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Abstract: In the first part we recall two famous sources of solutions to the Yang-Baxter
equation—R-matrices and Yetter-Drinfel′d (=YD) modules—and an interpretation of the
former as a particular case of the latter. We show that this result holds true in the more
general case of weak R-matrices, introduced here. In the second part we continue exploring
the “braided” aspects of YD module structure, exhibiting a braided system encoding all the
axioms from the definition of YD modules. The functoriality and several generalizations of
this construction are studied using the original machinery of YD systems. As consequences,
we get a conceptual interpretation of the tensor product structures for YD modules, and a
generalization of the deformation cohomology of YD modules. This homology theory is
thus included into the unifying framework of braided homologies, which contains among
others Hochschild, Chevalley-Eilenberg, Gerstenhaber-Schack and quandle homologies.
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1. Introduction

The Yang-Baxter equation (YBE) is omnipresent in modern mathematics. Its realm stretches from
statistical mechanics to quantum field theory, covering quantum group theory, low-dimensional topology
and many other fascinating areas of mathematics and physics. The attemps to understand and classify all
solutions to the Yang-Baxter equation (often referred to as braidings, since they provide representations
of braid groups) have been fruitless so far. Nevertheless we dispose of several methods of producing vast
families of such solutions, often endowed with an extremely rich structure.

In Section 2 we review two major algebraic sources of braidings, which have been thouroughly
studied from various viewpoints over the past few decades. The first one is given by R-matrices for



Axioms 2013, 2 444

quasi-triangular bialgebras, dating back to V.G. Drinfel′d’s celebrated 1986 ICM talk [1]. The second
one comes from Yetter-Drinfel′d modules (=YD modules) over a bialgebra, introduced by D. Yetter in
1990 under the name of “crossed bimodules” (see [2]) and rediscovered later by different authors under
different names (see for instance the paper [3] of S.L. Woronowicz, where he implicitely considers a
Hopf algebra as a YD module over itself). All these notions and constructions are recalled in detail in
Sections 2.2 and 2.3.

Note that we are interested here in not necessarily invertible braidings; that is why most
constructions are effectuated over bialgebras rather than Hopf algebras, though the latter are more
current in literature. Section 3.2 contains an example where the non-invertibility does matter.

It was shown in S. Montgomery’s celebrated book ([4], 10.6.14) that R-matrix solutions to the YBE
can be interpreted as particular cases of Yetter-Drinfel′d type solutions. We recall this result and its
categorical version (due to M. Takeuchi, cf. [5]) in Section 2.4. Our original contribution consists in a
generalization of this result: we introduce the notion of weak R-matrix for a bialgebra H and show it to
be sufficient for endowing any H-module with a YD module structure over H (cf. the charts on p. 456).

In Section 3 we explore deeper connections between YD modules (and thus R-matrices, as
explained above) and the YBE. We show that YD modules give rise not only to braidings, but also
to higher-level braided structures, called braided systems. Here we briefly explain this concept after a
short recapitulation of two category-theoretic viewpoints on the YBE—a “local” and a “global” ones.

The first one is rather straightforward: in a strict monoidal category C, one looks for objects V
and endomorphisms σ of V ⊗ V satisfying (YBE). Such V ’s are called braided objects in C. A more
categorical approach consists in working in a “globally” braided monoidal category, as defined in 1993
by A. Joyal and R.H. Street ([6]). Concretely, a braiding on a monoidal category is a natural family
of morphisms σV,W : V ⊗ W → W ⊗ V compatible with the monoidal structure, in the sense of
Equations (2) and (3). Every object V of such a category is braided, via σV,V . See [5] for a comparison
of “local” and “global” approaches, in particular in the the context of the definition of braided Hopf
algebras. Well-known braidings on the category of modules over a quasi-triangular bialgebra and in that
of YD modules over a bialgebra are recalled in Sections 2.2 and 2.3.

Now, the notion of braided system in C is a multi-term version of that of braided object: it is a family
V1, . . . , Vr of objects in C endowed with morphisms σi,j : Vi ⊗ Vj → Vj ⊗ Vi for all i 6 j, satisfying
a system of mixed YBEs. This notion was defined and studied in [7] (see also [8]). The r = 2 case
appeared, under the name of Yang-Baxter system (or WXZ system), in the work of L. Hlavatý and L.
Šnobl ([9]). See Section 3.1 for details.

In Section 3.2, we present a braided system structure on the family (H,M,H∗) for a YD module
M over a finite-dimensional k-bialgebra H (here k is a field, and H∗ is the linear dual of H). Note that
several σi,j’s from this system are highly non-invertible. Its subsystem (H,H∗) is the braided system
encoding the bialgebra structure, constructed and explored in [8], and related to, but different from, the
braided system considered by F.F. Nichita in [10] (see also [11]).

In order to treat the above construction in a conceptual way and extend it to a braided system structure
on (H, V1, . . . , Vs, H

∗) for YD modules V1, . . . , Vs over H, we introduce the concept of Yetter-Drinfel′d
system and show it to be automaticaly endowed with a braiding. See Section 3.3 for details, and
Section 3.4 for examples.
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In Section 3.5 we show the functoriality and the precision of the above braided system construction.
The functoriality is proved by exhibiting the category inclusion (41). Precision means that the described
braided system structure on (H,M,H∗) captures all the algebraic information about the YD module M,

in the sense that each mixed YBE for this system is equivalent to an axiom from the definition of a YD
module, and each YD axiom gets a “braided” interpretation in this way.

Section 3.6 contains an unexpected application of the braided system machinery. Namely, it allows us
to recover the two tensor product structures for YD modules, proposed by L.A. Lambe and D.E. Radford
in [12], from a conceptual viewpoint.

Applying the general braided (co)homology theory from [8,13] (recalled in Section 3.7) to the braided
systems above, we obtain in Section 3.8 a rich (co)homology theory for (families of) YD modules.
It contains in particular the deformation cohomology of YD modules, introduced by F. Panaite and
D. Ştefan in [14]. The results of Section 2.4 give then for free a braided system structure for any
module over a finite-dimensional quasi-triangular k-bialgebra H, with a corresponding (co)homology
theory. Besides a generalization of the Panaite-Ştefan construction, our “braided” tools allow to
considerably simplify otherwise technical verifications from their theory. Moreover, our approach allows
to consider YD module (co)homologies in the same unifying framework as the (co)homologies of other
algebraic structures admitting a braided interpretation, e.g., associative and Leibniz (or Lie) algebras,
self-distributive structures, bialgebras and Hopf (bi)modules (see [8,13]).

The paper is intended to be as elementary and self-contained as possible. Even widely known notions
are recalled for the reader’s convenience. The already classical graphical calculus is extensively used in
this paper, with

ú dots standing for vector spaces (or objects in a monoidal category),
ú horizontal gluing corresponding to the tensor product,
ú graph diagrams representing morphisms from the vector space (or object) which corresponds to

the lower dots to that corresponding to the upper dots,
ú vertical gluing standing for morphism composition, and vertical strands for identities.

Note that all diagrams in this paper are to be read from bottom to top.
Throughout this paper we work in a strict monoidal category C (Definition 2.1); as an example, one

can have in mind the category Vectk of k-vector spaces and k-linear maps, endowed with the usual
tensor product over k.

For an object V in C and a morphism ϕ : V ⊗l → V ⊗r, the following notation is repeatedly used:

ϕi := Id
⊗(i−1)
V ⊗ϕ⊗ Id

⊗(k−i+1)
V : V ⊗(k+l) → V ⊗(k+r). (1)

2. Two Sources of Braidings Revisited

2.1. Basic Definitions

Definition 2.1. A strict monoidal (or tensor) category is a category C endowed with
ú a tensor product bifunctor ⊗ : C × C → C satisfying the associativity condition;
ú a unit object I which is a left and right identity for ⊗.
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We work only with strict monoidal categories here for the sake of simplicity; according to a theorem
of S. MacLane ([15]), any monoidal category is monoidally equivalent to a strict one. This justifies in
particular parentheses-free notations like V ⊗W ⊗ U or V ⊗n. The word “strict” is omitted but always
implied in what follows.

The “local” categorical notion of braiding will be extensively used in this paper:

Definition 2.2. An object V in a monoidal category C is called braided if it is endowed with a “local”
braiding, i.e., a morphism

σ = σV : V ⊗ V → V ⊗ V

satisfying the (categorical) Yang-Baxter equation (=YBE)

(σV ⊗ IdV ) ◦ (IdV ⊗σV ) ◦ (σV ⊗ IdV ) = (IdV ⊗σV ) ◦ (σV ⊗ IdV ) ◦ (IdV ⊗σV ) (YBE)

Following D. Yetter ([2]), one should use the term pre-braiding here in order to stress that
non-invertible σ’s are allowed; we keep the term braiding for simplicity.

Graphically, the braiding σV is presented as . The diagrammatical counterpart of (YBE), depicted
on Figure 1, is then the third Reidemeister move, which is at the heart of knot theory.

Figure 1. Yang-Baxter equation←→ Reidemeister move III.

V ⊗ V ⊗ V

=

V ⊗ V ⊗ V

The “global” categorical notion of braiding will also be used here, both for describing the underlying
category C and for constructing and systematizing new braidings:

Definition 2.3. ú A monoidal category C is called braided if it is endowed with a braiding (or a
commutativity constraint), i.e., a natural family of morphisms c = (cV,W : V ⊗W → W ⊗ V )

indexed by objects V,W of C, satisfying

cV,W⊗U = (IdW ⊗cV,U) ◦ (cV,W ⊗ IdU) (2)

cV⊗W,U = (cV,U ⊗ IdW ) ◦ (IdV ⊗cW,U) (3)

for any triple of objects V,W,U. “Natural” means here

cV ′,W ′ ◦ (f ⊗ g) = (g ⊗ f) ◦ cV,W (4)

for all objects V,W, V ′,W ′ and all morphisms f ∈ HomC(V, V
′), g ∈ HomC(W,W

′).

ú A braided category C is called symmetric if its braiding is symmetric:

cV,W ◦ cW,V = IdW⊗V ∀ V,W ∈ Ob(C) (5)
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The part “monoidal” of the usual terms “braided monoidal” and “symmetric monoidal” are omitted
in what follows.

Lemma 2.4. Every object V in a braided category C is braided, with σV = cV,V .

Proof. Take V ′ = V, W ′ = W = V ⊗ V, f = IdV and g = cV,V in the condition (4) expressing
naturality; this gives the YBE.

We further define the structures of algebra, coalgebra, bialgebra and Hopf algebra in a monoidal
category C:

Definition 2.5. ú A unital associative algebra (= UAA) in C is an object A together with morphisms
µ : A⊗ A→ A and ν : I→ A satisfying the associativity and the unit conditions:

µ ◦ (IdA⊗µ) = µ ◦ (µ⊗ IdA) : A⊗3 → A

µ ◦ (IdA⊗ν) = µ ◦ (ν ⊗ IdA) = IdA

A UAA morphism ϕ between UAAs (A, µA, νA) and (B, µB, νB) is a ϕ ∈ HomC(A,B) respecting
the UAA structures:

ϕ ◦ µA = µB ◦ (ϕ⊗ ϕ) : A⊗ A→ B (6)

ϕ ◦ νA = νB (7)

ú A UAA (A, µ, ν) in C is called braided if it is endowed with a braiding σ compatible with the
UAA structure. Using notation (1), this can be written as

σ ◦ µ1 = µ2 ◦ (σ1 ◦ σ2) : A⊗3 → A⊗2 (8)

σ ◦ µ2 = µ1 ◦ (σ2 ◦ σ1) : A⊗3 → A⊗2 (9)

σ ◦ ν1 = ν2 : A = I⊗ A = A⊗ I→ A⊗2 (10)

σ ◦ ν2 = ν1 : A = I⊗ A = A⊗ I→ A⊗2 (11)

ú A counital coassociative coalgebra (= coUAA) in C is an object C together with morphisms ∆ :

C → C ⊗ C and ε : C → I satisfying the coassociativity and the counit conditions:

(∆⊗ IdC) ◦∆ = (IdC ⊗∆) ◦∆ : C → C⊗3

(ε⊗ IdC) ◦∆ = (IdC ⊗ε) ◦∆ = IdC

A coUAA morphism ϕ between coUAAs is a morphism in C respecting the coUAA structures.
ú A coUAA (C,∆, ε) in C is called braided if it is endowed with a braiding σ compatible with the

coUAA structure, in the sense analogous to Equations (8)–(11).
ú A left module over a UAA (A, µ, ν) in C is an objectM together with a morphism λ : A⊗M →M

respecting µ and ν:

λ ◦ (µ⊗ IdM) = λ ◦ (IdA⊗λ) : A⊗ A⊗M →M (12)

λ ◦ (ν ⊗ IdM) = IdM (13)
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An A-module morphism ϕ between A-modules (M,λM) and (N, λN) is a ϕ ∈ HomC(M,N)

respecting the A-module structures:

ϕ ◦ λM = λN ◦ (IdA⊗ϕ) : A⊗M → N (14)

The category of A-modules in C and their morphisms is denoted by AMod.

Right modules, left/right comodules over coUAAs and their morphisms are defined similarly.
ú A bialgebra in a braided category (C,⊗, I, c) is a UAA structure (µ, ν) and a coUAA structure

(∆, ε) on an object H, compatible in the following sense:

∆ ◦ µ = (µ⊗ µ) ◦ (IdH ⊗cH,H ⊗ IdH) ◦ (∆⊗∆) : H ⊗H → H ⊗H (15)

∆ ◦ ν = ν ⊗ ν : I→ H ⊗H
ε ◦ µ = ε⊗ ε : H ⊗H → I

ε ◦ ν = IdI : I→ I

A bialgebra morphism is a morphism which respects UAA and coUAA structures simultaneously.
ú If moreover H has an antipode, i.e., a morphism s : H → H satisfying

µ ◦ (s⊗ IdH) ◦∆ = µ ◦ (IdH ⊗s) ◦∆ = ν ◦ ε (s)

then it is called a Hopf algebra in C.

The notions of (braided) algebra and coalgebra, and of module and comodule, are mutually dual,
while that of braiding, of bialgebra and Hopf algebra are self-dual; see [7,15] for more details on the
categorical duality. Graphically, applying this duality consists simply in turning all the diagrams upside
down, i.e., taking a horizontal mirror image. For instance, Figure 2 contains the graphical depictions of
the associativity and the coassociativity axioms. Here and afterwards a multiplication µ is represented

as , and a comultiplication ∆ – as .

Figure 2. Associativity and coassociativity.

= =

Graphical versions of several other axioms from the above definition are presented on Figures 3 and 4.

Figure 3. Compatibility conditions for a braiding and a comultiplication.

= =

Figure 4. Main bialgebra axiom (15).

µ
∆ =

µ

∆

µ

∆

c

Note that (15) is the only bialgebra axiom requiring a braiding on the underlying category C.
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2.2. R-Matrices

From now on we work in a symmetric category (C,⊗, I, c). Fix a bialgebra H in C. A bialgebra
structure onH is precisely what is needed for the category HMod of its left modules to be monoidal: the
tensor product M ⊗N of H-modules (M,λM) and (N, λN) is endowed with the H-module structure

λM⊗N := (λM ⊗ λN) ◦ (IdH ⊗cH,M ⊗ IdN) ◦ (∆⊗ IdM⊗N) (16)

and the unit object I is endowed with the H-module structure

λI := ε : H ⊗ I = H → I (17)

In what follows we always assume this monoidal structure on HMod.

If one wants the category HMod to be braided (and thus to provide solutions to the Yang-Baxter
equation), an additional quasi-triangular structure should be imposed on H. The growing interest in
quasi-triangular structures can thus be partially explained by their capacity to produce highly non-trivial
solutions to the YBE. The most famous example is given by quantum groups (see for instance [16]),
which will not be discussed here.

Definition 2.6. A bialgebra H in C is called quasi-triangular if it is endowed with an R-matrix, i.e., a
morphism R : I→ H ⊗H satisfying the following conditions:

1. (IdH ⊗∆) ◦R = (µop ⊗ IdH⊗H) ◦ c2 ◦ (R⊗R),

2. (∆⊗ IdH) ◦R = (IdH⊗H ⊗µ) ◦ c2 ◦ (R⊗R),

3. µH⊗H ◦ (R⊗∆) = µH⊗H ◦ (∆op ⊗R),

where c2 is a shorthand notation for IdH ⊗cH,H ⊗ IdH ,

µH⊗H := (µ⊗ µ) ◦ c2 : (H ⊗H)⊗ (H ⊗H)→ H ⊗H (18)

is the standard multiplication on the tensor product of two UAAs, and

µop := µ ◦ cH,H , ∆op := cH,H ◦∆

are the twisted multiplication and comultiplication respectively.
The R-matrix R is called invertible if there exists a morphism R−1 : I→ H ⊗H such that

µH⊗H ◦ (R⊗R−1) = µH⊗H ◦ (R−1 ⊗R) = ν ⊗ ν (19)

Figure 5 shows a graphical version of the conditions from the definition.

Figure 5. Axioms for an R-matrix.

=

R
∆

R R

µ
=

R
∆

RR

µ =
R

∆

µ µ

R
∆

µ µ

A well-known result affirms that a quasi-triangular bialgebra structure on H is precisely what is
needed for its module category to be braided:
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Theorem 1. The category HMod of left modules over a quasi-triangular bialgebra H in C can be
endowed with the following braiding (cf. Figure 6):

cRM,N := cM,N ◦ (λM ⊗ λN) ◦ (IdH ⊗cH,M ⊗ IdN) ◦ (R⊗ IdM⊗N) (20)

Here R is the R-matrix of H, and c is the underlying symmetric braiding of the category C.
If the R-matrix is moreover invertible, then the braiding cR is invertible as well, with

(cRM,N)−1 := (λM ⊗ λN) ◦ (IdH ⊗cH,M ⊗ IdN) ◦ (R−1 ⊗ cN,M) (21)

Figure 6. A braiding for H-modules.

λNλM
R

NM

N M

All the statements of the theorem can be verified directly (see [16] or any other book on quantum
groups). In Section 2.4 we will see an indirect proof based on a Yetter-Drinfel′d module interpretation
of modules over a quasi-triangular bialgebra.

If one is only interested in solutions to the YBE, the following corollary of the above theorem
is sufficient:

Corollary 2.7. Given a quasi-triangular bialgebra (H,R) in C, any left module M over H is a braided
object in C, with the braiding σM = cRM,M . This braiding is invertible if the R-matrix R is.

Proof. Apply Lemma 2.4 to the braided category structure from Theorem 1.

2.3. Yetter-Drinfel′d Modules

Yetter-Drinfel′d modules are known to be at the origin of a very vast family of solutions to the
Yang-Baxter equation. According to [17–19], this family is complete if one restricts oneself to
finite-dimensional solutions over a field k. This led L.A. Lambe and D.E. Radford to use the eloquent
term quantum Yang-Baxter module instead of the more historical term Yetter-Drinfel′d module, cf. [12].
We recall here the definition of this structure and its most important properties.

Definition 2.8. A Yetter-Drinfel′d (= YD) module structure over a bialgebra H in a symmetric category
C consists of a left H-module structure λ and a right H-comodule structure δ on an object M, satisfying
the Yetter-Drinfel′d compatibility condition (cf. Figure 7)

(IdM ⊗µ) ◦ (δ ⊗ IdH) ◦ cH,M ◦ (IdH ⊗λ) ◦ (∆⊗ IdM) = (YD)

(λ⊗ µ) ◦ (IdH ⊗cH,M ⊗ IdH) ◦ (∆⊗ δ)

The category of YD modules over a bialgebraH (with, as morphisms, those which are simultaneously
H-module and H-comodule morphisms) is denoted by HYDH .
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Figure 7. Yetter-Drinfel′d compatibility condition.
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The name left-right Yetter-Drinfel′d module is more appropriate for the structure described in the
definition; we shorten it for simplicity. One can also define right-left and (in the case when H is a Hopf
algebra) right-right and left-left YD modules. If the antipode s of H is invertible, then all these notions
are equivalent due to the notable correspondence between left and right H-module structures (similarly
for comodules). For example, a right action can be transformed to a left one via

λ := ρ ◦ (IdM ⊗s−1) ◦ cH,M : H ⊗M →M =

ρ
s−1

Example 2.9. A simple but sufficiently insightful example is given by the group algebra H = kG of a
finite group G, which is a Hopf algebra via the linearization of the maps ∆(g) = g ⊗ g, ε(g) = 1 and
s(g) = g−1 for all g ∈ G. For such an H, the notion of left H-module (in the category Vectk) is easily
seen to reduce to that of a k-linear representation of G, and the notion of right H-comodule to that of a
G-graded vector space M =

⊕
g∈GMg, with

δ(m) = m⊗ g ∀m ∈Mg

The compatibility condition (YD) reads in this setting

g ·Mh ⊆Mghg−1 ∀g, h ∈ G

(here the left H-action on M is denoted by a dot). In particular, H becomes a YD module over itself
when endowed with the G-grading H =

⊕
g∈GHg, Hg := kg and the adjoint G-action

g · h := ghg−1

The category HYDH can be endowed with a monoidal structure in several ways (cf. [12]). We choose
here the structure which makes the forgetful functor

For : HYDH −→HMod

(M,λ, δ) 7−→ (M,λ)

monoidal, where HMod is endowed with the monoidal structure described in Section 2.2. Concretely,
the tensor product M ⊗N of YD modules (M,λM , δM) and (N, λN , δN) is endowed with the H-module
structure (16) and the H-comodule structure

δM⊗N := (IdM⊗N ⊗µop) ◦ (IdM ⊗cH,N ⊗ IdH) ◦ (δM ⊗ δN) (22)

and the unit object I is endowed with the H-modules structure (17) and the H-comodule structure

δI := ν : I→ H = I⊗H (23)
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Note that using the twisted multiplication µop in the definition of δM⊗N is essential for assuring its YD
compatibility with λM⊗N .

The monoidal category HYDH defined this way possesses a famous braided structure:

Theorem 2. The category HYDH of left-right Yetter-Drinfel′d modules can be endowed with the
following braiding (cf. Figure 8):

cY DM,N := (IdN ⊗λM) ◦ (δN ⊗ IdM) ◦ cM,N (24)

If H is moreover a Hopf algebra with the antipode s, then the braiding cY D is invertible, with

(cY DM,N)−1 := cN,M ◦ (IdN ⊗λM) ◦ (IdN ⊗s⊗ IdM) ◦ (δN ⊗ IdM) (25)

Figure 8. A braiding for left-right YD modules.

δN λM

NM

N M

The theorem can be proved by an easy direct verification.

Remark 2.10. The category HYDH can be endowed with a monoidal structure alternative to
Equations (16) and (22). Namely, one can endow the tensor product of YD modules M and N with
the “twisted” module and usual comodule structure:

λ̊M⊗N := (λM ⊗ λN) ◦ (IdH ⊗cH,M ⊗ IdN) ◦ (∆op ⊗ IdM⊗N) (26)

δ̊M⊗N := (IdM⊗N ⊗µ) ◦ (IdM ⊗cH,N ⊗ IdH) ◦ (δM ⊗ δN) (27)

Theorem 2 remains true in this setting if one replaces the braiding cY D with its alternative version

c̊Y DM,N := cM,N ◦ (IdM ⊗λN) ◦ (δM ⊗ IdN) (28)

This construction is best explained graphically. First, observe that the notions of bialgebra, YD
module and braiding are stable by the central symmetry. In other words, the sets of diagrams representing
the axioms defining these notions are stable by an angle π rotation (hence the notations c̊ etc. evoking
rotation). Now, an angle π rotation of the H-module structure (16) is the H-comodule structure (27),
and similarly for Equations (22) and (26). To conclude, note that the braiding c̊Y D is precisely an angle
π rotation of cY D (cf. Figures 8 and 9). This alternative structure will be used in Section 3.

Figure 9. An alternative braiding for left-right YD modules.

δM λN
NM

N M
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If one is only interested in solutions to the YBE, the following corollary is sufficient:

Corollary 2.11. Given a bialgebra H in C, any left-right YD module M over H is a braided object in
C, with the braiding σM = cY DM,M . This braiding is invertible if H is moreover a Hopf algebra.

Proof. Apply Lemma 2.4 to the braided category structure from Theorem 2.

Example 2.12. Applied to Example 2.9, the corollary gives an invertible braiding

cY DH,H(h⊗ g) = g ⊗ ghg−1 ∀ g, h ∈ G

forH = kG.One recognizes (the linearization of) a familiar braiding for groups, which can alternatively
be obtained using the machinery of self-distributive structures.

2.4. A Category Inclusion

The braided categories constructed in the two previous sections exhibit apparent similarities. We
explain them here by interpreting the category HMod of left modules over a quasi-triangular bialgebra
H in a symmetric category C as a full braided subcategory of the category HYDH of left-right
Yetter-Drinfel′d modules over H. We further introduce a weaker notion of R-matrix for which the above
category inclusion still holds true, in general without respecting the monoidal structures. In particular,
if one is interested only in constructing solutions to the Yang-Baxter equation (cf. Corollaries 2.7 and
2.11), this weaker notion suffices.

Let (µ, ν) and (∆, ε) be a UAA and, respectively, a coUAA structures on an object H of C. A
preliminary remark is first due.

Remark 2.13. The definition of Yetter-Drinfel′d module actually requires (not necessarily compatible)
UAA and coUAA structures on H only. The category HYDH is no longer monoidal in this setting.
However, a direct verification shows that Corollary 2.11 still holds true (the argument closely repeats
that from the proof of Theorem 5 , point 2).

We thus do not suppose H to be a bialgebra unless explicitely specified.
Take a left module (M,λ) over the algebra H and a morphism R : I→ H ⊗H. Put, as in Figure 10,

δR := cH,M ◦ (IdH ⊗λ) ◦ (R⊗ IdM) : M →M ⊗H

Figure 10. Module + R-matrix 7−→ comodule.

δR :=
R

λ

Now try to determine conditions on R which make (M,λ, δR) a left-right Yetter-Drinfel′d module for
any M. One arrives to the following set of axioms:

Definition 2.14. A morphism R : I→ H⊗H is called a weak R-matrix for a UAA and a coUAA object
(H,µ, ν,∆, ε) in C if (cf. Figure 11)
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1. (∆⊗ IdH) ◦R = (IdH⊗H ⊗µ) ◦ c2 ◦ (R⊗R),

2. (ε⊗ IdH) ◦R = ν,

3. µH⊗H ◦ (R⊗∆) = µH⊗H ◦ (∆op ⊗R).

Figure 11. Axioms for a weak R-matrix.
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One can informally interpret the first two conditions by saying that R provides a duality between the
UAA (H,µ, ν) on the right and the coUAA (H,∆, ε) on the left.

Remark 2.15. If the weak R-matrix is invertible, then axiom 2 is a consequence of 1: apply IdH ⊗ε⊗IdH

to both sides, then multiply by R−1 on the left and apply ε⊗ IdH .

We also need the following notion:

Definition 2.16. A strong R-matrix is a weak R-matrix satisfying two additional axioms (Figure 12):
1’. (IdH ⊗∆) ◦R = (µop ⊗ IdH⊗H) ◦ c2 ◦ (R⊗R),

2’. (IdH ⊗ε) ◦R = ν.

Figure 12. Additional axioms for a strong R-matrix.

=

R
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R R

µ
=

R

ε
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A strong R-matrix satisfies all usual R-matrix axioms by definition. For invertible R-matrices,
arguments similar to those from Remark 2.15 show that axiom 2’. is a consequence of 1’., hence the
notions of strong and usual R-matrix coincide.

As it was hinted before Definition 2.14, a weak R-matrix for H allows to upgrade a module structure
over the algebra H into a Yetter-Drinfel′d module structure:

Theorem 3. Take a UAA and a coUAA object (H,µ, ν,∆, ε) in C equipped with a weak R-matrix R.
1. For any left H-module (M,λ), the data (M,λ, δR) form a left-right YD module over H.
2. For any two H-modules (and hence YD modules) (M,λM) and (N, λN), the morphism cRM,N from

Equation (20) coincides with cY DM,N from Equation (24) and, for N = M, defines a braiding for the
object M in C.

3. The category HMod can be seen as a full subcategory of HYDH via the inclusion

iR : HMod ↪−→ HYDH

(M,λ) 7−→ (M,λ, δR)

4. If H is a bialgebra and R is a strong R-matrix, then the functor iR is braided monoidal.
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Proof. 1. The first two conditions from the definition of weak R-matrix guarantee that δR defines a
coUAA comodule, while the last one implies the YD compatibility (YD).

2. The equality of the two morphisms follows from the choice of δR. The fact that cY DM,M is a braiding
was noticed in Remark 2.13.

3. We have seen in point 1 that iR is well defined on objects. Further, using the definition of δR and the
naturality of c, one checks that a morphism in C respecting module structures necessarily respects
comodule structures defined by δR. Thus iR is well defined, full and faithful on morphisms.

4. Let us now show that, under the additional conditions of this point, iR respects monoidal structures.
Take two H-modules (M,λM) and (N, λN). The H-module structure λM⊗N on M ⊗ N is
given by Equation (16). The functor iR transforms it into a YD module over H, with as
H-comodule structure

δRM⊗N = cH,M⊗N ◦ (IdH ⊗λM⊗N) ◦ (R⊗ IdM⊗N)

= cH,M⊗N ◦ (IdH ⊗λM ⊗ λN) ◦ (IdH⊗H ⊗cH,M ⊗ IdN)

◦ (((IdH ⊗∆) ◦R)⊗ IdM⊗N)

Now in HYDH the tensor product of (M,λM , δ
R
M) and (N, λN , δ

R
N) has an H-module structure

given by λM⊗N , and an H-comodule structure given by Equation (22):

δM⊗N = (IdM⊗N ⊗µop) ◦ (IdM ⊗cH,N ⊗ IdH) ◦ (δRM ⊗ δRN)

= (IdM⊗N ⊗µop) ◦ (IdM ⊗cH,N ⊗ IdH)

◦ (cH,M ⊗ cH,N) ◦ (IdH ⊗λM ⊗ IdH ⊗λN) ◦ (R⊗ IdM ⊗R⊗ IdN)

= cH,M⊗N ◦ (IdH ⊗λM ⊗ λN) ◦ (IdH⊗H ⊗cH,M ⊗ IdN)

◦ (((µop ⊗ IdH⊗H) ◦ c2 ◦ (R⊗R))⊗ IdM⊗N)

The reader is advised to draw diagrams in order to better follow these calculations. Now, axiom 1’.
from the definition of a strong R-matrix is precisely what is needed for the two YD structures on
M ⊗N to coincide.
A similar comparison of the standard H-comodule structure on the unit object I of C with the one
induced by R shows that they coincide if and only if axiom 2’. is verified.
Point 2 shows that iR also respects braidings, allowing one to conclude.

Note that in Point 2, cRM,N = cY DM,N is a morphism in C and not in HMod in general, since the
H-module structure on M ⊗N is not even defined if H is not a bialgebra.

In the proof of the theorem one clearly sees that the full set of strong R-matrix axioms is necessary
only if one wants to construct braided monoidal categories, while the notion of weak R-matrix suffices
if one is interested in the “local” structure of objects in C (in particular, in solutions to the YBE) only.

The relations between different structures from the above theorems can be presented in the following
charts (in each of them one starts with a UAA and a coUAA H and a morphism R : I→ H ⊗H):
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1. H is a bialgebra, cR is a braiding cRM,M is a braiding
R is a strong R-matrix on HMod for M in HMod

HMod is a full monoidal
subcategory of HYDH

Thm 1 +3____________________________ ____________________________

Thm 3
&.UUUUU

UUUUU Thm 2 08iiiiii
iiiiii

Crl 2.7 +3______ ______

2. R is a weak HMod is a full cRM,M = cY DM,M is
R-matrix subcategory of HYDH a braiding for M in C

Thm 3 +3________________ ________________ Rmk 2.13 +3___________ ___________

Observe that if one disregards all the structural issues and limits oneself to the search of solutions to
the YBE, one obtains that the only condition that should be imposed on R so that Equation (20) becomes
a braiding is the following:

R23 ∗R13 ∗R12 = R12 ∗R13 ∗R23 : I→ H ⊗H ⊗H

where R12 := R ⊗ ν, R23 := ν ⊗ R, R13 := (IdH ⊗cH,H) ◦ R12, and ∗ stands for the multiplication
on H ⊗ H ⊗ H defined by a formula analogous to Equation (18). This relation is sometimes called
algebraic, or quantum, Yang-Baxter equation. Other authors however reserve this term for (YBE).

We finish by showing that in the Hopf algebra case, which is the most common in literature, the
invertibility of a weak R-matrix is automatic:

Proposition 2.17. If a Hopf algebra H with the antipode s is endowed with a weak R-matrix R, then

R−1 := (s⊗ IdH) ◦R

defines an inverse for R, in the sense of Equation (19).

Proof. Apply (µ⊗IdH)◦(s⊗IdH ⊗ IdH), or (µ⊗IdH)◦(IdH ⊗s⊗IdH), to both sides of the axiom 1 from
the definition of weak R-matrix. Axiom 2 and the definition (s) of the antipode allow one to conclude.

3. Yetter-Drinfel′d Modules and the Yang-Baxter Equation: The Story Continued

3.1. Braided Systems

In order to describe further connections between Yetter-Drinfel′d modules and the Yang-Baxter
equation, the following notion from [8] will be useful:

Definition 3.1. ú A braided system in a monoidal category C is an ordered finite family
V1, V2, . . . , Vr of objects in C endowed with a braiding, i.e., morphisms σi,j : Vi ⊗ Vj → Vj ⊗ Vi
for 1 6 i 6 j 6 r satisfying the colored Yang-Baxter equation (= cYBE)

(σj,k ⊗ Idi) ◦ (Idj ⊗σi,k) ◦ (σi,j ⊗ Idk) = (Idk⊗σi,j) ◦ (σi,k ⊗ Idj) ◦ (Idi⊗σj,k) (cYBE)

on all the tensor products Vi ⊗ Vj ⊗ Vk with 1 6 i 6 j 6 k 6 r. (Here Idt stands for IdVt ,

1 6 t 6 r.) Such a system is denoted by ((Vi)16i6r; (σi,j)16i6j6r) or briefly (V , σ).

ú The rank of a braided system is the number r of its components.
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ú A braided morphism f : (V , σ)→ (W, ξ) between two braided systems in C of the same rank r is
a collection of morphisms (fi ∈ HomC(Vi,Wi))16i6r respecting the braiding, i.e.,

(fj ⊗ fi) ◦ σi,j = ξi,j ◦ (fi ⊗ fj) ∀ 1 6 i 6 j 6 r (29)

ú The category of rank r braided systems and braided morphisms in C is denoted by BrSystr(C).

This notion is a partial generalization of that of braided object in C, in the sense that a braiding is
defined only on certain couples of objects (which is underlined in the definition).

Graphically, the σi,j component of a braiding is depicted on Figure 13. According to the definition,
one allows a strand to overcross only the strands colored with a smaller or equal index i ∈ {1, 2, . . . , r}.

Figure 13. A braiding component.

Vi Vj

Observe that each component of a braided system is a braided object in C.
Various examples of braided systems coming from algebraic considerations are presented in [8].

Different aspects of those systems are studied in detail there, including their representation and homology
theories, generalizing usual representation and homology theories for basic algebraic structures.

In the next section we will describe a rank 3 braided system constructed from a Yetter-Drinfel′d
module over a finite-dimensional k-linear bialgebra. The braiding on this system captures all axioms of
the YD module structure. Several components of this braiding are inspired by the braiding c̊Y D from
Equation (28).

3.2. Yetter-Drinfel′d Module 7−→ Braided System

In this section we work in the category Vectk of k-vector spaces and k-linear maps, endowed with
the usual tensor product over k, with the unit k and with the flip

c(v ⊗ w) = w ⊗ v ∀v ∈ V,w ∈ W (30)

as symmetric braiding. Note however that one could stay in the general setting of a symmetric category
and replace the property “finite-dimensional” with “admitting a dual” in what follows.

Recall the classical Sweedler’s notation without summation sign for comultiplications and coactions
in Vectk, used here and further in the paper:

∆(h) := h(1) ⊗ h(2) ∈ H ⊗H ∀h ∈ H (31)

δ(m) := m(0) ⊗m(1) ∈M ⊗H ∀m ∈M (32)

We now describe by giving explicit formulas a braided system constructed from an arbitrary YD
module. In Section 3.4 this construction will be explained from a more conceptual viewpoint.
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Theorem 4. Let H be a finite-dimensional k-linear bialgebra, and let M be a Yetter-Drinfel′d module
over H. Then the rank 3 system (H,M,H∗) can be endowed with the following braiding:

σH,H : h1 ⊗ h2 7→ h1h2 ⊗ 1, σM,M : m1 ⊗m2 7→ m1 ⊗m2

σH∗,H∗ : l1 ⊗ l2 7→ ε⊗ l1l2, σH,M : h⊗m 7→ h(2)m⊗ h(1)

σH,H∗ : h⊗ l 7→ l(1)(h(2)) l(2) ⊗ h(1), σM,H∗ : m⊗ l 7→ l(1)(m(1)) l(2) ⊗m(0)

Here the signs for multiplication morphisms in H and H∗, as well as for the H-action on M, are omitted
for simplicity. Further, 1 denotes the unit of H, i.e., ν(α) = α1 for all α ∈ k.

Multiplication, comultiplication and other structures on H∗ used in the theorem are obtained from
those on H by duality. For instance,

l1l2(h) := ∆∗(l1 ⊗ l2)(h) := l1(h(2))l2(h(1)) ∀l1, l2 ∈ H∗, h ∈ H (33)

1H∗(h) := (εH)∗(1)(h) := εH(h) ∀h ∈ H (34)

See [8] for some comments on an alternative definition of the duality between H ⊗ H and H∗ ⊗ H∗,

which gives a slightly different formula for ∆∗, more common in literature.
The multiplication ∆∗ on H∗ is graphically depicted on Figure 14. Here and afterwards dashed lines

stand for H∗, and ev denotes one of the evaluation maps

ev : H∗ ⊗H −→ k, or H ⊗H∗ −→ k,

l ⊗ h 7−→ l(h); h⊗ l 7−→ l(h).

Figure 14. Dual structures on H∗ via the “rainbow” duality.

H∗H∗ H

ev

∆∗ =

H∗H∗ H

ev

∆

All components of the braiding from the theorem are presented on Figure 15.

Figure 15. A braiding for the system (H,M,H∗).

σH,H = µ ν σH,H∗ =
ev∆ µ∗

σH∗,H∗ = ∆∗ε∗

σH,M =
λM∆

σM,M = σM,H∗ =
ev

µ∗δM

In order to prove the theorem, one can simply verify by tedious but straightforward computations the(
3+2
2

)
= 10 instances of the cYBE involved in the definition of rank 3 braided system. A more conceptual

proof will be given in the more general setting of Sections 3.3 and 3.4 (cf. Example 3.11). In subsequent
sections we will also study functoriality, precision and homology questions for this braided system.
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3.3. Yetter-Drinfel′d Systems: Definition and Braided Structure

We introduce here the notion of Yetter-Drinfel′d system in a symmetric category C and show how to
endow it with a braiding. The braided system from Section 3.2 turns out to be a particular case of this
general construction. In Section 3.4 we will consider other particular cases, namely a braided system
encoding the bialgebra structure (cf. [8]) and a braided system of several Yetter-Drinfel′d modules over
a common bialgebra H. The latter will lead to a “braided” interpretation of the monoidal structures on
the category HYDH (Section 3.6).

Let an object H in C be endowed with a UAA structure (µH , νH) and a coUAA structure (∆H , εH), a
priori not compatible.

Definition 3.2. ú A (left-right) Yetter-Drinfel′d module algebra over H is the datum of a UAA
structure (µ, ν) and a YD structure (λ, δ) on an object V in C, such that µ and ν are morphisms
of YD modules (see Equations (26), (27) and (17), (23) for the H-(co)module structure of V ⊗ V
and of I):

δ ◦ µ = (µ⊗ µH) ◦ (IdV ⊗cH,V ⊗ IdH) ◦ (δ ⊗ δ) (35)

λ ◦ (IdH ⊗µ) = µ ◦ (λ⊗ λ) ◦ (IdH ⊗cH,V ⊗ IdV ) ◦ (∆op
H ⊗ IdV⊗V ) (36)

δ ◦ ν = ν ⊗ νH (37)

λ ◦ (IdH ⊗ν) = εH ⊗ ν (38)

ú The category of YD module algebras over H in C (with as morphisms those which are
simultaneously UAA and YD module morphisms) is denoted by HYDAlgH .

ú Omitting the comodule structure δ from the definition, one gets the notion of H-module algebra.
H-comodule algebras are defined similarly.

The name Hcop-module algebra would be more appropriate than H-module algebra since we use
the twisted compatibility condition (36). However we opt for the simpler notation since it causes no
confusion in what follows.

For the reader’s convenience, we give in Figure 16 a graphical form of the compatibility
relations (35)–(38). Here and afterwards we use thick colored lines for the module V , and thin black
lines for H.

Figure 16. Compatibilities between UAA and YD structures.
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Definition 3.3. A (left-right) Yetter-Drinfel′d system over H (=H-YD system) in C is an ordered finite
family V1, V2, . . . , Vr of objects endowed with the following structure:

1. (V1, µ1, ν1, δ1) is an H-comodule algebra;
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2. (Vr, µr, νr, λr) is an H-module algebra;
3. (Vi, µi, νi, λi, δi) is a YD module algebra over H for all 1 < i < r.

Now we show how to endow a YD system with a braiding:

Theorem 5. A braiding can be defined on a Yetter-Drinfel′d system (V1, . . . Vr) over H by

σi,i := νi ⊗ µi or µi ⊗ νi : Vi ⊗ Vi → Vi ⊗ Vi,
σi,j := c̊Y DVi,Vj

= cVi,Vj
◦ (IdVi

⊗λj) ◦ (δi ⊗ IdVj
) : Vi ⊗ Vj → Vj ⊗ Vi, i < j.

The σi,j components of this braiding with i < j are invertible if H is a Hopf algebra.

In order to prove the theorem, the following result from [8] will be useful:

Proposition 3.4. Take r UAAs (Vi, µi, νi)16i6r in a monoidal category C and, for each couple of
subscripts 1 6 i < j 6 r, take a morphism ξi,j : Vi ⊗ Vj → Vj ⊗ Vi natural with respect to νi and
νj (in the sense of a multi-object version of Equations (10) and (11)). The following statements are
then equivalent:

1. The morphisms

ξi,i := νi ⊗ µi ∀ 1 6 i 6 r (39)

complete the ξi,j’s into a braided system structure on V .
2. Each ξi,j is natural with respect to µi and µj (in the sense of a multi-object version of Equations (8)

and (9)) and, for each triple i < j < k, the ξi,j’s satisfy the colored Yang-Baxter equation on
Vi ⊗ Vj ⊗ Vk.

We call braided systems described in the proposition braided systems of UAAs. In [8] this structure
was shown to be equivalent to that of a multi-braided tensor product of UAAs.

The associativity braidings ξi,i from Equation (39) were introduced in [13], where they were shown
to encode the associativity (in the sense that the YBE for ξi,i is equivalent to µi being associative, if one
imposes that νi is a unit for µi) and to capture many structural properties of the latter. We denote them
by σAss(Vi). Observe that they are highly non-invertible in general.

Remark 3.5. Some or all of the morphisms ξi,i in the proposition can be replaced with their right versions

σrAss(Vi) := µi ⊗ νi

Proof of the theorem. First notice that the compatibility conditions (37) and (38) between the units νi of
the Vi’s and the H-(co)module structures on the Vi’s (cf. two last pictures on Figure 16) ensure that c̊Y DVi,Vj

is natural with respect to units. In order to deduce the theorem from Proposition 3.4, it remains to check
the following two conditions:

1. The naturality of c̊Y DVi,Vj
with respect to µi and µj for each couple i < j.

Figure 17 contains a graphical proof of the naturality with respect to µi, the case of µj being
similar. Labels Vi, Vj, H, µi etc. are omitted for compactness.
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Figure 17. Naturality with respect to µi: a graphical proof.
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Here we use:
1 the compatibility (35) between δi and µi (cf. Figure 16, picture 1);
2 the definition of H-module for Vj;
3 the naturality of the symmetric braiding c of C;
4 the naturality and the symmetry (5) of c.

2. Condition (cYBE) on Vi ⊗ Vj ⊗ Vk for each triple i < j < k.

Due to the naturality of c, this condition is equivalent to the one graphically presented on Figure 18.

Figure 18. Yang-Baxter equation for Yetter-Drinfel′d modules.

VkVjVi

=

VkVjVi

To prove this, one needs
ú the defining property of right H-comodule for Vi,
ú the defining property of left H-module for Vk,
ú the Yetter-Drinfel′d property for Vj.

As for the invertibility statement, if H is a Hopf algebra, then the inverse of σi,j = c̊Y DVi,Vj
, i < j, can

be explicitely given by the formula

σ−1
i,j = (IdVi

⊗λj) ◦ (IdVi
⊗s⊗ IdVj

) ◦ (δi ⊗ IdVj
) ◦ cVj ,Vi

: Vj ⊗ Vi → Vi ⊗ Vj

Remark 3.6. No compatibility between the algebra and coalgebra structures on H are demanded
explicitly. However, other properties of a YD system dictate that H should be not too far from a
bialgebra, at least as far as (co)actions are concerned. This statement is made concrete and is proved
(in the H-comodule case) in Figure 19; cf. Figure 4 for the definition of bialgebra.

Figure 19. Almost a bialgebra.
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3.4. Yetter-Drinfel′d Systems: Examples

The examples of H-YD systems we give below contain usual YD modules over H, a priori without a
UAA structure. In the following lemma we explain how to overcome this lack of structure by introducing
a formal unit into a YD module:

Lemma 3.7. Let (M,λ, δ) be a YD module over a UAA and coUAAH in a symmetric additive category
C. This YD module structure can be extended to M̃ := M ⊕ I as follows:

λ̃|H⊗I := εH , λ̃|H⊗M := λ,

δ̃|I := νH , δ̃|M := δ.

Moreover, combined with the trivial UAA structure on M̃ :

µ|M⊗M = 0, µ|I⊗M̃ = µ|M̃⊗I = IdM̃ , ν = IdI

this extended YD module structure turns M into an H-YD module algebra.

Proof. Direct verifications.

We need C to be additive in order to ensure the existence of direct sums and zero morphisms. Our
favorite category Vectk is additive.

In what follows we mostly work with YD modules admitting moreover a compatible UAA structure;
the lemma shows that this assumption does not reduce the generality of our constructions.

Everything is now ready for our main example of H-YD systems. Recall Sweedler’s notation (31)
and (32).

Proposition 3.8. Let H be a finite-dimensional k-linear bialgebra, and let M1, . . . ,Mr be
Yetter-Drinfel′d module algebras over H. Consider H itself as a UAA via morphisms µH and νH and as
an H-comodule via ∆H . Further, consider its dual space H∗ as a UAA via dual morphisms (∆H)∗ and
(εH)∗ and as an H-module via

h · l := l(1)(h)l(2) ∀ h ∈ H, l ∈ H∗ (40)

(cf. Figure 20). These structures turn the family (H,M1, . . . ,Mr, H
∗) into an H-YD system.

Figure 20. The action of H on H∗.

H∗

H∗H

:=
ev

∆

H∗

H∗H

Proof. Almost all axioms from Definition 3.3 are automatic. One should check only the following points:
ú the H-comodule structure ∆H on H is compatible with the UAA structure (µH , νH);
ú the map Equation (40) indeed defines an H-action on H∗;
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ú the H-module structure Equation (40) on H∗ is compatible with the UAA structure
((∆H)∗, (εH)∗).

These straightforward verifications use bialgebra axioms and the definition of dual morphisms. They are
easily effectuated using the graphical calculus.

Applying Theorem 5 to the H-YD system from Proposition 3.8, and choosing braiding component
σAss for H∗ and the Mi’s, and its right version σrAss for H (cf. Remark 3.5), one obtains the following
braided system:

Corollary 3.9. In the settings of Proposition 3.8, the system (H,M1, . . . ,Mr, H
∗) can be endowed with

the following braiding:

σH,H := σrAss(H) = µH ⊗ νH : h1 ⊗ h2 7→ h1h2 ⊗ 1H ,

σH∗,H∗ := σAss(H
∗) = (εH)∗ ⊗ (∆H)∗ : l1 ⊗ l2 7→ εH ⊗ l1l2,

σH,H∗ := c̊Y DH,H∗ : h⊗ l 7→ l(1)(h(2)) l(2) ⊗ h(1),

σMi,Mi
:= σAss(Mi) = νi ⊗ µi : m1 ⊗m2 7→ 1Mi

⊗m1m2,

σMi,Mj
:= c̊Y DMi,Mj

: m⊗ n 7→ m(1)n⊗m(0),

σH,Mi
:= c̊Y DH,Mi

: h⊗m 7→ h(2)m⊗ h(1),

σMi,H∗ := c̊Y DMi,H∗
: m⊗ l 7→ l(1)(m(1)) l(2) ⊗m(0).

Notations analogous to those from Theorem 4 are used here.

See Figures 9 and 15 for a graphical presentation of the components of the braiding from the corollary.
Notation σY DAlg will further be used for this braiding.

The simplest particular cases of the corollary already give interesting examples:

Example 3.10. In the extreme case r = 0 one gets the braiding on the system (H,H∗) studied in [8],
where it was shown that:

ú it encodes the bialgebra structure (e.g., the cYBE onH⊗H⊗H∗ or onH⊗H∗⊗H∗ is equivalent
to the main bialgebra axiom (15));

ú it allows to construct a fully faithful functor

∗bialg ↪−→∗BrSyst••2

where ∗bialg is the category of finite-dimensional bialgebras and bialgebra isomorphisms (hence
notation ∗) in Vectk, and ∗BrSyst••2 is the category of rank 2 braided systems and their
isomorphisms in Vectk, endowed with some additional structure (hence notation ••);

ú the invertibility of the component σH,H∗ of this braiding is equivalent to the existence of the
antipode for H;

ú braided modules over this system (cf. [8] for a definiton) are precisely Hopf modules over H;
ú the braided homology theory for this system (cf. Section 3.7) includes the Gerstenhaber-Schack

bialgebra homology, defined in [20].
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Example 3.11. The r = 1 case gives a braiding on the system (H,M,H∗) for a YD module algebra M
over H. Now observe that one can substitute the σM,M = σAss(M) component of σY DAlg with the trivial
one, σM,M = IdM⊗M , since the instances of the cYBE involving two copies of M (which are the only
instances affected by the modification of σM,M ) become automatic. Moreover, with this new σM,M the
UAA structure on M is no longer necessary. One thus obtains a braiding on (H,M,H∗) for any H-YD
module M, which coincides with the one in Theorem 4. This gives an alternative proof of that theorem.

Example 3.12. If M is just a module algebra, one can extract a braided system (H,M) from the
construction of the previous example. Studying braided differentials for this system (cf. Section 3.7),
one recovers the deformation bicomplex of module algebras, introduced by D. Yau in [21]. Note that in
this example H need not be finite-dimensional.

Example 3.13. The argument from example 3.11 also gives a braiding on the system
(H,M1, . . . ,Mr, H

∗) for H-YD modules M1, . . . ,Mr, a priori without UAA structures. This braiding
is obtained by replacing all the σMi,Mi

’s from Corollary 3.9 with the trivial ones, σMi,Mi
= IdMi⊗Mi

. It
is denoted by σY D.

3.5. Yetter-Drinfel′d Systems: Properties

Now let us study several properties of the braiding from Corollary 3.9, namely its functoriality and
the precision of encoding YD module algebra axioms.

Proposition 3.14. In the settings of Proposition 3.8, one has a faithful functor

(HYDAlgH)×r
ibr
↪−→ BrSystr+2 (41)

M = (M1, . . . ,Mr) 7−→ (H,M,H∗;σY DAlg)

f = (fi : Mi → Ni)16i6r 7−→ (IdH , f , IdH∗)

Moreover, if a braided morphism from ibr(M) to ibr(N) has the form (IdH , f , IdH∗) and if the fi’s respect
units (in the sense of Equation (7)), then all the fi : Mi → Ni are morphisms in HYDAlgH .

Proof. Corollary 3.9 says that the functor is well defined on objects. It remains to study the compatibility
condition (29) for the collection (IdH , f , IdH∗) and each component of the braiding σY DAlg.

1. On H ⊗H, H ⊗H∗ and H∗ ⊗H∗ condition (29) trivially holds true.
2. On Mi ⊗Mi, condition (29) reads

(fi ⊗ fi) ◦ (νMi
⊗ µMi

) = (νNi
⊗ µNi

) ◦ (fi ⊗ fi)

which, due to Equation (7), becomes

νNi
⊗ (fi ◦ µMi

) = (νNi
⊗ µNi

) ◦ (fi ⊗ fi)

But this is equivalent to fi respecting multiplication:

fi ◦ µMi
= µNi

◦ (fi ⊗ fi)

(compose with µNi
on the left to get the less evident application), i.e., in the presence of

Equation (7), to fi being a UAA morphism.
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3. On H ⊗Mi, condition (29) reads

(fi⊗ IdH) ◦ cH,Mi
◦ (IdH ⊗λMi

) ◦ (∆H ⊗ IdMi
) = cH,Ni

◦ (IdH ⊗λNi
) ◦ (∆H ⊗ IdNi

) ◦ (IdH ⊗fi)

which simplifies as

(IdH ⊗(fi ◦ λMi
)) ◦ (∆H ⊗ IdMi

) = (IdH ⊗λNi
) ◦ (IdH⊗H ⊗fi) ◦ (∆H ⊗ IdMi

)

This is equivalent to fi respecting the H-module structure:

(fi ◦ λMi
) = λNi

◦ (IdH ⊗fi)

(compose with ε⊗ IdNi
on the left to get the less evident application).

4. Similarly, on Mi ⊗H∗ condition (29) is equivalent to fi respecting the H-comodule structure.
5. Condition (29) holds true onMi⊗Mj, i < j, if fj respects theH-module structures and fi respects

the H-comodule structures.
The reader is advised to draw diagrams in order to better follow the proof.
This analysis shows that ibr is well defined on morphisms. Moreover, it shows that if a braided

morphism from ibr(M) to ibr(N) has the form (IdH , f , IdH∗) and if the fi’s respect units, then all the
fi : Mi → Ni are simultaneously morphisms of UAAs (point 2 above), of H-modules (point 3) and of
H-comodules (point 4), which precisely means that they are morphisms in HYDAlgH .

The faithfulness of the functor is tautological.

Remark 3.15. The second statement of the proposition allows to call the functor ibr “essentially full”.
A precise description of (α, f, β) ∈ HomBrSystr+2

(ibr(M), ibr(N)) can be obtained using the results
recalled in Example 3.10. Namely, if one imposes some additional restrictions (α and β should be
invertible and respect the units, the fi’s should respect units as well), then

ú α is a bialgebra automorphism, and coinsides with (β−1)∗;
ú each fi is a UAA morphism;
ú α and the fi ’s are compatible with the YD structures on the Mi’s and Ni’s:

fi ◦ λMi
= λNi

◦ (α⊗ fi) : H ⊗Mi → Ni

δNi
◦ fi = (fi ⊗ α) ◦ δMi

: Mi → Ni ⊗H

Remark 3.16. Following Example 3.13, one gets a similar “essentially full” and faithful functor

(HYDH)×r
ibr
↪−→ BrSystr+2

M = (M1, . . . ,Mr) 7−→ (H,M,H∗;σY D)

f = (fi : Mi → Ni)16i6r 7−→ (IdH , f , IdH∗)

We next show that each instance of the cYBE for the braiding σY DAlg corresponds precisely to an
axiom from the Definition 3.2 of YD module algebra structure, modulo some minor normalization
constraints. We thus obtain a “braided” interpretation of each of these axioms, extending the classical
“braided” interpretation of the YD compatibility condition (YD) (Corollary 2.11).
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Proposition 3.17. Take a finite-dimensional k-linear bialgebra H, a vector space V over k, and
morphisms µ : V ⊗ V → V, ν : k → V, λ : H ⊗ V → V, δ : V → V ⊗ H, a priori satisfying
no compatibility relations. Consider the collection of σ’s defined in Corollary 3.9 (for r = 1). One has
the following equivalences:

1. cYBE for H ⊗ V ⊗H∗⇐⇒ YD compatibility condition (YD) for (V, λ, δ).

2. cYBE for H ⊗H ⊗ V ⇐⇒ λ defines an H-module.
Here one supposes that νH acts via λ by identity (in the sense of Equation (13)).

3. cYBE for V ⊗H∗ ⊗H∗⇐⇒ δ defines an H-comodule.
Here one supposes that εH coacts via δ by identity (in the sense dual to Equation (13)).

4. cYBE for H ⊗ V ⊗ V ⇐⇒ λ respects the multiplication µ (in the sense of Equation (36)).
Here one supposes λ to respect ν (in the sense of Equation (38)).

5. cYBE for V ⊗ V ⊗H∗⇐⇒ δ respects the multiplication µ (in the sense of Equation (35)).
Here one supposes δ to respect ν (in the sense of Equation (37)).

6. cYBE for V ⊗ V ⊗ V ν is a unit for µ⇐⇒ associativity of µ.

Proof. We prove only the first equivalence here, the other points being similar.
The cYBE for H ⊗ V ⊗ H∗ is graphically depicted on Figure 21(a). Using the naturality of c, one

transforms this into the diagram on Figure 21(b). Applying εH∗ ⊗ V ⊗ εH to both sides and using the
definition of ∆H∗ = µ∗H in terms of µH , one gets precisely (YD).

Figure 21. cYBE for H ⊗ V ⊗H∗⇐⇒ (YD).

∆H

λ

∆H µ∗Hev

δ µ∗Hev

H ⊗ V ⊗H∗

=

a)
H ⊗ V ⊗H∗

∆H
λ

δ µ∗Hev

∆H µ∗Hev

H ⊗ V ⊗H∗

=

b)
H ⊗ V ⊗H∗

3.6. Tensor Product of Yetter-Drinfel′d Modules

The aim of this section is to explain the definition (26) and (27) of tensor product of YD modules from
the braided point of view, using the braided interpretation of YD structure presented in Proposition 3.17.

Start with an easy general observation.

Lemma 3.18. Let (V , σ) be a rank 4 braided system in a monoidal category C. A braiding can then be
defined for the rank 3 system (V1, V2 ⊗ V3, V4) in the following way:

ú keep σV1,V1 , σV1,V4 and σV4,V4 from the previous system;
ú put σV2⊗V3,V2⊗V3 = Id(V2⊗V3)⊗(V2⊗V3);
ú define

σV1,V2⊗V3 = (IdV2 ⊗σ1,3)⊗ (σ1,2 ⊗ IdV3)

σV2⊗V3,V4 = (σ2,4 ⊗ IdV3)⊗ (IdV2 ⊗σ3,4)
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Proof. The instances of the cYBE not involving V2 ⊗ V3 hold true since they were true in the original
braided system. Those involving V2 ⊗ V3 at least twice are trivially true. The remaining instances (those
involving V2 ⊗ V3 exactly once) are verified by applying the instances of the cYBE coming from the
original braided system several times.

Certainly, this gluing procedure can be applied in a similar way to any two or more consecutive
components in a braided system of any rank.

Applying the gluing procedure to the braided system from Example 3.13 (r = 2) and slightly rewriting
the braiding obtained (using the coassociativity of H and of H∗), one gets

Lemma 3.19. Given YD modules M1 and M2 over a finite-dimensional k-linear bialgebra H, one has
the following braiding on (H,M1 ⊗M2, H

∗):

σH,H := σrAss(H) = µH ⊗ νH
σH∗,H∗ := σAss(H

∗) = (εH)∗ ⊗ (∆H)∗

σH,H∗ := c̊Y DH,H∗

σM1⊗M2,M1⊗M2 := Id(M1⊗M2)⊗(M1⊗M2)

σH,M1⊗M2 := cH,M1⊗M2 ◦ (IdH ⊗λ̊M1⊗M2) ◦ (∆H ⊗ IdM1⊗M2)

σM1⊗M2,H∗ := cM1⊗M2,H∗ ◦ (IdM1⊗M2 ⊗λH∗) ◦ (̊δM1⊗M2 ⊗ IdH∗)

where λH∗ denotes the action (40) of H on H∗, and λ̊M1⊗M2 and δ̊M1⊗M2 are defined by Equations (26)
and (27).

Now plug λ̊M1⊗M2 and δ̊M1⊗M2 (and arbitrary µ and ν) into Proposition 3.17. The preceding lemma
ensures the cYBE on H⊗ (M1⊗M2)⊗H∗, H⊗H⊗ (M1⊗M2) and (M1⊗M2)⊗H∗⊗H∗ (since the
corresponding components of σ from the proposition and from the lemma coincide). The equivalences
from the proposition then allow to conclude:

Corollary 3.20. Given YD modules M1 and M2 over a finite-dimensional k-linear bialgebra H, the
morphisms λ̊M1⊗M2 and δ̊M1⊗M2 defined by Equations (26) and (27) endow M1 ⊗ M2 with a YD
module structure.

One thus obtains a more conceptual way of “guessing” the correct definition of tensor product for
YD modules.

3.7. Braided Homology: A Short Review

In this section we recall the homology theory for braided systems developed in [8] (see also [13] for
the rank 1, i.e., braided object, case). In the next section we apply this general theory to the braided
system constructed from a YD module in Theorem 4.

We first explain what we mean by a homology theory for a braided system (V , σ) in an additive
monoidal category C:
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Definition 3.21. ú A degree −1 differential for a collection (Xn)n>0 of objects in C is a family of
morphisms (dn : Xn → Xn−1)n>0, satisfying

dn−1 ◦ dn = 0 ∀ n > 1

ú A bidegree −1 bidifferential for a collection (Xn)n>0 of objects in C consists of two families of
morphisms (dn, d

′
n : Xn → Xn−1)n>0, satisfying

dn−1 ◦ dn = d′n−1 ◦ d′n = d′n−1 ◦ dn + dn−1 ◦ d′n = 0 ∀ n > 1

ú An ordered tensor product for (V , σ) ∈ BrSystr(C) is a tensor product of the form

V ⊗m1
1 ⊗ V ⊗m2

2 ⊗ · · · ⊗ V ⊗mr
r , mi > 0

ú The degree of such a tensor product is the sum
∑r

i=1mi.

ú The direct sum of all ordered tensor products of degree n is denoted by T (V )→n .

ú A (bi)degree −1 (bi)differential for (V , σ) is a (bi)degree −1 (bi)differential for (T (V )→n )n>0.

One also needs the “braided” notion of character, restricting in particular examples to the familiar
notions of character for several algebraic structures such as UAAs and Lie algebras (cf. [13]).

Definition 3.22. A braided character for (V , σ) ∈ BrSystr(C) is a rank r braided system morphism
from (V , σ) to (I, . . . , I;σi,j = IdI ∀ i < j).

In other words, it is a collection of morphisms (ζi : Vi → I)16i6r satisfying the compatibility
condition

(ζj ⊗ ζi) ◦ σi,j = ζi ⊗ ζj ∀i 6 j (42)

We now exhibit a bidegree −1 bidifferential for an arbitrary braided system endowed with braided
characters; see [8] for motivations, proofs, a multi-quantum shuffle interpretation and properties of
this construction.

Theorem 6. Take a braided system (V , σ) in an additive monoidal category C, equipped with two
braided characters ζ and ξ. The families of morphisms

(ζd)n :=
n∑
i=1

(ζ∗)
1 ◦ (−σ∗,∗)1 ◦ (−σ∗,∗)2 ◦ · · · ◦ (−σ∗,∗)i−1

(dξ)n := (−1)n−1

n∑
i=1

(ξ∗)
n ◦ (−σ∗,∗)n−1 ◦ · · · ◦ (−σ∗,∗)i+1 ◦ (−σ∗,∗)i

from T (V )→n to T (V )→n−1 define a bidegree −1 tensor bidifferential. Here the stars ∗ mean that each
time one should choose the component of σ, ζ or ξ corresponding to the Vk’s on which it acts. Further,
notation (1) for superscripts is used.

Pictorially, (ζd)n for example is a signed sum (due to the use of the negative braiding−σ) of the terms
presented on Figure 22. The sign can be interpreted via the intersection number of the diagram.
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Figure 22. Multi-braided left differential.

(−1)i−1

ζki

Vk1 Vk2 · · · Vki
· · · .

Corollary 3.23. Any Z-linear combination of the families (ζd)n and (dξ)n from the theorem is a degree
−1 differential.

Definition 3.24. The (bi)differentials from the above theorem and corollary are called multi-braided.

Remark 3.25. ú The constructions from the theorem are functorial.
ú Applying the categorical duality to this theorem, one gets a cohomology theory for (V , σ).

ú The braided bidifferentials can be shown to come from a structure of simplicial (or, more precisely,
cubical) type.

3.8. Braided Homology of Yetter-Drinfel′d Modules

Let us now apply Theorem 6 to the braided system from Theorem 4. As for braided characters, we
use the following ones:

Lemma 3.26. Morphisms (εH : H → k, 0 : M → k, 0 : H∗ → k) and (0 : H → k, 0 : M →
k, εH∗ = ν∗H : H∗ → k) are braided characters for the braided system from Theorem 4.

These braided characters are abusively denoted by εH and εH∗ in what follows.

Proof. We prove the statement for εH only, the one for εH∗ being similar.
Both sides of Equation (42) are identically zero for the morphisms from the lemma, except for the

case i = j = 1, corresponding to H ⊗H. In this latter case, Equation (42) becomes

(εH ⊗ εH) ◦ (µH ⊗ νH) = εH ⊗ εH

which follows from the fact that εH is an algebra morphism (cf. the definition of bialgebra).

In what follows, the letters hi always stay for elements of H, lj – for elements of H∗; a ∈M, b ∈ N∗;
the pairing 〈, 〉 is the evaluation; the multiplications µH and ∆∗H on H and H∗ respectively, as well as H-
and H∗-actions, are denoted by · for simplicity. We also use higher-order Sweedler’s notations of type

(∆H ⊗ IdH) ◦∆H(h) = h(1) ⊗ h(2) ⊗ h(3), ∀ h ∈ H

Further, we omit the tensor product sign when this does not lead to confusion, writing for instance
h1 . . . hn ∈ H⊗n.

Using these notations, one can write down explicite braided differentials for a YD module:
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Proposition 3.27. Take a Yetter-Drinfel′d module (M,λ, δ) over a finite-dimensional k-linear bialgebra
H. There is a bidegree −1 bidifferential on T (H)⊗M ⊗ T (H∗) given by

εH∗d(h1 . . . hn ⊗ a⊗ l1 . . . lm) =

(−1)n+1
〈
l1(1), a(1)

〉 〈
l1(2), hn(2)

〉 〈
l1(3), hn−1(2)

〉
. . .
〈
l1(n+1), h1(2)

〉
h1(1) . . . hn(1) ⊗ a(0) ⊗ l2 . . . lm

+
m−1∑
i=1

(−1)n+i+1h1 . . . hn ⊗ a⊗ l1 . . . li−1(li · li+1)li+2 . . . lm

dεH (h1 . . . hn ⊗ a⊗ l1 . . . lm) =

(−1)n−1
〈
l1(1), hn(m)

〉 〈
l2(1), hn(m−1)

〉
. . .
〈
lm(1), hn(1)

〉
h1 . . . hn−1 ⊗ (hn(m+1) · a)⊗ l1(2) . . . lm(2)

+
n−1∑
i=1

(−1)i−1h1 . . . hi−1(hi · hi+1)hi+2 . . . hn ⊗ a⊗ l1 . . . lm

Proof. These are just the constructions from Theorem 6 applied to the braided system from Theorem 4
and braided characters εH∗ and εH . Note that we restricted the differentials from⊕∞n=0T (V )n to T (H)⊗
M ⊗ T (H∗), which is possible since both εH and εH∗ are zero on M.

Remark 3.28. In fact the differentials εH∗d and dεH define a double complex structure on T (H) ⊗M ⊗
T (H∗), graduated by putting

deg (H⊗n ⊗M ⊗ (H∗)⊗m) = (n,m)

In order to get rid of the classical contracting homotopies of type

h⊗ a⊗ l 7−→ 1Hh⊗ a⊗ l
h⊗ a⊗ l 7−→ h⊗ a⊗ l1H∗

we now try to “cycle” this bidifferential, in the spirit of Hochschild homology for algebras or
Gerstenhaber-Schack homology for bialgebras.

Concretely, take a YD module (M,λM , δM) and a finite-dimensional YD module (N, λN , δN) over
H. Our aim is to endow the graded vector space

T (H)⊗M ⊗ T (H∗)⊗N∗

with a bidifferential extending that from Proposition 3.27.
First, note that the “rainbow” duality between H and H∗ (cf. (33) or Figure 14) graphically

corresponds to an angle π rotation. Since the notions of bialgebra and YD module are centrally
symmetric (cf. Remark 2.10), one gets the following useful property:

Lemma 3.29. Take a finite-dimensional YD module (N, λN , δN) over a finite dimensional bialgebra H.
Then (N∗, δ∗N , λ

∗
N) is a YD module over H∗.
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Further, inspired by the formulas from Proposition 3.27, consider the following morphisms from
H⊗n ⊗M ⊗ (H∗)⊗m ⊗N∗ to H⊗n−1 ⊗M ⊗ (H∗)⊗m ⊗N∗ or H⊗n ⊗M ⊗ (H∗)⊗m−1 ⊗N∗:

H∗π(h1 . . . hn ⊗ a⊗ l1 . . . lm ⊗ b) =〈
l1(1), a(1)

〉 〈
l1(2), hn(2)

〉 〈
l1(3), hn−1(2)

〉
. . .
〈
l1(n+1), h1(2)

〉
h1(1) . . . hn(1) ⊗ a(0) ⊗ l2 . . . lm ⊗ b =〈

l1, h1(2) · · ·hn−1(2) · hn(2) · a(1)

〉
h1(1) . . . hn(1) ⊗ a(0) ⊗ l2 . . . lm ⊗ b

πH
∗
(h1 . . . hn ⊗ a⊗ l1 . . . lm ⊗ b) =〈
lm(1), h1(1) · h2(1) · · · · · hn(1)

〉
h1(2) . . . hn(2) ⊗ a⊗ l1 . . . lm−1 ⊗ lm(2) · b

πH(h1 . . . hn ⊗ a⊗ l1 . . . lm ⊗ b) =〈
l1(1), hn(m)

〉 〈
l2(1), hn(m−1)

〉
. . .
〈
lm(1), hn(1)

〉
h1 . . . hn−1 ⊗ (hn(m+1) · a)⊗ l1(2) . . . lm(2) ⊗ b =〈

l1(1) · l2(1) · · · lm(1), hn(1)

〉
h1 . . . hn−1 ⊗ (hn(2) · a)⊗ l1(2) . . . lm(2) ⊗ b

Hπ(h1 . . . hn ⊗ a⊗ l1 . . . lm ⊗ b) =〈
l1(2) · l2(2) · · · lm(2) · b(1), h1

〉
h2 . . . hn ⊗ a⊗ l1(1) . . . lm(1) ⊗ b(0)

These applications are presented on Figure 23. We use notation

∆p := ∆p
H := (∆H ⊗ IdH⊗p−1) ◦ · · · ◦ (∆H ⊗ IdH) ◦∆H : H → H⊗ p+1 ∀ p ∈ N,

and similarly for (µ∗)p.

Figure 23. Components of YD module homology.

πH =

µ∗ µ∗ µ∗
λM∆m

ev

ev

ev

H⊗n (H∗)⊗mM N∗

H∗π =

∆ ∆ ∆ δM
(µ∗)n

N∗(H∗)⊗mMH⊗n

Hπ =

µ∗ µ∗ µ∗ δN∗ ∆m

N∗(H∗)⊗mMH⊗n

πH
∗

=

∆ ∆ ∆

λN∗

(µ∗)n−1
µ∗

H⊗n (H∗)⊗mM N∗

These morphisms can be interpreted in terms of “braided” adjoint actions, as it was done for the
bialgebra case in [8].
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At last, recall the classical bar and cobar differentials:

dbar(h1 . . . hn ⊗ a⊗ l1 . . . lm ⊗ b) =
n−1∑
i=1

(−1)ih1 . . . hi−1(hi · hi+1)hi+2 . . . hn ⊗ a⊗ l1 . . . lm ⊗ b,

dcob(h1 . . . hn ⊗ a⊗ l1 . . . lm ⊗ b) =
m−1∑
i=1

(−1)ih1 . . . hn ⊗ a⊗ l1 . . . li−1(li · li+1)li+2 . . . lm ⊗ b.

Everything is now ready for presenting an enhanced version of Proposition 3.27:

Theorem 7. Given a YD module M and a finite-dimensional YD module N over a finite-dimensional
bialgebra H in Vectk, one has four bidegree−1 bidifferentials on T (H)⊗M⊗T (H∗)⊗N∗, presented
in the lines of Table 1.

Table 1. Bidifferential structures on T (H)⊗M ⊗ T (H∗)⊗N∗.

1. dbar (−1)ndcob

2. dbar + (−1)nπH (−1)ndcob + (−1)n(H
∗
π)

3. dbar + Hπ (−1)ndcob + (−1)n+mπH
∗

4. dbar + (−1)nπH + Hπ (−1)ndcob + (−1)n(H
∗
π) + (−1)n+mπH

∗

The signs (−1)n etc. here are those one chooses on the component H⊗n ⊗ M ⊗ (H∗)⊗m ⊗ N∗ of
T (H)⊗M ⊗ T (H∗)⊗N∗.

Substituting the graded vector space T (H) ⊗ M ⊗ T (H∗) ⊗ N∗ we work in with its alternative
version Homk(N ⊗ T (H), T (H) ⊗M) (as it was done for example in [22]), we obtain (the dual of a
mirror version of) the deformation cohomology for YD modules, defined by F. Panaite and D. Ştefan
in [14]. We have thus developed a conceptual framework for this cohomology theory, replacing case by
case verifications (for instance, when proving that one has indeed a bidifferential) with a structure study,
facilitated by graphical tools.

3.9. Proof of Theorem 7

Morphisms dbar and dcob are well known to be differentials; this can be easily verified by direct
calculations, or using the rank 1 braided systems (H, σAss(H)) and (H∗, σAss(H

∗)), cf. [13]. Further,
they affect different components of T (H) ⊗M ⊗ T (H∗) ⊗ N∗ (namely, T (H) and T (H∗)) and thus
commute. The sign (−1)n guarantees the anti-commutation. This proves that the first line of the table
contains a bidegree −1 bidifferential.

The assertion for the second line follows from Proposition 3.27, since

εH∗d⊗ IdN∗ = (−1)n+1dcob + (−1)n+1(H
∗
π)

dεH ⊗ IdN∗ = −dbar + (−1)n−1πH

To prove the statement for the third line, note that the dual (in the sense of Lemma 3.29) version of
Proposition 3.27 gives a bidifferential (εHd, dεH∗ ) on T (H∗)⊗N∗⊗T (H), and hence (by tensoring with
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IdM ) on T (H∗) ⊗ N∗ ⊗ T (H) ⊗M. Identifying the latter space with T (H) ⊗M ⊗ T (H∗) ⊗ N∗ via
the flip Equation (30) and keeping notation (εHd, dεH∗ ) for the bidifferential induced on this new space,
one calculates

εHd = (−1)m+1dbar + (−1)m+1(Hπ)

dεH∗ = −dcob + (−1)m−1πH
∗

Multiplying εHd by (−1)m+1 and dεH∗ by (−1)n+1, and checking that this does not break the
anti-commutation, one recovers the third line of the table.

We start the proof for the fourth line with a general assertion:

Lemma 3.30. Take an abelian group (S,+, 0, x 7→ −x) endowed with an operation · distributive with
respect to +. Then, for any a, b, c, d, e, f ∈ S such that

(a+ b) · (d+ e) = (a+ c) · (d+ f) = a · d = b · f + c · e = 0

one has
(a+ b+ c) · (d+ e+ f) = 0

Proof.

(a+ b+ c) · (d+ e+ f) = (a+ b) · (d+ e) + (a+ c) · (d+ f)− a · d+ (b · f + c · e)

Now take S = Endk(T (H)⊗M⊗T (H∗)⊗N∗) with the usual addition and the operation composition
ϕ ◦ ψ (for proving that the two morphisms from the fourth line of our table are differentials), or the
operation ϕ � ψ := ϕ ◦ ψ + ψ ◦ ϕ (for proving that the two morphisms anti-commute). The information
from the first three lines and Lemma 3.31 allow to apply Lemma 3.30 to sextuples (a, b, c, a, b, c) and
(d, e, f, d, e, f) (for the operation ◦), and (a, b, c, d, e, f) (for the operation �), where

a := dbar, d := (−1)ndcob,

b := (−1)nπH , e := (−1)n(H
∗
π)

c := Hπ, f := (−1)n+mπH
∗
.

One thus gets the fourth line of the table.

Lemma 3.31. The endomorphisms H∗π, πH∗ , πH and Hπ of T (H)⊗M⊗T (H∗)⊗N∗ pairwise commute.

Proof. The commutation of πH and Hπ follows from the coassociativity of µ∗ (this is best seen in
Figure 23). The pair H∗π, πH∗ is treated similarly.

The commutation of πH and H∗π follows from their interpretation as parts of a precubical structure
(cf. [13]), or by a direct computation. The pair Hπ, πH∗ is treated similarly.

The case of the pair πH , πH∗ demands more work.
Denote by π̂H a version of πH which “forgets” the rightmost component of H∗:

π̂H(h1 . . . hn ⊗ a⊗ l1 . . . lm ⊗ b) =〈
l1(1) · l2(1) · · · lm−1(1), hn(1)

〉
h1 . . . hn−1 ⊗ (hn(2) · a)⊗ l1(2) . . . lm−1(2)lm ⊗ b
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Similarly, denote by π̂H∗ a version of πH∗ which “forgets” the rightmost component of H:

π̂H
∗
(h1 . . . hn ⊗ a⊗ l1 . . . lm ⊗ b) =〈
lm(1), h1(1) · h2(1) · · · · · hn−1(1)

〉
h1(2) . . . hn−1(2)hn ⊗ a⊗ l1 . . . lm−1 ⊗ lm(2) · b

Further, put

θ(h1 . . . hn ⊗ a⊗ l1 . . . lm ⊗ b) =
〈
lm(1), hn(1)

〉
h1 . . . hn(2) ⊗ a⊗ l1 . . . lm(2) ⊗ b

Observe that θ is precisely the difference between the π’s and their reduced versions π̂:

πH = π̂H ◦ θ, πH
∗

= π̂H
∗ ◦ θ

Moreover, one has

πH ◦ π̂H∗ = πH
∗ ◦ π̂H

since πH and π̂H∗ modify different components of T (H) ⊗M ⊗ T (H∗) ⊗ N∗ (the hat ̂ (dis)appears
when these morphisms switch because πH kills the rightmost copy of H, and πH∗ kills the rightmost
copy of H∗). Therefore,

πH
∗ ◦ πH = πH

∗ ◦ π̂H ◦ θ = πH ◦ π̂H∗ ◦ θ = πH ◦ πH∗

hence the desired commutation.
The pair Hπ,H∗π is treated similarly.

Remark 3.32. Lemma 3.31 actually contains more than needed for the proof of the theorem. We
prefer keeping its full form and checking the commutation of all the

(
4
2

)
= 6 pairs of morphisms

for completeness.
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