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Abstract: An Emergency Response (ER) Cyber-Physical System (CPS) to avoid landslides and survey
areas located on or near slopes is introduced that handles two problems: electronic waste disposal,
and environmental disasters. Uncomplicated detection circuits using salvaged components can
pinpoint floods in impoverished regions. CPSs simplify hazard prediction and mitigation in disaster
supervision. Nonetheless, few green practices and efforts have been accomplished in this regard.
Recent technical advances help landslides studies and the evaluation of suitable risk alleviation
measures. This work addresses in situ meters, and cameras to observe ground movements more
accurately. The ER-CPS identifies and can help mitigate landslides using techniques based on
motion detection that can productively predict and monitor the zone conditions to classify it, and the
landslide-related data can be transmitted to inspecting stations to lessen the erosion/sedimentation
likelihood while increasing security.

Keywords: odometry; optical flow; multiple sensors; optical mouse; sensors; sustainable electronics;
surveillance; cyber-physical system; landslide prevention; electronic instrumentation

1. Introduction

Geological disasters can cause extensive destruction of properties, and impact businesses,
resulting in physical injuries and deaths. A landslide is any geologic phenomenon in which gravity
causes rock, soil, non-natural fill, or a mixture of the three to descend a slope. Several factors, such as
deep infiltration over high-standing terrain, can trigger landslides, as well as the slow weathering
of rocks including soil erosion, earthquakes, and volcanic activity. Landslides’ severe impact on
communities are usually caused by the loss in equilibrium of the solid mass in a particular area.
These changes can be modeled by various parameters like rainfall, solid wetness, debris, vegetation,
and so on. However, rainfall and man-made miscalculations are the most common reason for landslides
in Brazil [1–3].
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Advection is the transference of heat or bulk mass by fluid flow (like atmospheric flow, buoyant
flow, boundary layer flow, pipe flow, and so on). Establishing the initial and boundary conditions
(natural state) that prompt the two types of advective flow described below is advantageous when
modeling landslides [4,5]:

(i) Cold advection involves water descending due to the gravity force to a deep lower level; and
(ii) Hot advection comprises condensation of hot magmatic gases.

Concomitant causes, such as erosion, shear strength reduction instigated by rainfall, and anthropic
activities, can prompt landslides. Frequently, individual phenomena contribute to instability over
time, complicating the study of the landslide evolution. Landslide hazard alleviation measures can be
characterized according to the slope stabilization scheme used as follows:

1. Geometric techniques alter the slope geometry;
2. Hydrogeological approaches attempt to decrease the groundwater, to lessen the liquid content or

humidity of the problematic area; and
3. Both mechanical as well as chemical procedures try to increase the unsteady volume shear

strength. Active forces from rocks, anchors, and ground nailing, and passive forces from structural
wells, piles and reinforced soil, to cite a few, can be employed to neutralize the threatening forces.

Mathematical models are also vital when estimating states and in decision-making, because they
allow the observation of process states, parameters, and characteristic quantities [6,7] via closed-loop
control to model systems with threat detecting sensors and actuators, as opposed to simulating
geohazards [7–9] (refer to Figure 1a), where y is the output of the structures under control.

Figure 1. (a) A closed-loop control system for basic landslide detection; (b) Motion detection system
(transmitter and receiver modules) using a passive infrared and light detector (phototransistor).
The yellow light represents wireless communication.

This paper proposes an Emergency Response (ER) Cyber-Physical System (CPS) based on images
and other sensors.

Landslide detection (LD) techniques require process models with parameter and state estimation
procedures to handle statistical decision methods. Regardless of whether the faults already exist or
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appear unexpectedly, they should be detected by the LD framework. LD methods need to consider the
following aspects:

1. Process models: Signal processing along with control system theory can help to model an LD
system where sensors estimate errors or deviations from a normality situation and processed by
a subsystem called actuator to produce the necessary feedback to restore the system stability.

2. Parameter and state estimation: The fault detection system needs to acquire and process signals
to generate the data for decision-making.

3. Performance Control: Fault detection strategies must be sensitive to problems, while robust to
noise, modeling errors, operating points, normal signal fluctuations, and so on, because these
requirements can be conflicting:

(i) The size of a fault must be sensed accordingly with the due detection time;
(ii) The LD time must be compatible with the fault appearance speed;
(iii) The speed of fault appearance must trigger the adequate actuator response time;
(iv) The parameter changes must be tracked and handled adequately timewise; and
(v) The detection time must be extremely fast while having a small false alarm rate.

4. Redundancy: Several detection methods may be used simultaneously to guarantee redundancy
in LD systems.

5. Reliability: An LD system needs to be reliable, with safe backup structures to guarantee smooth
work to avoid false alarms while having a low probability of missing true alarms.

6. Self-Testing: An LD system must check if the system is working correctly via error detection and
fault identification techniques to improve the total system reliability and safety.

Section 2 acquaints the reader with the basics of optical and infrared (IR) ISSs for motion detection
(MD), including mice sensors and cameras for displacement estimation. Section 3 explains the use of the
optical flow in terrain modeling and analysis. The hardware and software architectures of the proposed
Emergency Response (ER) Cyber-Physical System (CPS) appear in Section 4. Section 5 weaves all the
aspects discussed in previous sections to discuss the design of a visual sensor actuator node (VSAN),
as seen from the instrumentation level. Section 6 introduces some cases studies that will be used
when discussing the ER-CPS design. Section 7 discusses the whole work. Finally, Section 8 draws
some conclusions.

2. Optical and IR Sensors for In Situ Motion Detection

Environmental and human protection with simple, inexpensive, rapid characterization and
remediation, and fast analysis systems for initial in situ screening, should be prioritized. An in situ
sensor (ISS) gathers data about an item in place or from close range. In this work, the concept of in situ
sensing encompasses proximal sensing. Meteorological stations, for instance, can use ISS networks.

Intelligent sensors and wireless telecommunication technologies are modernizing networks
rapidly. It is more and more viable to deliver high-quality real-time data to users through the internet
containing results from data fusion and fast model assimilation [9].

An electronic motion detector (MD) contains sensors, a transmitter, and a receiver. However,
a passive ISS detects radiation from the changing target, or from other sources, such as the sun. Changes
in the optic, microwave, or acoustic properties can be interpreted by the electronics. Most low-cost
MDs can handle distances of at least 4.5 m.

MDs that measure position, speed, and acceleration of moving objects are often part of an
automatic system that signals or warns a user about motion in an area through convenient outputs.
These indicators can be combined with other meters to help decision-making, creating security
components that can send automated controls to regulate energy efficiency, turn on lights, and other
useful disaster prevention and/or mitigation structures in the nearby areas, forming a protective grid.
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2.1. Types of Motion Sensors

MDs can estimate the distance between points and other quantities (e.g., temperature, velocity,
acceleration, and pressure). There are several different kinds of MDs, whose sophistication ranges
from simple to extremely elaborate [10–12]. Other examples are potentiometers, strain gages, linear
variable differential transformers (LVDT), and an assortment of sensors to detect capacitance, sound,
light, temperature, and radiation among other physical/chemical properties. Laser, and radioactive
sensors can also be employed. This work will deal with sensors relying on optical features: passive
optical devices, and video cameras.

2.1.1. Passive Optical Devices

Passive devices (PDs), such as photodetectors and infrared (IR) elements, can detect motions if
something crosses and interrupts a visible or IR beam within the surrounding environment, provided
it is dark enough. A PD detects the moving object via emission or reflection of a signal. For instance,
a photo resistor is a PD sensitive to light that does not emit energy.

2.1.2. Optical and IR Video Cameras

Sensors help landslides studies and to devise suitable risk alleviation actions. Since this paper
examines the application of onsite/in situ sensors to delineate landslides more clearly, and to monitor
ground movements over large areas with increasing accuracy, the most important advances are linked
to the visualization of mudslides and related processes. With the spread of low-cost cameras and their
availability from legacy equipment, they can be used to detect motion in their field of view (FoV),
which is particularly attractive when dealing with motion caught by video cameras and a computer.
Near-infrared (NIR) allows for sensing motion in the dark.

A region can be monitored using a single or a full angle camera. The video can be processed
in a control and processing unit, to detect individuals and to control light fixtures and other smart
equipment to warn people.

2.2. Motion Detection Hardware Rationale

An example of an MD system using only salvaged components is shown in Figure 1b. The MD
sensor detects the displacements of the objects, and gives the proper output consistent with the
circuit [13]. This simple circuit uses an IR node to send an IR beam and photo transistor for reception
of this IR signal (Figure 1b). Any interference or disturbance in the middle of the transmitting and
the receiving parts of the system, means an intrusion, and sets the alarm on. This is low-cost circuit is
an easy to build motion detector. The IR node will produce the high-frequency beam, which reaches
the photo transistor with the help of 555 timer at the transmitter. When this high-frequency beam is
disturbed, the photo transistor will trigger the 555 receiver timer to give an alert. Without motion,
there will be no output (alarm).

3. Optical Flow Applications in Terrain Modeling and Analysis

3.1. Optical Flow

Optical flow (OF) methods have many different implementations (e.g., [14–18]). They rely on
radiometric differences between adjacent frames from a scene, assuming constant intensity changes or
corrected factors, such as the imaging system and scene illumination. Let us consider the intensity at
an image frame k at a pixel location r = (x, y):

Ik(x, y) = Ik−1(x − dx, y − dy), (1)
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where d = (dx, dy) is the displacement or disparity vector (DV), also known as the motion vector (MV)
in the 2-D space, describing the image transformation mapping Ik onto Ik−1. For small offsets d and
using a Taylor series expansion,

Ik(x, y)− Ik−1(x, y) ≈ −dx(x, y)
∂Ik−1(x, y)

∂x
− dy(x, y)

∂Ik−1(x, y)
∂y

, (2)

which demonstrates that the change between two adjacent frames relies on the brightness differences.
It is an ill-posed problem, as only the parallel component to the image brightness gradient
(∂Ik−1(x, y)/∂x, ∂Ik−1(x, y)/∂y) of the MV can be found. Using a local window, the problem can
be regularized, supposing that the DV field (DVF) is constant over a given area (smoothness constraint)
or by means of a global regularization methodology. In an ideal world, the performance should only be
restricted by the radiometric noise. The OF technique can measure strain from photogrammetry, but it
fails for images obtained with different viewing angles, the surface roughness at the pixel scale is large
(say, with high-resolution (HR) imaging of essential areas) or when the DVF is locally discontinuous.
OF methods are very sensitive to intensity variations, and they can model higher-order deformations,
mostly, to measure neighboring affine distortions and to represent minor contrast variations [19–23].
The digital elevation model (DEM) represents a discretized version of the topography with a regular
or irregular sampling grid.

Landslide detection can use quantitative characterization of topographic changes between two
image acquisitions (Figure 2). The data help to render of the site’s surface, that is, S1 and S2 at times t1

and t2, correspondingly. Si is the surface at time ti regarding a geodetic reference (Figure 2 show the
x- and z-axes) linked to a datum and its reflective properties. The surface cover (e.g., vegetation and
other structures) and the substrate determines these properties.

Figure 2. 2-D problem representation showing two frames at different time instants. The first frame
contains a surface S1 at time t1. The solid green line from the first frame is projected in the second
frame as a dotted green line to provide a reference. Without any deformation on the shape of the slope,
one would have surface S2

′ (dashed line). However, in real life, the slope will not only move but suffer
deformation as shown by the solid green line (surface S2). Hence, the total change is a combination of a
displacement (black arrow) with some erosion e (red vector).

The goal is to characterize quantitatively geometric changes of the site’s surface between t1 and t2.
S1 and S2 refer to the site’s surface at t1 and t2, correspondingly, with a geodetic reference frame xy.
The site’s surface may change due to the subsurface dislocation, designated by the DV M1M2, or as a
result of the scalar quantity, where e represents erosion (e < 0) or sedimentation (e > 0).

Given a subsurface point M1 at t1, it appears as M2 at t2, with respect to the reference frame.
The ground DV d = (dx, dy, dz) is due to processes such as landslides or man-made damage.
S1 and S2 exemplify the surface topography at t1 and t2. Between t1 and t2, S1 may change as a
consequence of erosion or sedimentation. Hence, advection produces a surface S0

2, which differs
from the topography at time t2 (refer to Figure 2). The elevation difference between S0

2 and S2

quantifies the evolution of the topography attributable to erosion (s2(x, y) < s0
2(x, y)) or sedimentation
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(s2(x, y) > s0
2(x, y)). A measurement of topographic variation is the difference between s2 and s0

2 or
the DVF d. The knowledge from sensing the surface changes with imaging systems is still insufficient
to solve for both the elevation change of the topography and the ground DV. Theoretically, any erosion
or sedimentation e should disturb the measured difference in elevation d.

Geodetics assumes that the deformed topography moves as a passive marker to allow matching
the topography at t1 and t2, as long as it has not changed between the two times.

In video editing, MVs help to compress video by recording the modifications from an image
frame to the next frame. The process involves a 2-D pointer that tells the decoder how much it is from
left or right and from up or down, the estimated macroblock has its position given consistent with its
instance in the reference frame macroblock.

3.2. Measurement Using OF

Examining optically a site’s surface at two time instants, then these data produce
perfectly-registered DEMs representing the surface’s properties at t1 and t2. s1 and s2 are the functions
describing the surface at t1 and t2, in that order, where the DEMs are discrete versions of these functions.
In general, the elevation change is the difference between the surfaces, s2(x, y) − s1(x, y), shows the
outcome of advection and erosion, e(x, y) (Figure 2):

s2(x, y) − s1(x, y) = [s1(x − dx, y − dy) + dz(x, y) − s1(x, y) − s1(x, y)] + e(x, y) (3)

The term α = [s1(x − dx, y − dy) + dz(x, y) − s1(x, y) − s1(x, y)] side is the elevation variation.
Approximating (3) by a first-order Taylor expansion yields

s2(x, y)− s1(x, y) ≈ dz(x, y)− dx(x, y)
δs1

δx
(x, y)− dy(x, y)

δs1

δy
(x, y) + e(x, y). (4)

Ignoring ground displacements, changes are most simply characterized by the difference between
the two surfaces:

e = s2(x, y) − s1(x, y). (5)

The site’s surface may change due to e.
The measurement requires resampling the two DEMs on a common grid that takes into account

that the DEMs have resampling errors (misregistration). Thus, differences between the surfaces may
be biased due to registration errors. Figure 2 illustrates this issue for the DVF d = (dx, dy, dz) and
misregistration ε = (εx, εy, εz), where Equation (5) becomes

s2(x, y) − s1(x, y) = s1(x − εx, y − εy) − s1(x, y) + e(x, y). (6)

or, in its Taylor expansion form:

s2(x, y)− s1(x, y) ≈ e(x, y) + εx(x, y)− εx(x, y)
δs1

δx
(x, y)− εy(x, y)

δs1

δy
(x, y) (7)

The data analysis requires precise co-registration of the DEMs to minimize the bias, which assumes
that some regions do not change topographically (s2(x, y) − s1(x, y) = 0) or it uses a priori constraints
on the displacements, such as some ground control points (GCP). This reflects the misregistration,
resampling errors, along with advective transport (Figure 3). The 3-D DVF between two times may be
retrieved from matching the two 3-D DEMs, and finds a d satisfying

s2(x, y) = s1(x − dx, y − dy) + dz(x, y), (8)
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or, after a Taylor expansion

s2(x, y)− s1(x, y) ≈ dz(x, y)− dx(x, y)
δs1

δx
(x, y)− dy(x, y)

δs1

δy
(x, y). (9)

Figure 3. A simplified version of Figure 2, when there is no subsurface advection. The displacement
vector d = (dx, dy, dz) is null. Hence, the curve at time t1 should have remained the same (dashed line)
but because of erosion or advection becomes the solid line in the second frame.

The surfaces are matched at t1 and t2 to find the DF. Equation (9) describes an ill-posed problem,
since only the displacement along the gradient can be found without ambiguity. Hence, to fully
characterize the displacement vector, regularization is needed with some additional assumptions.

To regularize the DF matching problem, the DVF is assumed to be continuous and smooth
(continuously differentiable). So, the horizontal DV at point M1 can be established from matching
between two windows of size w centered on M1 in s1 and on M2 in s2 (Figure 4). The window must be
sufficiently large so as the direction of gradient differs considerably inside the window. Hence, the
DVF always requires lower spatial resolution than the original DEM. Natural scenes usually need
larger windows.

Figure 4. A simplified version of Figure 2, without erosion/sedimentation that is e = 0. The site’s
surface is advected along with the disparity vector field (DVF) M1M2. The solid green line from the
first frame is projected in the second frame as a dotted green line to provide a reference. Without any
deformation on the shape of the slope, one would have surface S2

′ (solid line). However, in real life,
the slope will not only move but suffer deformation as shown by the solid green line (surface S2).
The dashed line here is the original surface s1(x) after a horizontal displacement dx.

When the DEMs result from stereoscopic pairs, matching DEMs may not work, because DEMs
do not portray exactly the data from the original topographic knowledge. The radiometry of one
pixel depends on the surface’s properties and local topography. If the texture is transported by
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advection, then it is a richer knowledge source about the ground displacement than the DEM itself.
Therefore, ground dislocations can be obtained more accurately by matching the image textures,
like measuring parallax offsets to calculate DEMs (Figure 4). Mathematically, matching the radiometry
is the same as matching the topography, and both are equivalent ill-posed problems that may require
regularization [14–26].

To measure the displacements from images collected at different instants depends on the matching
algorithm. Matching methods yield a DVF estimate that best matches a window centered on that point
that has a corresponding window in the second frame. The output of the matching procedure is a DVF,
corresponding to a shaded representation of the horizontal and vertical 3-D components.

Landslide detection in the direction of movement can be solved by implementing an OF method
to acquired image frames. The solution is sensitive to the DVF bordering values. A region subjected
to landslide can be related to one or more regions of interest (ROIs), which helps determining the
important portions of the frames. Only changes in the ROI image are used in the calculation, and other
areas are ignored.

Once the ROI is defined, series of sequential operations are applied to the preprocessing landslide
detection system (such as gray conversion, normalization, etc.) to lessen noise and processing
complexity. Figure 5 illustrates the matching (8)–(9) between frames acquired at different instants,
and the analogous problem is essentially ill-posed, and as is the case with OF, the offset vector is
obtained by optimizing the matching between windows centered on point M1 (the ROI) acquired at
t1, and a same size search window in the second frame. The window must be sufficiently large to
contain enough texture to solve the matching problem, i.e., to find the vector d associated with the
segment M1M2.

Aboveground images help landslide studies [27] and terrain interpretation, for both qualitative,
and quantitative information analysis.

Figure 5. Matching procedure to determine the offsets between two images or two sets of digital
elevation models (DEMs) or point clouds.

To recognize landslides, the interpretation relies on morphology, flora, and drainage.
Diagnostic surface procedures can be related to certain motion types, the degree of activity, and the
movement depth. The study of image frames can provide data on the progressive evolution of
landslides and improve the knowledge about their causes [27]. GIS facilitates image archiving, and the
production of maps that stem from the data interpretation. Modern photogrammetric software
encourages a greater use of above the ground images for the creation of high-quality differential DEMs
that will quantify landslide movements.

Terrestrial-based digital photography is also an efficient method to create DEMs and capture
geological structures of rock slopes. The DEMs can produce sections, as well as estimate volumes
to help to devise remedial measures. This technology saves time and effort, but it does not replace
field mapping. The technique works best for slopes without vegetation and, under good conditions,
can yield DEM’s equivalent to those created by LiDAR systems [28–32].
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4. Emergency Response (ER) System Design Issues

Figure 6 illustrates an Emergency Response (ER) scheme following the Cyber-Physical System
(CPS) model called ER-CPS. Sensors observe the environment and actuators alleviate natural and
human made disasters in underprivileged regions [20]. The ER-CPS can use salvaged electronic parts
and assist distant and underprivileged locations [19,20].

Figure 6. Emergency Response Cyber-Physical System (ER-CPS) proposed hardware framework.
The lightning marks mean green for a WLAN, light pink for wireless long-distance communication,
light blue for Bluetooth and yellow for a wireless personal area network (WPAN) such as Zigbee.

ER has to handle threats against health, public security, welfare, environment protection,
and infrastructure. Still, this reaction requires the nodes to cooperatively assess the conditions and
rapidly notify the responsible systems, authorities and experts [19,28] on significant events.

Figure 7 illustrates the data processing stages of an ER-CPS. Stage 1 collects, manages, and fuses
data from sensors, maps, DEM data, field observations, among other information, to generate input
data integration, reports, some assessment, and data visualization. Stage 2 develops a more detailed
geotechnical model containing mined knowledge combined with the Stage 1 outputs. Stage 3 uses the
output from the previous stage for decision-making that will control the VSAN nodes.

Figure 7. Diagram showing the data processing stages of an ER-CPS.
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Landslide hazards are largely ignored or under considered during planning [33]. A way to
decrease the landslide impacts is to intensify awareness via warning systems (Figure 8). Effective and
opportune landslide monitoring can cut the casualties and economic loss [32,34]. The effectiveness
of landslide monitoring systems is highly sensitive to the detection and monitoring methods used.
Therefore, incorrect observation increases the number of false alarms. To diminish the loss of human
lives and assets, an ER-CPS can also apply image processing to the images captured by a camera
mounted in the site that is exposed to mudslide.

Figure 8. Landslide detection software framework using optical and infrared cameras.

Since landslides affect the normal community life, potential threats rise. This phenomenon may
influence safety and may also reduce the bearing pressure of some slopes’ sections. As proper and
timely warnings increase the immediate response efficiency from the manager, energy consumption
and environmental damage can be reduced.

Landslide warning approaches rely on meticulous site-specific studies and motion monitoring [35],
or on statistical models [36,37], in which a minimum or maximum threshold level of some quantity is
set for a phenomenon to occur [38]. This conceptually or empirically set threshold relates to the solid
moisture, rainfall, or hydrological conditions that, once reached or exceeded, cause landslides [17,39–41].

Although statistical analysis indicates that the rainfall and the intensity-duration thresholds have
the power to spot rainfall conditions that can prompt landslides, factors such as storm, type of soil,
ground vibration, and so on reduce reliance and degrade data quality [42,43]. Furthermore, deficiencies
in homogeneity and completeness, mudslide timing, rainfall data resolution, and rain measurement
location significantly influence the data quality and cause false alarms [44]. Proper reaction to landslide
is the most important key for a disaster management scheme. In that matter, timely data acquisition
from reliable sources is a crucial requirement. Consequently, the traditional manual monitoring
methods cannot be efficient, because of the lack of real-time evidence. For instance, radio, and internet
can broadcast the warning messages to some sites [42].

The ER-CPS aims at reducing the disaster likelihood and increasing landslide safety by refining the
detection and surveillance phases via image processing of the area subjected to landslide. To perceive
the landslide, a program investigates the image frames, observes the area conditions and sends data to
the control center according to the landslide degree. Figure 8 presents the flowchart of the ER-CPS
software architecture.

The ER-CPS is twofold: (a) landslide detection involves sensing and categorizing the landslide
impacts; and (b) data dissemination delivers the landslide information about items that can influenced
by a landslide. The distance between the camera and observed zone hinges on the camera lenses.
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Once the total variations surpassed fixed thresholds, cautioning messages will be sent where
these thresholds are set on based on engineering knowledge and the landslide possible effects.

The evaluations have four landslide scenarios of varying impact levels whose messages were
termed No Risk (NR), Slight Risk (SR), Moderate Risk (MR), as well as High Risk (HR), respectively.

Nowadays, a large number of applications and approaches in landslide watching have focus
on the internet for information dissemination about the specific ROI. The VSANs need appropriate
network connections, due to the multipurpose features leading to landslide. The proposed ER-CPS
may commonly be classified into two main types of services: (i) warning services, including data on
environmental conditions, announcements, video streaming, and internet services; and (ii) security
related services, comprising site closure data and, usually, urgent information systems. Hence, in
the ER-CPS, the warning message is to be broadcasted to places in the second cluster. This ER-CPS
does not deeply concentrate on the propagation of warning messages, but focuses mostly on the
detection stage.

The side units (SUs) are the closest to the management center. Once a landslide is detected,
an alert has been to be sent to the target area to reduce disaster likelihood and increase security.
Besides, landslide data are sent to the management center for supplementary actions consisting of four
levels of messages (NR, SR, MR, and HR) to immediate response.

Broadcast packet delivery in the proposed the ER-CPS takes into consideration that several
assets can be affected by the landslide hazards, and that there are several types of warning messages
(Figure 8). The warning message procedure starts by detecting a landslide in target area. A packet
structure contains Message Type (MT), Packet ID (PID), and Area Coordination ID (ACID).

The message type specifies the purpose of this cautionary message, to avoid any conflict with
other broadcasted messages. The PID is a numeric value that is incrementally increased. The ACID
specifies the 2-D coordination (latitude–longitude) of the start point and the end point of the targeted
area where landslide occurred.

A landslide is a multifaceted process. Handling complexity customarily involves simplification
into a process model (PM) that captures the essential features. Establishing the right process depends
both on the site and the project specifications, which reinforces the importance of geotechnical
engineering. This stage calls on interpretation of a number of related processes and undertakings.

Recently, new tools using geomechanical models have been applied to site characterization.
Risk assessment and management tools evolve quickly because they are valuable for dealing with
landslides both in local and regional settings. The uncertainty in geotechnical analyses can anticipate
the environment behavior in engineered facilities [29].

The PM’s greatest uncertainties when modeling landslides rise from inadequacies in site
characterization. ER and disaster management (DM) require information technologies, social media,
strong collaboration/cooperation among multidisciplinary experts, local and national authorities,
as well as community involvement. Effective forewarning, response, and recovery tools are called for
in such systems [30]. The ER-CPS can have a huge number of sensor nodes (Figure 9) that interact
rapidly and inform the control station about the changing conditions with robustness, effective resource
deployment, adaptively, and correctly [31].
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Figure 9. (a) The control perspective of a CPS; and (b) relationship between sensors and actuators.
The yellow lightning stands for wireless communication.

5. Design Considerations for Visual Sensor Actuator Nodes (VSANs)

For a given region, the ER-CPS can show the main existing threats, access their impacts, and inform
imminent events. This analysis will also show the individuals and infrastructures that are most at
jeopardy, and will permit evaluations of humanitarian and economic costs of possible events. This will
permit the development of remediation policies and the identification of cases where remediation
and daily activities can support each other. Figure 9 depicts sensor and actuator nodes (SANs) with a
built-in controller that decides which actuators will perform a particular action, and how they interact
properly [20]. Inherent functionality allows low-cost tools to detect particular environmental situations
if off-the-shelf frameworks are not available. Efficient low-cost environmental monitoring technologies
help to expand ER and DM.

Remote communication is related to the way devices share information, and developing a device
that interacts with a user’s smartphone or tablet is attractive, which enables a low-cost device to
monitor particular environmental conditions if such a tool is not available in the market. The real-time
clock (RTC) functionality is important to guarantee that each data point can have a date/time
stamp for future examinations when in search of correlations or associations with data from other
instruments. The proliferation of high-quality low-cost environmental observing equipment helps to
better understand disasters.

5.1. Sensors

Besides the sensor performance characteristics, understanding the target application and
operating environment helps to develop smart systems regarding communications, power, and
processing capacity. Energy harvesting technologies, together with low-power sensors and control
units, like microcontrollers, allow reliable and robust environmental monitoring to supervise the
conditions continuously.
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When choosing a sensor for environmental applications, some important requirements are how
frequently a reading should occur, if there is need for date/time stamps, human interface with
the sensors for operation/maintenance, and to calibrate performance parameters of the sensors
at the instrumentation level [45–48]. A flood detector senses motion and send alerts to prevent
damage [49–53].

Figure 10 illustrates simple in situ motion detectors [10–12,49].
Figure 10a shows a PIR motion detector interfacing with an 8051 microcontroller to monitor local

environment where if there is motion, then a LED becomes ON.
Figure 10b shows another type of in situ sensor that uses legacy components. The sensor and the

MC68HC11 are interfaced by the AD654 VFC to ensure a linear relationship between the pulse period
and the distance. The LCD can be of a generic type. Popular inexpensive distance sensors can integrate
an IR emitting diode, a linear CCD array, and the microcontroller. The DC voltage VS depends on the
distance D to be detected in a nonlinear manner [46].

Optical mouse (OM) integrated circuits (ICs) (OMICs) (please, refer to Figure 11) are used to
measure OF [13,45,47,48]. ICs that exploit OF to detect motions using computer mice OMICs are used
in navigation of small flying robots. The OF concept uses image textures as motion cues and are
motivated largely by the vision systems and brains of insects.

OF is very effective to avoid obstacles and to control altitudes and speeds in robots.
Previous experiments using OF in navigation involved HR image sensors, and computers tailored for
image processing. These large, complex, and computationally expensive systems were not readily
scalable. When OMICs are paired with adequate lenses, the result are precise, small, light, fast, and
cheap motion sensors.

The present development (Figure 11) exploits the recent proliferation and commercial availability
of OMICs. Each OMIC includes a low-resolution (16 × 16) array of photo sensors, and circuitry that
compares adjacent image frames to compute the 2-D OF, similarly to that of an element in an insect’s
compound eye. The OF is used to track the computer mouse movement. In a drone, the OF serves as a
measure of the 2-D velocity relative to nearby surfaces and objects. OMICs offers advantages such as
low mass, compactness, low power demand, low cost, redundancy, high speed, and parallel processing.

Figure 10. Cont.
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Figure 10. Simple motion detectors [10–12,49–53].

Figure 11. The outputs of optical mouse integrated circuits (OMICs) would be fed to an optical flow
(OF) control unit. The number of necessary OMICs would grow according to the complexity of the CPS.

5.2. Actuators

Sound and visual alarms, water drainage systems, servo-mechanisms that interact with the
environment, message broadcasting units, unmanned aerial vehicles (UAVs), pan/tilt cameras, robotic
arms, etc. are examples of actuators that can help ER and DM.

An important characteristic of actuator scheduling in CPSs is the reversibility or preemption
of operations. If an actuation is performed using erroneous data, it may be often very challenging
or impossible to undo the activity [54]. Moreover, non-reversibility disturbs real-time scheduling
when several jobs are managed on the same shared platform. Even inflexible real-time tasks may be
obstructed by low-priority processes, if a shared actuator access cannot be preempted or reversed [55].

5.3. Video Camera and OMICs Motion Detection

In video surveillance, MD refers to the ability of the reconnaissance system to perceive motion
and identify events. MD is usually done via software, which signals to the camera when it detects
motions to start capturing the event (also known as activity detection), and to investigate the motion
type to see if it deserves an alarm.

A prototype system can measure the 3-D relative coordinates of the objects of interest.
The arrangement includes a video camera mounted in a known position and orientation in the
working site, and a computer running image processing software. This easy to operate system can
have a much lower cost, with less accuracy. Unlike laser tracking equipment, it does not pose a hazard
of laser exposure.

Camera images are digitized and used to extract all usable objects in the field of view. Each object’s
3-D coordinates are the pixel coordinates of the targets in the images to ameliorate accuracy. The system
has to have a unique design with corresponding filters for several different targets that is robust
and tolerant of broadly varying illumination conditions, fields of view, and changing background
imagery [47].
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The outputs of several navigation sensors would be fed to a control unit (CU) (see Figure 11)
that would combine OF data to find the motion relative to the environment using a hierarchical
control architecture. This CU would communicate with a master CU that would associate facts from
various sensing subsystems, define the priority to be given to each subsystem data, and relay control
information to disturb motion.

The control functions to be implemented include terrain tracking, holding altitude, evading
hazards, navigation by landmarks, stabilization of flight, as well as smooth landing. Insects lack
stereoscopy but they can estimate distances to possible obstacles and other items from motion cues.
Computationally, an OF-based strategy is simpler than stereoscopy to avoid hazards and to track
terrain. Hence, OF can be used to design vision-based subsystems that are more compact, light,
and low-power than other subsystems, with equivalent ability based on conventional stereoscopy.

These control loops for maintaining altitude and/or stabilizing attitude would contain
optoelectronic hardware, including elements of the OF computation. The system control laws enable
a smooth landing with insignificant computation. The forward speed and decent rate are reduced
simultaneously, and are equally close to zero at landing. No understanding or measurement of
instantaneous height or speed above the ground are required.

Figure 12 illustrates a flow chart for this process [56]. The need for accurate photos are common,
and geographical information systems (GISs) are shown inside a dashed blue box, and will not be
discussed in this manuscript.

Figure 12. A complete landslide assessment system using aerial photos or pictures from tall geographic
or man-made structures [56].

5.4. Visual Sensor Actuator Nodes (VSANs)

Resource scheduling in sensor and actuator networks (SANs) is a difficult task, and it plays an
important part in CPS operation, since actuation coordination is crucial to choose which actuators must
be selected for a particular action, or to control actions appropriately. Various parameters, like actuator
abilities, task completion time, real-time warranty, actuator energy consumption, and the physical
system necessities must be taken into consideration during control task allocation [20].

Salvaged components can be used to build VSANs, with each node comprising of several kinds of
in situ sensors [21,28,57], such as circuitry from optical mice to identify motion via OF and landmarks.
Some re-engineering to help design and to solve challenges could be done to handle communication
interfaces like ZigBee and Bluetooth combined with green energy tools [58]. The resulting low-power
low-cost nodes with sensing, data processing, and communication abilities acquire images, process
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them, and exchange the extracted information with other nodes and some control station for further
analysis. Regrettably, the massive amount of data obtained from several VSANs and processed by the
control units of other parts of the ER-CPS limits the decision-making strategies. The number of sensors
installed to study different types of phenomena may be of the order of hundreds or thousands.

A typical VSAN controller (refer to Figure 11) has a microcontroller, some memory, while it
processes and exchanges data during small active time intervals. A VSAN has long idle periods when
it listens to the channel, and it tries to save its energy consumption, so that it can work for a sufficiently
long time. It is convenient to design VSANs with low-power characteristics, even though tasks like
information capture, processing, and communication will demand more energy.

6. Case Studies

6.1. Case Study 1: Mudslides in Mountainous Region of Rio de Janeiro State

In January 2011, floods, mudslides, and landslides took place in several municipalities of the
mountainous districts of the Rio de Janeiro (RJ) state (Figure 13), Brazil. Most human casualties
happened in cities from the Serra dos Orgaos national park, which is a tourist attraction, due to its
geographic topographies, historical landmarks, and pleasant temperatures. However, many buildings
are subject to landslide hazards because of the steep territory and lack of sound engineering practices.
The most critical watercourse, the Santo Antonio River, inundated the region. Nova Friburgo was the
devastated city; Teresopolis and Petropolis also endured extensive damage and loss of lives. The cities
of Sumidouro, Areal, and Sao Jose do Vale do Rio Preto also were hit, as the Preto and Piabanha
rivers rose [2,3].

Figure 13. Mountainous region of Rio de Janeiro State struck by rainfall [3].

Figure 14 shows two views of the same slope before and after the 2011 heavy rainfall in the
mountains of RJ state that killed hundreds of people and dislodged thousands, predominantly in
hilltops, steep slopes, areas surrounding lakes and riverbanks. The image on the left displays a region
before the landslide and on the right after the 2011 heavy rainfall [24,58–60].
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Figure 14. Two views of a slope in Nova Friburgo: (a) before and (b) after the rainfall.

Between the 24 h period from 11 to 12 January 2011, the rainfall exceeded what was projected
for the entire month of January, so that flooding and landslides followed immediately. The disaster
caused extensive property damage, and the supplies of public utilities (e.g., electricity, running water
and telephony) were affected (Figure 15). The majority of deaths happened in poverty-stricken zones,
and the impact could have been more bearable if not been for the poor conditions and lack of strategies
for emergency mitigation/prevention in Brazil’s slums, which led some to describe the disaster as
more human-made than natural (Figure 15).

Figure 15. Damage in Nova Friburgo [61].

6.2. Case Study 2: The Mariana Disaster also Known as Samarco Tailings Dam Disaster in Bento Rodriguez

There were too many fatalities and ecological end results from the 2015 Samarco Co. cataclysm in
the Bento Rodriguez municipality, also known as the Mariana Mining Disaster. News accounts and
satellite images show 60 million m3 of sludge and debris at large, after the rupture of two tailings
barriers. Tailings dams should be very robust, even though these problems happen quite alarmingly
often. The images underneath show the set of dams involved in this tragedy. The two problematic
upriver tailings dams started leaking debris to the downriver barrage (Figure 16a,b present the
beginning of the failure). It seems one of the upper structures burst, initiating a breakdown that hit
the downstream barrage as shown by the red arrows in Figure 16c,d). The left dam above is clearly
unharmed, despite the fact that the barrage located to the west collapsed. The torrent that dismantled
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the valley was enormous, but it is related to the lower valley erosion. This erosion could have been
better mapped with the help of in situ sensors. The second barrage illustrated in yellow in Figure 16c
has a low-height wall in the nearby areas, and the vast volume of assorted debris flowing from the
upper parts was not being held by any structure. Figure 16e,f display the final result from the collapse
of the two upriver tailings dams [62,63].

Figure 16 illustrate the HR imagery of the Bento Rodrigues dam failures. This event resembles the
tailings dam failure at Ajkai Timfoldgyar in Hungary in 2010 [63–66]. Academic studies [32,64–67]
point towards that the occurrence of tailings dam failures worsen once commodities prices decrease.
These failures peak about two years after the highest commodities prices occur. The relationship
between the maxima in prices and the highest accident rates is attributed to [32]:

1. The urgency to mine rapidly implies low design and construction standards;
2. Fast staff turn-over as new and more lucrative opportunities appear;
3. The boom increases the resources in regions with difficult conditions;
4. After the boom, as commodity prices fall, expenses are reduced;
5. The boom stimulates the acquisition of inappropriate projects imported from other places;
6. Independent evaluations tend to go down, probably to evade the concomitant delays and costs.

Figure 16. Two views of the Bento Rodrigues dam failures. The left images are from Google Earth,
2013. The right ones are from SPOT 6/7 via Airbus Defence and Space, 2016 [62,63]. The arrows show
the flow of mud and debris that happened in 2015 projected onto a 2013 picture. The yellow ellipsis
surrounds a dam and the red one shows two dams separated by some water (this proves there was an
earlier sign that things could go wrong).
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It seems this event was caused by a calamitous near-complete failure of the Fundao Dam with
disasters in the other levees in the tailings ponds. The Fundao Dam has filled completely without any
remaining trace of the original structure, and probably failed first. The support loss from the other
levees provoked the subsequent collapses. Figure 17 shows the contamination of the Atlantic Ocean.

Figure 17. Atlantic Ocean contamination [68].

6.3. Preliminary Experiments

6.3.1. Experiment 1: System with OMICs for Displacement Estimation

The ADNS-2610 ICs use OF to infer the horizontal displacement increments together with a
CU (microcontroller), as depicted by Figure 11. They have an inbuilt camera to acquire images
from the surface underneath the sensor. Each OMIC was placed at a different height, with a large
carefully selected focal length lens and intense illumination to work stably at a given distance from its
work surface [59].

An important concept related to optical mice is the surface quality (SQUAL), which measures the
number of valid structures detectible by the OMIC or sensor unit (SU) in the current frame. This value
is stored inside a register belonging to the OMIC. H and h are the lengths from the lens set to the paper
surface under the OMIC, and from the OMIC to the lens set, respectively. Rd is the nominal optical
sensor resolution, and R is the SUi resolution (i = 1, 2, 3). For a certain SU, calibration implies solving
the expression R = hRd/H.

Each SU has a corresponding SQUALi. The OMICs can output trustworthy displacements over
a surface with distances ranging from 26 to 43 mm and with a resolution of 400 counts per inch
(CPI) [13,45–48]. Figure 18 shows the SQUAL × H curve for the ADNS-2610. The associated absolute
relative error value for this SU appears in Figure 19. Each positioning structure can be located onto
a movable device, which needs to be localized and associated to landmarks. The use of artificial
landmarks with different colors can help to calibrate each OMIC system. Currently, there is not an
optimization procedure to place and test OMICs.

The three sensors units (SU1, SU2, and SU3) have been positioned on a paper surface with
enough landmarks under the SUs. The surface had obstructions (unevenness), and each one has a
certain thickness. The system has moved 20 times along a 450 mm track. At each sampling time,
the measurements from SU1, SU2, and SU3 were recorded.
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Figure 18. The relationship between the values of SQUAL and H. The pink vertical lines mark the
maximum SQUAL value for each sensor unit.

Figure 19. Absolute relative error (ARE) versus the counter value for a calibrated sensor unit (SU).

Let Dt be the total displacement resulting from data fusion for the SUs, weighted by a row vector:

W = [SUsqual1, SUsqual2, SUsqual3]/S, (10)

with S = ΣiSUsquali, i = 1, 2, 3, and measurements vector D = [D1, D2, D3]T such that

Dt = WD. (11)

In practice, to monitor an area, the position of a three-SU set (sensor node) has to be known,
and their information fused to estimate a displacement. Artificial landmarks would have to be scattered
throughout the terrain.

6.3.2. Experiment 2: Two Views of the Same Site

Video cameras collect site evidence with low energy, inexpensively and with high spatiotemporal
resolution. Consequently, OF has a high potential in displacement estimation over an extensive range
of applications.

Although some information on terrain change can be obtained by frame difference, OF gets the
complete movement data and identifies the changes in the background better. As an illustration,
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Figure 20 shows the detected changes between two frames. In Figure 20c, there is the ground truth,
while Figure 20d presents the result of the OF estimation algorithm with [15].

Figure 20. Two views of a target site: (a,b). Optical flow between them: (c) Ground truth;
(d) Changes with a regularized displacement detection algorithm from [15]. In (c,d), the darker
the color, more profound is the corresponding pixel. The pictures have clouds, which amounts to some
background changes.

However, the visible light information from should be fused with other types of radiation
and sensors to corroborate the measurements, because real and apparent displacements may be
considerably different. Even when legitimate terrain changes occur, they may be due other types of
human intervention (e.g., as is the case of new construction sites shown in Figure 21).

Figure 21. Changes due to urban interventions [69] are shown in red.
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7. Discussion

The proposed ER-CPS, although incomplete, could have lessened the losses of the Case Study 1
(Mudslides in Mountainous Region of Rio de Janeiro State). This is a typical scenario where community
effort can help mitigate administrative shortcomings.

The Case Study 2 is more complex because the Mariana Disaster involved the interests of
corporations, besides the lack of state intervention.

The comments below are some of the aspects that require further consideration and study.

7.1. Combination of Detectors

Merging passive and active sensor technologies into one VSAN can diminish false triggering
(wrong detection), and vulnerability when both sensor types work together. This decreases the false
alarm probability, for example, fluctuations of heat and light may trigger the passive IR (PIR) sensors
without activating the microwave sensor (MS), or bouncing tree branches may activate the microwave
device but not the PIR detector. If a movement is missed by either, then another sensing rationale can
be added. Often, PDs are paired with another sensor to improve accuracy and decrease energy use.
PIR involves less energy than an emissive MS, and when the PIR detects something, it also activates
an MS. If the latter also detects a displacement, then the alarm sounds. Consequently, by comparing
the total cost-performance benefits of using different types of sensors, the cost effectiveness and the
adaptability for various applications can be examined.

SUs can be combined with images from IP cameras and crowdsourced images. Hence, a VSAN
would consist of hundreds or thousands of SUs scattered across the area of interest and cameras
(from crowdsource and IP).

This work has discussed the use of a grid of displacement sensors relying on SUs made out
of OMICs to obtain more detailed punctual data on the soil conditions in landslide-prone spaces.
In Figure 22, they are depicted by small circles that interact with several types of actuators, and can
also communicate with CUs. Local stations, such as the laptops on the upper left and right corners,
can display the sensor grids and their conditions.

Figure 22. Detailed architecture of a visual sensor actuator node (VSAN). The yellow paths represent a
wireless personal area network (WPAN).
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Crowdsourced images acquired at near ground-level with smartphones, together with social
media hints, provide information for real-time flooding detection. Images from the same drowned
areas, obtained via crowdsourcing and others under dry conditions, can be combined to give analytical
results for flooding comparison and detection. This strategy requires image normalization with and
without inundation, followed by registration where the image without flooding is the ground truth.
Algorithms can extract the target area in the crowdsourced images using context features and factors,
such as geo-location, time, environmental/weather situations, and the image categories, which have
an impact on photos and videos. The metadata obtained with crowdsourced images helps context
identification, and social media cues are used for further evaluation. Algorithms can detect water
reflections from nearby landmarks and the clouds/sky above. Figure 22 shows a VSAN for the
proposed ER-CPS, where the smartphones gather knowledge, help to warn people, and interact with
CUs, sensors, and actuators. A crowdsource environment entails constructing tagger and tagging
communities, infrastructure and control taxonomies, and the visual data typification that arises from
interactions among community members. Crowdsourced images can be further processed via OF
algorithms based on the material presented in Section 3.

Real-time video monitoring can use as many cameras as necessary to observe a region. It is
necessary to reposition the channels on the screen to allocate each channel to a window or use the
automatic channel framing option on the website. To examine the landslide-prone area, IP cameras
placed on poles or other elevated structures can be used. People usually monitor the video using local
stations and recommend actions to the authorities, subject to internal procedures. Computer vision
techniques like OF help to improve the operation of the security systems, because they reduce the
operational cost and ease human errors. These techniques require treating large-scale images and more
computational resources to lessen failures.

7.2. Fusion of In Situ and GIS Information

Geographical information systems (GISs) have unlimited potential for application in landslide
engineering, remediation, and management. GIS helps to solve problems such as the creation of a
database, site inventory, site surveillance, spatial analysis on databases, mathematical/computational
modeling, and generate several types of outputs that would be strenuous or manually unviable.

The existing developments in 3-D GIS capability are still unsatisfactory for geotechnical
engineering requirements. Mining software packages have tools for geological modeling that do
not suit geotechnical modeling.

Remote sensing (RS) imagery allow creating landslide inventories and reports with medium
resolution satellites (e.g., LANDSAT, ASTER, SPOT, and so forth) to routinely create land use maps
and landslide inventories [70]. In situ information can be correlated with satellite-based evidence,
such as precipitation, that leads to a global landslide predisposition map [71]. The limited resolution
of a DEM and the lack of subsurface data limits the use of RS information by the landslide engineer.

Very high-resolution imagery is the best alternative for landslide mapping using satellites with
stereo capabilities and increasingly better resolution.

Google Earth has high-resolution pictures, 3-D features, zoom, and allow drawing polygons on the
area under study, which simplifies the analysis and mapping of slopes besides landslide studies [70–72].
These images can be stored, retrieved, measured, and further treated by a GIS package.

Landslide data analysis and management with GIS are essential for contending landslides, as 3-D
visualization and modeling capabilities improve. Figure 12 exemplifies previsions for inserting GIS
information in the existing ER-CPS in a dashed blue box.

7.3. Economic Indicators and Evaluation Tools for Sustainability

In general, when people assess “the cost” (definitions and interests abound when using this
expression) of natural or human made disasters tend to look at things with insufficient indicators and
shallow analysis [32–34].
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Academics from engineering, economy, and social sciences still have many studies to conduct
about the way powerful companies cope with changes involving social and environmental
responsibility. Insights emerge from primary research with the people who analyze corporate
sustainability initiatives that provide a foundation for additional theory development, inventory,
hypotheses testing, and suggestions. The strategic findings comprise integration as a systems-based
method to sustainability, change supervision, innovation, and corporate strategy. Integration calls
for the alignment of performance metrics within and through business entities, and functions to
integrate bottom line performance measurement through organizations, as well as value chains to
notify management while guaranteeing decision-making, clarity, and external reporting. Integration
and change administration are critical achievement factors for the progress of strategic sustainability
initiatives [70–72]. A holistic methodology has to be thought that takes into consideration:

• Economic advantages of preventing and remediating disasters.
• Economic advantages of using salvaged components, carbon credits, etc.
• Energy savings.
• Other factors.

7.4. On Displacement Detection Robustness

Dense OF models should be used to cover all expected circumstances in a real-world scenario.
Using visible and infrared radiation help to cope with illumination problems.

Displacement detection should be robust, which means the real-time estimation must
endure adverse conditions with deviations in the adjusted or fixed variables and parameters,
while being reliable.

If a displacement estimate happens, then the probability of incorrect triggers due to the rate of
false alarms should be minimized.

7.5. Sensor Placement

Area coverage is extensively used as performance criterion to distribute sensors and actuators.
The current setting consists of sensors distributed empirically on small area. Future work involves the
possibility of developing an optimization algorithm for sensor placement [73].

Firstly, the ratio between an extent covered by the sensors and the total area undergoing
surveillance has to be maximized. Defining the VSAN coverage also depends on the sensor coverage
model. The underlying conjecture is that each sensor monitors a round area, whose radius is the
coverage range.

The second assumption refers to the sensor detection capability within its reconnaissance area
with conventional or a probabilistic coverage of the environment.

The third supposition considers the target environment dimensionality, that is, the VSAN is
actually a 3-D environment, and most projects assume it as a 2-D environment, which can compromise
the VSAN performance. Realistically speaking, each sensor covered area should also reflects the
environment topography with the corresponding obstacles obstructing each sensor.

8. Conclusions

This work highlights the influence and safety of landslide prevention and control on areas located
around slopes. The success of such systems depends highly on the approaches used in the detection
and monitoring stages. The trustworthiness of the detection techniques also relies upon factors and
can be decreased under different states of affairs (like storm and ground vibration). An all-inclusive
ER-CPS would involve more than the technologies mentioned in this work to strengthen security and
reduce false alarms, such as fiber optics, manometers, and vibration sensors.

The ER-CPS investigates the electronic waste and environmental disaster problems, to create
innovative solutions. Relatively simple circuits relying on salvaged components can identify flood
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in underprivileged regions. CPSs can enable event prediction and relief in disaster management.
However, few green initiatives have been proposed in this area.

Recent technical advances bring about progress in landslides studies and improve risk metrics.
This manuscript draws attention to some sensing strategies, such as surface in situ meters and cameras,
to better track landslides with aerial imageries, and to monitor ground activities over large extents with
increasing accuracy. The most significant advances result from improved visualization of landslides
and related processes.

This paper describes an ER-CPS to identify and mitigate landslides using techniques based on
motion detection that can productively predict and monitor the zone conditions to classify it as one of
four types of messages: No Risk (NR), Slight Risk (SR), Moderate Risk (MR), in addition to High Risk
(HR). Landslide data obtained by the ER-CPS can be transmitted to monitoring stations to lessen the
erosion/sedimentation likelihood while increasing security.
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