisticated watermarking algorithm [2].

In 2008, human visual system based adaptive digital image watermarking, proposed by
Huiyan Qi [3], is an adaptive image watermarking algorithm. In this scheme, the spatial masking
is built according to the image features, and the quality of the watermarked image using the
proposed adaptive masking is much better than the one without using the adaptive masking.
Recently, the adaptive nature of the proposed moment-based watermarking method, owing to the
optimized fuzzy inference systems embodying prior knowledge, is proposed by G.A. Papakostas [4],
which controls the amount of watermark information each moment coefficient is capable to carry.
Spread transform dither modulation (STDM), proposed by Chen and Wornel [5], is a typical one
owing to its advantages in implementation and computational flexibility. To achieve a better
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rate-distortion-robustness trade-off, it is necessary to take the characteristic of the human visual
system (HVS) into consideration. Various STDM-based watermarking algorithms incorporate the
perceptual knowledge of HVS to improve fidelity by regulating the watermark strength [6]. The just
noticeable distortion (JND) represents distortion perceived by the HVS and determine the watermark
strength. In 2006, I. Cox et al. [7] first proposed a new STDM watermarking using Watson’s perceptual
JND model [8]. In their framework, the projection vectors used in STDM are assigned as the slacks
computed by Watson’s perceptual model, so as to ensure that more changes are directed to coefficients
with larger perceptual slacks. However, it is not robust enough for a volumetric scaling attack.
Subsequently, an improved method was proposed [9], where the perceptual model is not only used to
determine the projection vector but also used to select the quantization step size. However, it must
use many DCT coefficients for one-bit embedding and a low embedding rate can be resulted. In [10],
an additional block classification based contrast masking and luminance adaptation was considered by
Zhang for digital images. A spatial JND model proposed by Zhenyu Wei [11] incorporates new spatial
contrast sensitivity function (CSF), luminance adaptation, and contrast masking. L. Ma proposed to
compute the quantization step size by adopting the projection vector and the perceptual slacks from
Watson’s JND model [12]. Based on the luminance effect, which was only part of Watsons model,
X. Li et al [13] proposed a step-projection based scheme that can ensure the values of quantization step
size used in the watermark embedder and detector. More recently, Tang [14] presented an improved
STDM watermarking scheme based on a more sophisticated luminance-based JND model [15].

Recently, the visual saliency (VS) model has been attracting tremendous attention [16]. As a
consequence of evolution, most vertebrates, including humans, have a remarkable ability to
automatically pay more attention to salient regions of the visual scene. As we all know, perceptual
watermarking should take full advantage of the results from human visual system (HVS) studies.
JND gives us a way to model the HVS accurately. VS is another very important aspect affecting
human perception. Intuitively, VS and JND are intrinsically related because both of them depend on
how the HVS perceives an image and suprathreshold distortions can be a strong attractor of visual
attention [17]. Visual saliency can enhance or reduce actual visual sensitivity. Consequently, JND
needs to be adjusted to the salient areas in images. Salient areas are generally regarded as the attention
focus in human eyes. The visual saliency modulated JND model guided watermarking scheme,
where the JND model combined with visual saliency’s modulatory effect is fully used to determine
image-dependent upper bounds on watermark insertion, allows us to provide the maximum strength
transparent watermark. It is widely accepted that incorporating VS features appropriately can benefit
JND metric. Ling et al. [18] proposed a simple information hiding algorithm based on Stentiford visual
saliency model [19]. Niu et al. [20] proposed visual saliency to modulate just noticeable distortion
(JND) profile and guide watermark embedding. Wan et al. [21], presented a watermarking algorithm
based on the logarithmic spread transform dither modulation framework (STDM). The authors use
the Watson’s model [8] to get the JND threshold, and the AC coefficients are used to compute visual
saliency map. However, the simple visual saliency model used can not achieve better prediction
performance, and the existing VS-based JND models cannot provide maximum performance in terms
of robustness while maintaining the fidelity constraint for a practical watermarking framework.

In this paper, we present a novel STDM watermarking scheme based on an effective
visual saliency-based JND model. Inspired by our previous watermarking method [14], a new
luminance-based JND model [22], which is better correlated with the real visual perception
characteristics of HVS, is applied within the VS-based JND model. We claim that the VS map can
be used as a feature map to characterize the JND model. The underlying reason is that perceptible
JND thresholds can lead to measurable changes of images’ VS maps. Consequently, a simple yet very
effective VS model is used for the JND task. In our work, the new proposed VS-based JND model is
implemented in the STDM watermarking framework. Experimental results show that the proposed
watermarking scheme has a superior performance in comparison with existing schemes.
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The rest of this paper is organized as follows. Section 2 provides a brief introduction of
the conventional perceptual STDM schemes. The robust VS-based JND models for the STDM
watermarking framework are proposed in Section 3. Section 4 incorporates the proposed model
to design an improved STDM-based watermarking scheme. In Section 5, experimental results
are provided to demonstrate the superior performance of the proposed scheme. Finally, Section 6
summarizes the paper.

2. Perceptual Spread Transform Dither Modulation

STDM is an important extension of quantized index modulation and uses dither modulation (DM)
to modulate the projection of host vector along a given direction. It can provide superior performance
compared to DM. It has both the effectiveness of QIM and the robustness of a spread-spectrum system.

STDM differs from regular DM. The host vector x is first projected onto the random direction
vector u to obtain the projection xu, so we can use the traditional dither modulation to embed the
watermark bit m to modulate xu. Finally, we get the watermarking information y:

y = x + (Q(xTu, m, ∆, δ)− xTu) · u, m ∈ (0, 1) (1)

where the quantization modulation Q(·) is expressed as

Q(xTu, m, ∆, δ) = ∆ · round
(

xu + δ

∆

)
− δ, m ∈ (0, 1) (2)

where m represents the watermark bit that is generated by the pseudo random sequence with number
“0” and “1”. δ is the dither signal corresponding to the message bit m, which is a pseudo-random
number distributed uniformly in [−∆/2, ∆/2]. ∆ is the quantization step that will be detailed later.

In the extraction procedure, the received vector y
′

can be attacked and projected onto the direction
vector u such that we can get y

′
u. Then the watermark m

′
is detected according to the minimum

distance detector as follows:

m
′
= arg min

b∈{0,1}
| y
′
u −Q(y

′
u, b, ∆, δ) | (3)

In general, the motivation of using a perceptual JND model to perform the STDM watermarking
scheme is to embed the message bit m into the host signal x. The error introduced by the quantization
should not exceed the distortion visibility thresholds (slack) s. Therefore, the watermark will not
become perceptible. Here, we provide a new visual saliency-based JND model to the s associated with
each DCT coefficient within the typical STDM watermarking framework.

3. Visual Saliency-Based JND Model

In this section, we present the visual saliency-based JND model. The Human Visual System
(HVS) is sensitive to many salient features that lead to attention being drawn towards specific regions
in a scene and it is a well studied topic in psychology and biology [23]. Visual saliency model is
based on the principle of HVS. According to HVS, the different areas of the image have different
degrees, so we set different weights for an image. Image processing technology, combined with the
visual saliency, can reflect the subjective initiative of the system more accurately. The visual saliency
model is of great significance and broad application in many media information processing fields,
e.g., segmentation [24], target recognition [25], image target relocation [26], and so on. The proposed
model, the visual saliency-based JND model (as Figure 1 shown), is an efficient model to represent the
perceptual redundancies. This model includes the contrast sensitivity function (CSF), luminance (LA)
effect, and visual saliency (VS) effect. It is defined as:
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JND(n, i, j) = s · N ·Mbase ·MLA ·MVS (4)

where s is intended to account for the summation effect of individual JND thresholds over a spatial
neighborhood for the visual system and is set to 0.14. N is the dimension of DCT. n is the index of a
DCT block (we often set n = 8) and (i, j) is the position of (i, j)-th DCT coefficient. The parameters
Mbase, MLA, and MVS will be detailed later.

Figure 1. The visual saliency-based JND model.

3.1. Spatial CSF Effect

The human visual system is a multi-channel structure that breaks the input image into different
sensory components. Each sensory channel has its own threshold (called the visual threshold). If the
excitation value is lower than the visual threshold of the channel, the human eye can not feel the
incentive. The visual threshold prevents the damage below the threshold from being perceived. On the
other hand, the masking increases the visual threshold. The main features of the HVS show that HVS
has a band-pass property. It is more sensitive to the noise injected in the DCT basis function along
the horizontal and vertical directions than the diagonal direction in spatial frequency. The spatial CSF
model describes the sensitivity of human vision for each DCT coefficient.

The base threshold Mbase is generated by spatial CSF based on a uniform background image and
can be given by considering the oblique effect [27] as

Mbase(ωi,j, ϕi,j) = (Md(ωi,j)−Mv(ωi,j)) · sin(ϕi,j)
2 + Mv(ωi,j) (5)

where Md(ωi,j) and Mv(ωi,j) are found as{
Md(ωi,j) = 0.0293 ·ω2

i,j + (−0.1382) ·ωi,j + 1.75
Mv(ωi,j) = 0.0238 ·ω2

i,j + (−0.1771) ·ωi,j + 1.75
(6)

where the ωi,j is cycle per degree (cpd) in spatial frequency for the (i, j)-th DCT coefficient and is
given by

ωi,j =
√

i2 + j2/2Nθ (7)

θ = tan−1[
1
2
· RVH · H] (8)

where θ indicates the horizontal/vertical length of a pixel in degrees of visual angle [28], RVH is the
ratio of the viewing distance to the screen height, H is the number of pixels in the screen height, and
ϕi,j stands for the direction angle of the corresponding DCT component, which is expressed as

ϕi,j = sin−1(2 ·ωi,0 ·ω0,j/ω2
i,j) (9)
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3.2. Luminance Adaptation Effect

The LA factor remains sensitive to volumetric scaling since the average intensity does not scale
linearly with amplitude scaling, so we need the average intensity to scale linearly with volumetric
scaling for robustness. We introduce µp to describe the pixel intensity and it is expressed as

µp =

N−1
∑

i=0

N−1
∑

j=0
I(i, j)

KN2 · 128
C0

(10)

where N is the DCT block size, I(i, j) is the pixel intensity at the position (i, j) of the block, K is the
maximum pixel intensity, and C0 denotes the mean intensity of the whole image.

A novel empirical luminance adaptation factor MLA that employed both the cycles per degree
(cpd) ωi,j for spatial frequencies and the average intensity value of the block µp can be formulated as

MLA(wi,j, µp) =

{
1 + (M0.1(wi,j)− 1) | µp−0.3

0.2 |0.8 µp ≤ 0.3
1 + (M0.9(wi,j)− 1) | µp−0.3

0.6 |0.6 µp > 0.3
(11)

where the M0.1(ωi,j) and M0.9(ωi,j) are empirically set as{
M0.1(ωi,j) = 2.468× 10−4ω2

i,j + 4.466× 10−3ωi,j + 1.14
M0.9(ωi,j) = 1.230× 10−3ω2

i,j + 1.433× 10−2ωi,j + 1.34
(12)

3.3. Visual Saliency Effect

This part describes MVS in detail, which fuses the prior information for calculating the significant
value distribution of the image.

The proposed visual saliency models are mostly based on a bottom-up framework, but these
algorithms have high computational complexity and low calculation efficiency. Here, we use a simple
visual saliency model [29], which is driven by low-level visual stimulus in the scene, such as frequency
prior and location prior. Watermarking algorithms are for grayscale images mostly. Thus, the color
prior in the expression doesn’t need to be considered.

Firstly, we resort to band-pass filtering [30] for saliency detection. With respect to the band-pass
filter, we adopt the log-Gabor filter [31].

The frequency prior I f is defined as

I f = IFFT(FFT(I)× G) (13)

where I is the carrier image (I = (i, j) ∈ R2) and G is the transfer function of a log-Gabor filter in the
frequency domain.

Several previous studies have demonstrated that objects near the image center are more attractive
to people [32]. That implies locations near the center of the image will be more likely to be “salient”
than the ones far away from the center. This prior can be simply and effectively modeled as a Gaussian
map. Suppose C is the center of the image. Then, the “location saliency” at X under the “location prior”
can be expressed as a Gaussian map

Il = exp(−
‖X− C‖2

2
σ2

D
) (14)

As discussed in Ref. [29], σD is the experience parameter and often set to 114. Then we can get the
saliency value IVS,

IVS = I f × Il (15)
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Consequently, the VS value of each block can be shown,

µVS =

N−1
∑

i=0

N−1
∑

j=0
IVS(i, j)

N2 (16)

where N is the DCT block size. IVS(i, j) is the visual saliency at the position (i, j) of the block, and µVS
is the final block-based VS map. The saliency value distribution of the image obtained by the VS model
is a gray scale image with a range of [0, 1]. The closer pixel value is to “1”, the higher degree of saliency
is. The closer the pixel value is to the area, the higher the degree of saliency. We set a threshold (set to
0.3) to binarize the VS map into “saliency” area and “non-saliency” area. HVS is more sensitive to
changes in the “saliency” area so it is easier to perceive distortion of the image. According to the image
area of the “saliency” or “non-saliency” area, we take different weights to modulate JND model. In the
“saliency” area of the image, the quantization step size is reduced. However, in the “non-saliency” area,
the quantization step is increased. By this way, we can reduce the distortion.

Then the MVS can be described as:

MVS =

{
1, µVS ≥ 0.3
1.15, µVS < 0.3

(17)

where MVS is the parameter of JND(n, i, j) in Equation (4) and µVS is the final block-based VS map as
Equation (16) shown.

4. STDM Watermarking Using Visual Saliency-Based JND Model

The motivation of using a perceptual model to perform the watermarking scheme is to embed the
message bit m into the host signal x and the error introduced by the quantization should not exceed
the distortion visibility thresholds (called slack) s, otherwise the watermark will become perceptible.
In practice, for image signals, our proposed perceptual model can be served as the foundation to
calculate s as follows:

s(n, i, j) = JND(n, i, j) (18)

where JND(n, i, j) is defined as Equation (4). The maximum imperceptible changes s in the direction of
u can be given as su. Since the maximum quantization error of the quantizer is ∆/2, the quantization
step ∆ in the STDM quantizer is given by ∆ = 2su [13].

4.1. Watermark Embedding Procedure

As shown in Figure 2, a new method is adopted in this section. Luminance STDM watermarking
using visual attention-based JND model is composed of embedding and detection procedures.

Figure 2. The proposed watermarking scheme.
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The watermark embedding process as follows:

1. Calculate the saliency value of each pixel in the carrier image, according to Equations (13)–(17),
and binarize the gray scale image according to the threshold to obtain a region of “saliency” area
and “non-saliency” area of the image.

2. Divide the carrier image into eight by eight blocks and perform a DCT transform to determine
the DCT coefficients. The coefficients are scanned by zig-zag arrangement. Then select the four to
ten DCT coefficients (in zig-zag-scanned order after the eight by eight block DCT on each image)
to form a single vector which denoted as the host vector x.

3. The JND coefficients are calculated according to Equation (4). According to step (1), the JND
coefficients belonging to the “saliency” or the “non-saliency” areas are multiplied by the different
modulation factors to obtain the coefficients and form the visual redundancy vector s.

4. Following Equation (18), we can get the perceptual slack vector s. Then the host vector x and
the perceptual slack vector s are projected onto the given projection vector u, which is set as the
KEY, to generate the projections xu and su. Then we can obtain the quantization step size ∆ via
su, which can be multiplied by the embedding strength in practice.

5. One bit of the watermark “m” is embedded in the host projection xu.
6. Finally, the modified coefficients are transformed to obtain the watermarked image.

4.2. Watermark Detection Procedure

Watermarked images are likely to be subjected to some signal processing attacks during
propagation such as salt and pepper noise, Gaussian noise, and JPEG compression. At the detection,
the specific steps of the watermark extraction process are as follows:

1. Calculate the saliency value of each pixel in the carrier image, according to Equations (13)–(17),
and binarize the gray scale image according to the threshold to obtain a region of “saliency” area
and “non-saliency” area of the image.

2. Divide the carrier image into eight by eight blocks and perform DCT transform to determine the
DCT coefficients. The coefficients are scanned by zig-zag arrangement. Then select the four to ten
DCT coefficients (in zig-zag-scanned order after the eight by eight block DCT on each image) to
form a single vector which denoted as the host vector y .

3. The JND coefficients are calculated according to Equation (4). According to step (1), the JND
coefficients belonging to the “saliency” or the “non-saliency” area are multiplied by the different
modulation factors to obtain the coefficients and form the visual redundancy vector s′.

4. The host vector x and the perceptual slack vector s′ are projected onto the given projection vector u,
which is set as the KEY to generate the projections x′u and s′u. Then we can obtain the quantization
step size ∆ via s′u, which can be multiplied by the embedding strength in practice.

5. Use the STDM detector to extract the watermark message m′ according to Equation (3).

5. Experimental Results and Analysis

To evaluate the performance of our proposed scheme, we used standard images with dimensions
of 256× 256 from the USC-SIPI image database [33]. A random binary message of length 1024 bits was
embedded into each image. Specifically, we selected the four to ten DCT coefficients (in zig-zag-scanned
order after the eight by eight block DCT on each image) to form the host vector and embedded one bit
in it. The bit error rate (BER) was computed for comparison purposes.

The experiments were conducted to compare the performance of the proposed scheme and other
proposed STDM improvements, termed as STDM-RW [7], STDM-AdpWM [12], STDM-RDMWm [13],
and LSTDM-WM [34]. Meanwhile, three kinds of attacks (Gaussian noise with mean zero variance
ranging from 0 to 15; JPEG compression, where the JPEG quality factor varies from 20 to 100; and
volumetric scaling attacks that can reduce the image intensities as scaling factor varies from 0.1 to 1.5)
were used to verify the performance of the proposed models.
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5.1. Experiment of Robustness with SSIM = 0.982

The test images were watermarked with a uniform fidelity, a fixed structural similarity index
(SSIM) of 0.982. SSIM is a measure of the similarity of two indicators of the image. The overall SSIM
image quality index for two images is computed by averaging the SSIM index SSIM(x, y) values
computed for small patches of the two images [35].

SSIM(x, y) =
(2xy + C1)(2σxy + C2)

(x2 + y2 + C1)(σ2
x + σ2

y + C2)
(19)

where x and y represent the mean of the luminance of the carrier image and the watermarked image,
σx and σy represent the variances of the luminance of the carrier image and the watermarked image,
and σxy represents the covariance of the above both.

Figure 3 shows the response to additive white Gaussian noise. The STDM-AdpWM and STDM-RW
perform significantly worse because of the mismatch problem. Our proposed scheme did not exceed
15% for the Gaussian noise with variance 1.5× 10−3 v . Our proposed scheme has average BER values
2% lower than the LSTDM-WM. Obviously, our scheme outperforms others in the noise-adding-attacks
in particular.
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Figure 3. BER versus Gaussian noise for different watermarking algorithms with SSIM = 0.982.

The sensitivity to JPEG compression is demonstrated in Figure 4. From the robustness results, the
STDM-AdpWM performs significantly worse. The STDM-RW performs worse than the LSTDM-WM.
Our proposed scheme, on the other hand, has average BER values 3% lower than the STDM-RDWMm
and 2% lower than the LSTDM-WM. Our model outperforms other models in robustness against
JPEG compression.

As shown in Figure 5, all the schemes, except STDM-RW, do have robustness to volumetric scaling
due to the mismatch problem within the watermark embedding. Although the other three algorithms
showed passable robustness to this attack, our proposed scheme has the best performance.

Moreover, robustness of the above schemes is tested under some common attacks with the
SSIM = 0.982 and the results are depicted in Table 1. From the average values, we can see our scheme
outperforms other schemes and has good robustness for some common attacks.
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Figure 4. BER versus JPEG compression for different watermarking algorithms with SSIM = 0.982.
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Figure 5. BER versus volumetric scaling factor for different watermarking algorithms with
SSIM = 0.982.

Table 1. The BER comparisons for some common attacks with SSIM = 0.982.

Attack STDM-RW STDM-AdpWM STDM-RDMWm LSTDM-WM Proposed

Salt-and-peppers noise
0.015 0.2881 0.2292 0.2393 0.2185 0.2093

Wiener filtering
3× 3 0.1611 0.1264 0.1889 0.1533 0.1189

Median filtering
3× 3 0.1631 0.1201 0.1194 0.1631 0.1130

Average 0.2041 0.1585 0.1825 0.1783 0.1471

5.2. Experiment of Robustness with VSI = 0.982

The scheme described in this paper is based on visual saliency JND model. Therefore, based
on the general image quality evaluation standard PSNR and SSIM, we adopt VSI fusing the visual
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attention characteristic to quality image [16]. In the visual saliency-induced index (VSI), the role of
VS is twofold. First, VS is used as a feature when computing the local quality map of the distorted
image. Second, when pooling the quality score, VS is employed as a weighting function to reflect the
importance of a local region. Calculate the distribution maps of the original image and watermarked
image of the significant distribution map through the VS model. Extensive experiments performed on
four large-scale benchmark databases demonstrate that the IQA index VSI works better in terms of the
prediction accuracy than all state-of-the-art IQA indices. The VSI index is given as

VSI =
∑M

i=1 ∑N
j=1 SVS(i, j) · [SG(i, j)]0.4 ·max[VS1(i, j), VS2(i, j)]

∑M
i=1 ∑N

j=1 max[VS1(i, j), VS2(i, j)]
(20)

This paper only considers the quality evaluation of gray image, so the color feature of the original
text is not taken into account.VS1 and VS2 are the VS map of the carrier and distorted image. SVS is
the similarity between VS1 and VS2. SG is the similarity of gradient model.

SVS =
2VS1 ·VS2 + C1

VS2
1 + VS2

2 + C1
SG =

2G1 · G2 + C2

G2
1 + G2

2 + C2
(21)

The gradient model G is calculated as Ref. [16]. C1 and C2 are positive experience values.
The test images were watermarked with a uniform fidelity, a fixed VSI of 0.982. The bit error rate

(BER) is computed for comparison purposes. The comparisons of the test results of BER under various
attacks are given as follows.

Figure 6 shows the bit-error-rate (BER) as a function of the additive white Gaussian noise strength.
Results form both our STDM watermarking using visual saliency-based JND model and other STDM
algorithms are given as follows. Our proposed scheme does not exceed 8% for the Gaussian noise with
variance 1.5× 10−3 v and outperforms other schemes for the Gaussian noise clearly, especially being
6% and 2% lower than the STDM-RDMWm scheme and the LSTDM-WM scheme, respectively.
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Figure 6. BER versus Gaussian noise for different watermarking algorithms with VSI = 0.982.

The JPEG compression is implemented to the watermarked images. The experimental results
are demonstrated in Figure 7. From the robustness results, the proposed scheme outperforms
STDM-RW [7], STDM-AdpWM [12], STDM-RDMWm [13], and LSTDM-WM [34] schemes.
Our proposed scheme has average BER values 3% lower than the STDM-RW and STDM-RDMWm
schemes. The superior performance of the proposed scheme is achieved by the superior robustness
properties of our proposed STDM scheme.
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Figure 7. BER versus JPEG compression for different watermarking algorithms with VSI = 0.982.
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Figure 8. BER versus volumetric scaling factor for different watermarking algorithms with VSI = 0.982.

From the robustness results with volumetric scaling in Figure 8, the watermarking scheme based
on visual saliency JND model performs better than others. The proposed method has good robustness
for volumetric scaling attack.

Table 2. The BER comparisons for some common attacks with VSI = 0.982.

Attack STDM-RW STDM-AdpWM STDM-RDMWm LSTDM-WM Proposed

Salt-and-peppers noise
0.015 0.2129 0.1885 0.1885 0.1221 0.1145

Wiener filtering
3× 3 0.0869 0.0938 0.0549 0.1064 0.0479

Median filtering
3× 3 0.1143 0.1094 0.0840 0.1038 0.0645

Average 0.1380 0.1306 0.1091 0.1107 0.0756
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Similar to the above, robustness of the above schemes is tested under some common attacks with
the VSI = 0.982 and the results are depicted in Table 2. From the average values, we can see our
scheme outperforms other schemes and has good robustness for some common attacks.

6. Conclusions

We have proposed a novel STDM watermarking based on visual saliency-based JND model,
which gives us an improved way to model the HVS in the watermarking algorithms. According to the
psychologists research, visual saliency plays an important role in the JND map analyses. In this regard,
the spatial CSF, luminance adaption effect and visual saliency effect are introduced to calculate the
slacks at the watermark embedder and detector. In order to extract the saliency information, a simple
but more effective VS model is introduced and the visual attention effect is investigated for the JND
model. Then a comprehensive JND model is defined with the combinations of the VS feature. Finally,
by using the new JND model, a novel perceptual STDM watermarking scheme with a better trade-off
between robustness and fidelity is presented. Experiments determine that our proposal produces
powerful resistance against common attacks compared to other STDM watermarking algorithms.
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