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Abstract: Alzheimer’s Disease (AD) and mild cognitive impairment (MCI) are associated with
widespread changes in brain structure and function, as indicated by magnetic resonance imaging
(MRI) morphometry and 18-fluorodeoxyglucose position emission tomography (FDG PET) metabolism.
Nevertheless, the ability to differentiate between AD, MCI and normal aging groups can be difficult.
Thus, the goal of this study was to identify the combination of cerebrospinal fluid (CSF) biomarkers,
MRI morphometry, FDG PET metabolism and neuropsychological test scores to that best differentiate
between a sample of normal aging subjects and those with MCI and AD from the Alzheimer’s Disease
Neuroimaging Initiative. The secondary goal was to determine the neuroimaging variables from
MRI, FDG PET and CSF biomarkers that can predict future cognitive decline within each group.
To achieve these aims, a series of multivariate stepwise logistic and linear regression models were
generated. Combining all neuroimaging modalities and cognitive test scores significantly improved
the index of discrimination, especially at the earliest stages of the disease, whereas MRI gray matter
morphometry variables best predicted future cognitive decline compared to other neuroimaging
variables. Overall these findings demonstrate that a multimodal approach using MRI morphometry,
FDG PET metabolism, neuropsychological test scores and CSF biomarkers may provide significantly
better discrimination than any modality alone.
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1. Introduction

Alzheimer’s disease (AD) is the most common form of dementia, currently affecting approximately
5.5 million Americans [1]. Although age is the best-known risk factor for AD [1], the rate of
development of AD is heightened in individuals with the amnestic form of mild cognitive impairment
(MCI). Amnestic MCI is characterized by cognitive deficits primarily affecting memory with preserved
overall cognitive and functional abilities and the absence of a dementia [2]. Individuals with MCI
convert to AD at a rate of nearly 8 to 15% per year in comparison to approximately 1% per year in
normal aging [2–4], making it imperative to generate effective methods for identifying individuals
with MCI. There are a number of factors that may contribute to the diagnosis of AD or MCI including
performance on neuropsychological tests, brain morphometric measurements, cortical uptake of
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positron emission tomography (PET) tracers and concentrations of biomarkers in cerebrospinal
fluid (CSF).

Pathologically, AD and amnestic MCI are characterized by the presence of intracellular
neurofibrillary tangles (NFTs) and extracellular amyloid plaques. The NFTs are composed of insoluble
hyperphosphorylated tau protein and reduce the integrity of the cytoskeleton, such that neurons
are dysfunctional. Ultimately, this leads to synaptic and neuronal loss [5,6]. Amyloid plaques
are extracellular, composed of insoluble fibrils of amyloid-beta (Aβ) and may be related to the
hypometabolism that is observed using 18-fluorodeoxyglucose PET (FDG PET) [6]. In AD and MCI,
NFTs accumulate in the locus coeruleus, hippocampus, entorhinal cortex, amygdala and other limbic
areas that are important for memory [7,8]. As Alzheimer’s dementia progresses, the NFTs affect
more neocortical areas, resulting in deficits in other cognitive domains [7,9–11]. On the other hand,
amyloid plaques tend to accumulate more in the association cortices first and affect hippocampal
structures only as the disease progresses [9,12]. Because both NFT density [13] and the extent of
amyloid distribution [14] are related to the severity of impaired cognition, it may be possible to
monitor the degree of dementia via CSF biomarkers of amyloid and tau pathologies, namely total
tau (tTau), hyperphosphorylated tau (pTau) and Aβ-42 [15,16]. These biomarkers are able to identify
AD in its early stages with fairly high accuracy [17] and increased levels of pTau and tTau have been
observed in AD compared to normal aging [18,19]. Furthermore, CSF samples from both MCI and AD
subjects show decreased concentrations of Aβ-42 [19], which may reflect an increased deposition of Aβ

in aggregated plaques in the brain [20]. It is evident that increasing concentrations of tau and amyloid
in the CSF may be indicative of further progression along the spectrum of Alzheimer’s dementia.

Accumulation of AD pathology can have multiple consequences, including a disruption of
synaptic function that may be indirectly measured via changes in glucose metabolism. FDG PET,
a glucose analogue, is typically used as a marker of synaptic function, as metabolic changes are
closely tied to glucose consumption [21]. There is a relatively consistent pattern of decreased
metabolism that occurs in AD. The regions that tend to show hypometabolism are the posterior
cingulate/retrosplenial cortex and the cortical structures in the parieto-temporal junction, such as
the angular gyrus and precuneus [22–26]. Some studies also indicate a decrease in hippocampal and
entorhinal metabolism [6,27,28], although this is not consistently observed. There is a less consistent
pattern for MCI [29].

Neuronal loss may also occur as a result of AD pathology. This loss is visible in vivo through MRI
changes in cortical surface area, thickness, or volume of the cortical structures. Such morphometric
changes have consistently been observed in MCI and AD, with the earliest detectable changes
occurring in the entorhinal cortex hippocampus, spreading outward to other cortical and subcortical
structures [30–32].

Ultimately, the accumulation of pathologies and the resultant changes in synaptic function and
neuronal loss manifests as cognitive deficits. Initially, difficulties with memory tasks are often observed,
followed by deficits in executive function and ultimately affecting visuospatial abilities and attention in
the later stages of the disease [33,34]. The cognitive deficits seen throughout mild cognitive impairment
(MCI) and AD correlate with the degree of pathology in post-mortem tissue analysis as well as in vivo
imaging measures [5,35–37]. However, many of these studies only report one or two tests in the same
subjects, thus we do not have a complete picture as to the neural correlates of the wide range of
neuropsychological functions in normal aging, MCI and AD.

Each of the four modalities (CSF biomarkers, FDG-PET, MRI morphometry and neuropsychological
evaluations) discussed above may be useful for discriminating normal aging, MCI and AD. Since each
of the modalities is to an extent independent of the others, it is conceivable that this combination
would provide better discrimination than any individual method on its own. In the current study,
we explored this concept using a data-driven approach, which may provide additional variables not
typically included in an a priori analysis. Because each of these factors can provide unique information
that can influence diagnosis as a whole, we also examined if the ability to differentiate groups is
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improved by combining modalities. Furthermore, we sought to determine which neuroimaging
variables at baseline were best predictive of future cognitive decline, as measured by annualized
percent change (APC) of a battery of standard cognitive tests.

Thus, the main aims were: (1) to determine the best combination of FDG PET, CSF biomarkers,
MRI morphometric and neuropsychological test scores for differentiating between normal aging,
MCI and AD groups and (2) to identify the MRI morphometric, FDG PET metabolic variables and CSF
biomarkers that are able to predict future cognitive decline in normal aging and MCI subjects.

2. Materials and Methods

2.1. Subjects

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as
a public-private partnership, led by Principal Investigator Michael W. Weiner. The original arm of
ADNI was a 5-year non-randomized natural history non-treatment study utilizing data from multiple
study centers across the United States and Canada. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological
markers and clinical and neuropsychological assessment can be combined to measure the progression
of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). The data for use in this study
were chosen from the larger pool of data that has been made publically available by the Alzheimer’s
Disease Neuroimaging Initiative. Data was screened to include all subjects who had both PET and
MRI scans available for use on the ADNI website (www.loni.ucla.edu/ADNI) at the time this study
began (2008). From this screened dataset, PET data from 21 subjects was of poor contrast and quality
and had to be omitted from the analyses undertaken in this study. Three subjects were omitted due to
missing information. This left us with data from 403 subjects. We present demographic information on
this sample in Table 1.

Table 1. Demographic information.

Subjects (Male/Female) Age Mean Years (sd) Education Mean (sd) MMSE

Normal Aging 105 (64/41) 75.81 (4.75) 15.90 (3.12) 28.98 (1.12)
MCI 204 (137/67) 75.44 (7.22) 15.80 (2.88) 27.15 (1.71) a

AD 94 (56/38) 74.91 (7.37) 14.61 (3.21) a,b 23.48 (2.14) a,b

a significant difference from normal aging (p < 0.05), b significant difference from MCI (p < 0.05) (sd = standard
deviation, MMSE = mini mental status exam).

As part of the ADNI, all subjects completed a battery of neuropsychological tests. On the basis of
their cognitive status, the subjects were classified by the ADNI clinical core as: (a) normal controls
with normal cognition and memory, Clinical Dementia Rating (CDR) 0 and Mini Mental Status Exam
(MMSE) between 24–30; (b) amnestic MCI with memory complaint verified by a study partner,
memory loss measured by education-adjusted performance on the Logical Memory II subscale
of the Wechsler Memory Scale-Revised [38], preserved activities of daily living, CDR 0.5, MMSE
between 24 and 30 and absence of dementia at time of baseline MRI scan; or (c) probable AD with
memory complaint validated by an informant, abnormal memory function for age and education level,
absence of depression, impaired activities of daily living, diminished cognition, CDR > 0.5 and MMSE
between 20–26. For more information about the ADNI please refer to http://www.adni-info.org.

2.2. CSF Sampling

Detailed CSF collection and processing methods can be found in elsewhere [39]. Briefly,
CSF samples obtained by lumbar puncture were examined for tTau, pTau and Aβ-42 using
an immunoassay method. These measures were performed by the ADNI Biomarker Core at the
University of Pennsylvania School of Medicine.

www.loni.ucla.edu/ADNI
http://www.adni-info.org


Diagnostics 2018, 8, 14 4 of 20

2.3. Neuropsychological Testing

For this study, we analyzed the cognitive scores from the cognitive and neuropsychological
tests taken at the first visit. CDR memory, CDR problem solving and judgment, Trails A, Trails B,
Clock draw, Clock copy, digit span forward and backward and the Rey’s Auditory verbal (RAVLT)
30 min delay recognition, 30 min recognition errors and 30 min recall were examined for their ability
to differentiate between subject groups in this study.

2.4. MRI Processing

For this study, we analyzed the T1-weighted MPRAGE baseline MRI scans from those acquired
by the ADNI on 1.5T scanners from General Electric (GE Healthcare, Milwaukee, WI, USA),
Philips Medical Systems (Philips, Best, The Netherlands) and Siemens Medical Solutions (Siemens,
Erlangen, Germany). Specific pulse sequence guidelines can be found at http://www.loni.ucla.edu/
ADNI/Research/Cores/index.shtml.

All MRI and FDG PET scans were processed with the Freesurfer 5.1.0 (Martinos Center
for Biomedical Imaging, Boston, MA, USA) [40,41], which is documented and freely available.
The processing pipeline has been described in detail elsewhere [40–45]. Briefly, for each subject,
the 2 DICOM T1-weighted MRI datasets were motion corrected, averaged, segmented into gray
matter, white matter and cerebral spinal fluid (CSF) and intensity normalized. The brain was
parcellated into cortical and subcortical regions of interest (ROIs) using the Desikan/Killiany atlas [46].
Cortical thickness measures were corrected for gray/white matter intensity ratio (GWIR) using
residuals [47]. The gray/white matter intensity ratio was calculated as previously described [48,49].
Briefly, gray matter tissue intensities were measured 35% through the thickness of the cortical ribbon.
White matter tissue intensities were measured 1 mm below the gray/white matter boundary, into the
white matter. The GWIR was calculated by dividing the white matter by the gray matter intensity
values. The ratios were then projected onto the cortical surface and smoothed with a Gaussian kernel
with a full width at half maximum of 30 mm.

2.5. FDG-PET

For this study, we analyzed baseline FDG-PET scans from those acquired by the ADNI on
GE, Philips, or Siemens scanners. Specific protocols for each scanner are available from the ADNI
website (http://adni.loni.ucla.edu/research/protocols/pet-protocols/). These data were corrected
for radiation attenuation and scatter using scanner-specific algorithms and each image was visually
assessed for potential artifacts by the ADNI PET core at the University of Michigan. For this study,
we used the original PET data that was not pre-processed by the ADNI PET core so that we could have
local control of all the processing steps as with the MRI scans.

The respective PET and MRI images were co-registered using an automated Freesurfer boundary
based application [50]. The resulting co-registration was visually assessed for accuracy and adjusted if
necessary (approximately 25% of the datasets). Each of the ROIs from the Desikan atlas were reverse
transformed into PET space and FDG uptake was calculated in each ROI [46]. A total of 82 cortical and
subcortical areas were examined for changes in MRI morphometry and FDG uptake related to MCI
and AD relative to normal aging.

To control for individual global variations and to increase sensitivity of the method for
differentiating between subject groups [51], the FDG uptake was normalized to regional activity
in the cerebellum using residuals [52]. Partial volume effects were also corrected for using an adapted
gray matter mask [53].

2.6. Statistical Analysis

In order to assess the equality of the male-female distribution in the three diagnostic groups,
χ2 tests were performed. Age, education and MMSE distributions in the three diagnostic groups were

http://www.loni.ucla.edu/ADNI/Research/Cores/index.shtml
http://www.loni.ucla.edu/ADNI/Research/Cores/index.shtml
http://adni.loni.ucla.edu/research/protocols/pet-protocols/
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assessed using analysis of variance (ANOVA). Age was correlated with each of the morphometric
and uptake variables, including cortical surface area, volume, cortical thickness, gray/white matter
intensity ratio and FDG uptake. Hemisphere differences for both MRI and PET data were examined
with paired t-tests and correlation analysis. All statistical analyses were performed using SAS
(SAS Institute Inc., Cary, NC, USA).

In order to determine which neuroimaging variables and neuropsychological tests predicted
diagnostic group and future cognitive decline using a data-driven approach, a series of step-wise
regression models (logistic and linear, respectively) were created from a total of 282 unique predictors
(18 neuropsychological test variables, 17 subcortical volume measures, 68 cortical surface area measures,
68 cortical volume measures, 68 cortical thickness measures, 40 FDG PET variables (averaged between
hemispheres) and 3 CSF markers). For both logistic and linear regression models, entry and exit criteria
of 0.20 were used. Age, gender and education were forced into the models, effectively controlling for
any variance due to these demographic characteristics. To examine the added effects of CSF biomarker
concentrations on the multimodal model, we forced all the variables from the multimodal model into
the CSF-multimodal model. In this way, we could ensure that the variables contributing variance
in the first multimodal model were repeated in the CSF-multimodal model in order to limit the
changes in c-statistic to just the CSF biomarker concentrations. In an effort to control for collinearity
amongst variables, instances where a ROI was represented by more than one modality in the model
(e.g., cortical thickness and FDG uptake), the modality accounting for the most variance in the model
was included and the other was excluded. The same process was used to control for models in which
both hemispheres were represented from the same modality. For linear regression, standardized
estimates of the predictor variables were used, ensuring that they were all in the same scale. Pearson’s
correlation was used to assess collinearity amongst the predictor variables of the multimodal models.

Because the logistic regression models are all based on binary outcomes, overall predictive
power of the model was determined based on the c-statistic, whereby a value of 1 indicates
very high discrimination between groups. Overall goodness of fit was determined based on the
Hosmer-Lemeshow method [54]. Because the predicted probabilities obtained from the logistic
regression models are used to classify diagnostic groups in this study, the Cox and Snell generalized R2

with Nagelkerke adjustment [55] was chosen as an additional index of fit. Goodness of fit for the linear
regression models was based on percent variance that was explained by the model. In the logistic
regression models, the contribution of each variable is determined by the odds ratio, which estimates
the change in likelihood of being in one group over the other for a one standard deviation difference in
that predictor. For example, in models differentiating AD from MCI and odds ratio below 1 would be
associated with increased odds of AD, whereas a value greater than 1 would be more closely associated
with MCI. In the linear regression models, the contribution of each variable is determined by the
standardized estimate, which provides a measure of the relative importance of the biological variable
at predicting the decline in cognitive test measures. The overall model efficacy was determined by the
adjusted R-squared.

3. Results

Chi-square tests revealed no significant differences for distribution of males and females between
groups (df = 2, p = 0.3517). Age was not significantly different between control, MCI and AD groups,
as indicated by ANOVA (p = 0.6684). The AD group had on average one year less education than
normal and MCI groups, which, although small, was significant (p < 0.05) likely due to the number of
subjects. As expected, the MMSE scored also showed significant decreases in both the MCI and AD
subject groups (p < 0.05).

3.1. Left/Right Hemisphere Differences

Volume, cortical thickness and cortical surface area were significantly different between left and
right hemispheres in the vast majority of regions, thus data from the hemispheres were analyzed
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separately for all MRI measures. FDG PET uptake showed no significant differences between
hemispheres, so the FDG PET data from the two hemispheres were averaged.

3.2. Models for Predicting Diagnostic Group

Separate morphometry, CSF biomarker, FDG PET and neuropsychological test models were
generated and the variables contributing unique variance from each of these models were entered
into a second level stepwise logistic regression model to generate a multimodal model. Because the
presence of CSF measures improved the goodness of fit, only the multimodal models including CSF
concentrations of Aβ-1-42, total tau and pTau are reported. Full model details are available in the
supplemental material (Tables S1–S20).

3.3. Differentiating Groups

The multimodal model containing CSF measures was able to differentiate between AD and
MCI well, with a c-statistic of 0.943 (Hosmer-Lemeshow goodness of fit Chi-square = 8.85, p = 0.36,
Nagelkerke R2 = 0.70) (Table 2). This increased when differentiating between MCI and normal
aging subjects to 0.972 (Hosmer-Lemeshow goodness of fit Chi-square = 3.20, p = 0.92, Nagelkerke
R2 = 0.81) (Table 3). When differentiating between AD and normal aging, the c-statistic was 0.998
(Hosmer-Lemeshow goodness of fit Chi-square = 0.33, p = 1.0, Nagelkerke R2 = 0.95). Although
CSF concentration of Aβ-1-42 was in the model, it did not contribute significantly to the explained
variance (p = 0.07) (Table 4). Note that when gender was forced into the model, it became unreliable,
with a number of extreme odds ratios for the predictor variables. Thus, gender was not forced into the
model for differentiating between AD and normal aging. When differentiating between all three groups
the c-statistic was 0.946 (Nagelkerke R2 = 0.78). The CSF variable included was Aβ-1-42, which was
a significant predictor (Table 5).

Table 2. Multimodal model with CSF for differentiating between AD and MCI. The model provided
a c-statistic of 0.943.

Unit Odds Ratio Lower CI Upper CI p-Value

Gender 1.00 0.91 0.24 3.42 0.88
Age 7.27 0.99 0.53 1.85 0.98

Education 3.24 0.48 0.25 0.92 0.03
Left hippocampus volume 545.50 0.81 0.35 1.88 0.62

Left postcentral surface area 446.40 0.74 0.40 1.36 0.33
Right lateral occipital surface area 616.60 0.43 0.21 0.86 0.02
Right entorhinal cortical thickness 0.52 0.37 0.17 0.82 0.01

Left inferior temporal cortical thickness 0.23 0.32 0.13 0.77 0.01
Left insula cortical thickness 0.20 2.48 1.03 5.95 0.04

Clock drawing 1.11 0.65 0.34 1.24 0.19
Digit span backward 2.17 0.30 0.14 0.63 0.001

Trails A 32.68 2.63 1.30 5.32 0.007
RAVLT 30 min delayed recall 2.74 0.31 0.13 0.78 0.01

RAVLT 30 min delayed recognition errors 2.76 2.37 1.28 4.40 0.006
Aβ 1-42 51.47 0.41 0.20 0.86 0.02

Phosphorylated tau 19.52 0.63 0.32 1.24 0.18

RAVLT = Rey Auditory Verbal Learning Test, CI = confidence interval.

Table 3. Multimodal model with CSF for differentiating between MCI and normal aging. The model
provided a c-statistic of 0.972.

Unit Odds Ratio Lower CI Upper CI p-Value

Gender 1.00 2.44 0.40 14.79 0.33
Age 6.44 0.52 0.22 1.22 0.13

Education 3.00 1.36 0.61 3.00 0.45
Right hippocampus volume 557.30 0.54 0.19 1.57 0.26

Right caudal anterior cingulate volume 387.00 3.41 1.41 8.23 0.006
Left caudal middle frontal volume 1109.80 0.15 0.05 0.49 0.002

Left entorhinal volume 447.90 0.76 0.34 1.70 0.50
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Table 3. Cont.

Unit Odds Ratio Lower CI Upper CI p-Value

Right postcentral surface area 363.70 0.81 0.36 1.83 0.61
Right inferior temporal surface area 424.50 0.43 0.18 1.03 0.06

Left rostral middle frontal cortical thickness 0.17 0.79 0.16 4.04 0.78
Left medial orbitofrontal cortical thickness 0.20 0.30 0.13 0.72 0.007

Left superior frontal cortical thickness 0.20 4.58 0.99 21.13 0.05
Clock drawing 0.96 0.29 0.12 0.73 0.008

Digit span backward 2.17 0.58 0.26 1.28 0.18
RAVLT 30 min delayed recall 4.02 0.13 0.04 0.43 0.0009

RAVLT 30 min delayed recognition errors 2.32 1.35 0.33 5.59 0.68
Entorhinal FDG 1448.70 0.42 0.19 0.97 0.04

Aβ 1-42 59.92 0.42 0.17 1.03 0.06
Total tau 55.48 2.98 0.94 9.46 0.06

RAVLT = Rey Auditory Verbal Learning Test, CI = confidence interval, FDG = Fluorodeoxyglucose.

Table 4. Multimodal model with CSF for differentiating between AD and normal aging. The model
provided a c-statistic of 0.998.

Unit Odds Ratio Lower CI Upper CI p-Value

Age 6.36 0.04 0.002 0.68 0.03
Education 3.46 0.25 0.02 3.82 0.32

Left hippocampus volume 608.80 0.002 <0.001 0.35 0.02
RAVLT 30 min delayed recall 4.42 <0.001 <0.001 0.11 0.01

Aβ 1-42 58.94 0.06 0.003 1.29 0.07

RAVLT = Rey Auditory Verbal Learning Test, CI = confidence interval.

Table 5. Multimodal model with CSF for differentiating between all three groups. The model provided
a c-statistic of 0.946.

Unit Odds Ratio Lower CI Upper CI p-Value

Gender 1.00 0.97 0.40 2.33 0.94
Age 6.68 0.69 0.42 1.12 0.14

Education 3.24 0.78 0.51 1.19 0.25
Left hippocampus volume 570.20 0.52 0.28 0.95 0.03

Left caudal middle frontal volume 1079.60 0.65 0.40 1.08 0.09
Right superior parietal cortical thickness 0.19 2.25 0.98 5.16 0.06

Right isthmus of the cingulate cortical thickness 0.26 1.20 0.73 1.97 0.47
Left temporal pole cortical thickness 0.42 1.87 1.10 3.18 0.02

Left postcentral cortical thickness 0.15 0.48 0.25 0.93 0.03
Right entorhinal cortical thickness 0.53 0.53 0.30 0.96 0.03

Left inferior temporal cortical thickness 0.24 0.45 0.24 0.87 0.02
Left medial orbitofrontal cortical thickness 0.20 0.64 0.40 1.03 0.07

Left lateral occipital cortical thickness 0.15 1.62 0.89 2.94 0.11
Right banks STS cortical thickness 0.23 1.12 0.63 1.99 0.70

Right insula cortical thickness 0.22 1.20 0.68 2.14 0.53
Left pars opercularis cortical thickness 0.18 1.29 0.70 2.37 0.41

Right precuneus cortical thickness 0.19 0.63 0.29 1.35 0.24
Clock drawing 1.07 0.65 0.41 1.03 0.06

Digit span forward 1.93 1.03 0.64 1.65 0.91
Digit span backward 2.25 0.51 0.32 0.82 0.005

Trails A 28.21 1.52 0.91 2.54 0.11
RAVLT 30 min delayed recall 3.89 0.31 0.16 0.62 0.0009

RAVLT 30 min delayed recognition errors 2.61 2.10 1.34 3.30 0.001
RAVLT 30 min delayed recognition 3.78 0.77 0.46 1.29 0.32

Isthmus of the cingulate FDG 1921.70 0.55 0.31 0.95 0.03
Postcentral FDG 1549.70 1.22 0.69 2.15 0.49
Pallidum FDG 597.50 1.25 0.78 1.99 0.35

Aβ 1-42 58.13 0.58 0.36 0.91 0.02

RAVLT = Rey Auditory Verbal Learning Test, CI = confidence interval, STS = superior temporal sulcus,
FDG = Fluorodeoxyglucose.

3.4. Cognitive Scores at Baseline and Decline by Diagnostic Group

Baseline scores differed between groups in two main patterns: (1) a stepwise significant decrease
between normal aging and MCI and again between MCI and AD (as seen in Trails B, clock score,
digit span backward and the RAVLT 30 min delay, delay total and delay errors) and (2) significant
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decreases in AD but no change between normal aging and MCI (as observed for Trails A and digit
span forward). Refer to Table 6 for details.

In order to measure cognitive decline, average annualized percent change measures were
calculated for normal aging, MCI and AD groups. Annual percent change showed three main patterns:
(1) significantly greater decline in AD compared to both normal and MCI (e.g., clock score, digit span
backward and RAVLT 30 min delay), (2) significantly greater decline in AD compared to normal but
not MCI (e.g., Trails B and digit span forwards) and (3) no significant differences in the amount of
decline between groups (e.g., RAVLT delayed recall and Trails A).

3.5. Prediction of Cognitive Decline

A series of linear regression models were created to determine which combinations of
neuroimaging and CSF biomarker measures best predicted cognitive decline across clock drawing,
trails B, digit span forward and backward and RAVLT delayed recall. Because the goal of the
study was to determine neuroimaging predictors of future cognitive decline in the normal and MCI
groups, only the models demonstrating poorer performance in these groups will be presented herein.
Specifically, decline was only observed in controls for the Trails A and in MCI for RAVLT delayed
recall tests.

3.6. Longitudinal Changes in Trails A

The average APC for Trails A in normal aging was 0.14 (sd = 0.49), indicating that it took
a significantly longer time to complete the test on future visits (p = 0.0033). This change was predicted
best from combining MRI and FDG PET (R2 = 0.36, Adj. R2 = 0.29, f = 4.91, p < 0.0001). Larger baseline
volume in the right temporal pole and surface area in the left banks of the superior temporal sulcus
were predictive of greater decline during follow-up. Smaller baseline cortical thickness in the right
posterior cingulate, volume in the right thalamus, surface area in the right inferior temporal and
hypometabolism of the precentral gyrus were associated with greater decline in Trails A at follow-up,
as reflected in the positive APC. The full models can be found in Table 7.

3.7. Longitudinal Changes in RAVLT 30 Min Delayed Recall

The average APC for RAVLT 30 min delayed recall declined in the MCI group over time, with APC
values of −0.03 (sd = 0.61), although this did not reach statistical significance (p = 0.55). Within the MCI
group, combining MRI morphometry and FDG PET metabolism accounted for 26% of the variance
(R2 = 0.31, Adj. R2 = 0.26, f = 6.21, p < 0.0001), while combing CSF biomarker concentrations with
imaging markers accounted for only 12% of the variance (R2 = 0.26, Adj. R2 = 0.12, f = 1.85, p = 0.07).
Older age was significantly predictive of greater change. Larger baseline cortical thickness in the left
superior parietal, larger baseline volumes in the left entorhinal, left posterior cingulate and left caudate
and larger baseline surface areas in the right postcentral and left pars opercularis were predictive of
greater decline in RAVLT 30 min delayed recall. The full models can be found in Table 8.
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Table 6. Annual percent change (APC) ANOVA results showing mean (sd) APC from each of the neuropsychological and cognitive tests for normal aging, MCI and
AD during follow-up. Tukey’s post-hoc results are presented in the last three columns, whereby a change in letter between groups indicates a significant change.

df Mean APC Normal
Aging (sd)

Mean APC
MCI (sd)

Mean APC
AD (sd) f -Value p-Value Normal

Aging MCI AD

Clock draw 2 0.11 (0.83) 0.03 (0.59) −0.28 (0.83) 8.3 0.0003 a a b
Digit span forward 2 0.12 (0.55) 0.004 (0.59) −0.15 (0.98) 3.98 0.02 a ab b

Digit span backward 2 0.13 (0.35) 0.04 (0.73) −0.21 (0.96) 6.21 0.002 a a b
Trails A 2 0.14 (0.49) −0.06 (0.70) −0.02 (0.72) 3.27 0.04 a a a
Trails B 2 −0.06 (0.01) −0.03 (0.50) 0.15 (1.21) 2.86 0.06 b ab a

RAVLT 30 min delayed recall 2 0.14 (0.86) −0.03 (0.61) −0.41 (0.38) 7.12 0.001 a a b
RAVLT 30 min delayed recognition 2 −0.005 (1.16) 0.05 (0.50) −0.10 (0.63) 1.25 0.29 a a a

RAVLT = Rey Auditory Verbal Learning Test, df = degrees of freedom, APD = annual percent change, sd = standard deviation, AD = Alzheimer’s disease, MCI = mild cognitive impairment.

Table 7. Models predicting APC of Trails A in normal aging subjects. The MRI model accounted for 22% of the variance, FDG PET accounted for 8% of the variance
and combining modalities accounted for 29% of the variance.

MRI Model FDG PET Model Multimodal Model

Parameter
Estimate p-Value Standardized

Estimate
Parameter
Estimate p-Value Standardized

Estimate
Parameter
Estimate p-Value Standardized

Estimate

Age −0.01 0.29 −0.10 −0.004 0.68 −0.04 −0.01 0.24 −0.11
Gender 0.09 0.37 0.09 0.10 0.36 0.10 0.15 0.13 0.15

Education 0.02 0.32 0.10 0.04 0.02 0.25 0.02 0.20 0.12
Right posterior cingulate cortical thickness −0.79 0.01 −0.26 – – – −0.66 0.02 −0.21

Right temporal pole volume 0.001 0.002 0.30 – – – 0.001 0.001 0.31
Right pars orbitalis volume −0.0002 0.20 −0.12 – – – −0.0003 0.07 −0.17

Right thalamus volume −0.0002 0.04 −0.19 – – – −0.0002 0.02 −0.21
Right rostral middle frontal surface area −0.0001 0.14 −0.14 – – – – – –

Right inferior temporal surface area −0.0003 0.01 −0.25 – – – −0.0003 0.01 −0.24
Left banks STS surface area 0.001 0.01 0.24 – – – 0.001 0.01 0.26

Postcentral FDG PET – – – 0.0001 0.11 0.39 – – –
Precentral FDG PET – – – −0.0002 0.01 −0.62 −0.0001 0.001 −0.31

FDG PET = fluorodeoxyglucose positron emission tomography.
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Table 8. Models predicting APC of RAVLT 30 min delayed recall in MCI subjects. The MRI model accounted for 26% of the variance, FDG PET accounted for 1% of the
variance and CSF accounted for 1% of the variance. Combining imaging modalities accounted for 26% of the variance, while combining all modalities accounted for
12% of the variance.

MRI Model FDG PET Model CSF Model Multimodal Imaging
Model Multimodal Model
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Age 0.02 0.002 0.27 0.004 0.60 0.05 0.005 0.59 0.07 0.02 0.002 0.27 0.02 0.06 0.29
Gender −0.09 0.36 −0.07 −0.14 0.25 −0.10 −0.08 0.58 −0.07 −0.08 0.42 −0.06 −0.09 0.54 −0.08

Education −0.02 0.31 −0.08 −0.02 0.40 −0.07 0.01 0.58 0.07 −0.02 0.21 −0.10 0.01 0.50 0.08
Left superior parietal cortical thickness 0.60 0.02 0.19 – – – – – – 0.55 0.04 0.17 0.29 0.39 0.12

Left entorhinal volume 0.0003 0.01 0.21 – – – – – – 0.0003 0.01 0.22 0.0003 0.09 0.22
Left posterior cingulate volume 0.0003 0.02 0.19 – – – – – – 0.0003 0.04 0.17 0.0003 0.07 0.24

Left caudate volume 0.0002 0.03 0.17 – – – – – – 0.0002 0.03 0.18 0.0003 0.13 0.19
Right postcentral surface area 0.0004 0.0002 0.29 – – – – – – 0.0004 0.0003 0.29 0.0001 0.48 0.09

Left pars opercularis surface area 0.0005 0.002 0.24 – – – – – – 0.001 0.003 0.24 0.0005 0.07 0.24
Postcentral FDG PET – – – −0.0001 0.16 −0.13 – – – – – – – – –
Phosphorylated tau – – – – – – −0.01 0.06 −0.24 – – – −0.01 0.16 −0.18

FDG PET = fluorodeoxyglucose positron emission tomography, CSF = cerebrospinal fluid.
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4. Discussion

In this study, we used a data-driven approach to create a set of models that characterize the MRI
morphometric, FDG PET, CSF and neuropsychological test variables that are best able to discriminate
between normal aging, MCI and AD. We also identified the baseline morphometric, metabolic and
CSF biomarker variables associated with cognitive decline in trails and RAVLT delayed recognition in
the normal and MCI groups, respectively.

4.1. Models for Predicting Normal Aging, MCI and AD

Each modality on its own was able to distinguish between the groups to some degree;
however, similar to previous studies, MRI provided a better discrimination than FDG PET [56],
CSF biomarker concentration [57], or neuropsychological tests [58]. Furthermore, MRI-calculated
volume, cortical thickness and surface area measures were all represented in the model. Given that
volume and surface area contributed significantly to the multimodal models predicting diagnostic
groups, it may be counterproductive to limit MCI and AD studies to only cortical thickness. Previously,
it has been suggested that cortical thickness changes more in AD than cortical surface area when the
effects of age are removed [59]. Dickerson et al. [59] failed to observe an effect of AD on cortical surface
area in the perirhinal cortex or the parahippocampal gyrus. Our study, on the other hand, showed that
there were a number of regions in which cortical surface area was affected by both MCI and AD,
even after the effects of age were accounted for. This suggests that surface area may have been unduly
overlooked in the past.

Overall, many of the markers identified herein are in agreement with those found
previously [58,60,61]. The model differentiating AD from normal aging was relatively simple,
with decreased left hippocampal volume being the only imaging predictor. As we attempt to
differentiate between earlier stages in disease progression, the models become more complex not only
in terms of the number of variables contributing variance but also in that more modalities may be
necessary. This is particularly the case for differentiating between MCI and normal aging, in part
because MCI represents a broad spectrum with some individuals being more cognitively similar to their
typically aging peers and others more similar to AD subjects. Importantly, some key regions that were
associated with an increased likelihood of MCI were decreased right hippocampal volume, decreased
left caudal middle frontal volume, decreased entorhinal uptake and decreased left entorhinal volume.
Histologically, the medial temporal cortex is known to be affected first in the AD trajectory, while the
frontal lobe is thought to be relatively preserved until later stages of the disease [9]. Interestingly,
decreased volume in a few areas was associated more with normal aging than with CI, including the
postcentral gyrus. Age-related decreases in neuronal number within the primary areas for the special
senses of the head have been reported previously [62]. It is important then to recognize that there are
areas of the brain that may be relatively preserved in the early stages of dementia.

Furthermore, it is plausible that different hemispheres and types of morphometry are affected
at different states of the disease. In our multimodal models for differentiating normal aging from
MCI, volumes of both the right hippocampus and the left entorhinal cortex were significant predictors,
while the left hippocampal volume and right entorhinal cortical thickness were significant predictors
for AD vs. MCI. Although the precise neuroanatomical correlates of MRI-derived morphometry
measures are not fully characterized, cortical surface area may be linked to brain volume in that
it may represent cortical columns, whereas cortical thickness may represent the number of cells
within a column [63,64]. It has also been suggested that cortical surface area may be influenced
by a variety of factors such as synaptogenesis, dendritic arborization, intracortical myelination and
connectivity [65]. Changes in MRI volume are highly correlated with post-mortem measures of tissue
volume [66–68], which suggests that the volume loss observed in this study likely reflects neuronal loss.
Cortical thickness changes are thought to reflect loss of neurons and neuropil. Studies that examine
ante-mortem cortical thickness with post-mortem neuron counts show high levels of agreement [45].
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4.1.1. Comparison to the Areas Reported as the “Cortical Signature of AD”

Previous studies suggest the entorhinal volume, hippocampus volume [27,69,70], amygdala [69]
and inferior temporal lobe volume to be predictive of AD [71]. Other studies also suggest that
retrosplenial thickness is able to predict AD [70], while others still rely on what is known as the
“cortical signature of AD,” which is a set of 10 cortical thicknesses that have been shown to change
consistently in AD [72]. One benefit of the current study to previous studies is that we did not examine
only a few preselected regions but rather included the entire cortical and subcortical gray matter.
To directly test the benefit of not limiting our data to regions that change most with AD, we created
a model that included only the “cortical signature regions,” along with age and education, to see which
model differentiated normal aging from AD best. We found that our data-driven approach was better
able to differentiate groups, with a significantly larger c-statistic (c = 0.90 for signature regions only
and R = 0.98 for our model, p = 0.0002). In addition, regions typically associated with the signature of
Alzheimer’s disease were not all in the models differentiating disease groups, suggesting that although
the “Alzheimer’s signature” regions may change most in the disease that they are not optimal for
differentiating disease states. Thus, this paper indicates additional brain regions that might be targeted
for future studies and perhaps for assisting in clinical diagnosis. Although significant changes were
observed throughout the cortex, not all these regions were able to contribute unique and independent
variance to the models.

4.1.2. Neuropsychological Tests

There are a number of benefits to using neuropsychological tests for determining diagnostic group,
including its low-cost relative to MRI, PET and CSF sampling. There are also no risks to the patient.
On the other hand, these tests may not be as specific to differential diagnoses, and they can take a long
time to administer and have a high degree of variability. Nonetheless, a number of neuropsychological
tests were found to contribute differentially to the ability to discriminate between the various stages
of AD progression. For differentiating normal aging from MCI, the earliest stage in the progression,
clock drawing, digit span backwards and RAVLT 30 min delayed recall and recognition errors were
predictors. In the model differentiating MCI from AD, a mix of visuospatial ability and memory
were in the model, as indicated by the presence of Trail A and RAVLT 30 min delayed recall and
recognition, while only RAVLT 30 min delayed recall significantly contributed to differentiating AD
from normal aging. Taken together, these results show that different combinations of tests were better
at differentiating normal aging from MCI than differentiating MCI from AD and normal aging from
AD. This is not surprising given the progression of the disease and the basement effects that may be
observed in tasks that require more memory and executive function.

4.1.3. CSF Models

We examined which of three biomarkers found in CSF contributed to models differentiating
between normal aging, MCI and AD. Aβ-1-42 contributed variance to each of the models. However,
this only reached statistical significance for the MCI vs. AD model. For tau measurements, total tau
contributed to differentiating between MCI and normal aging and ptau contributed to differentiating
between MCI and AD. The ratio of tTau to Aβ-1-42 has been indicated as a unique predictor of
diagnostic group previously [70]; however, in a ratio measurement it is unknown whether it is the
Aβ-1-42 or the tTau driving the predictive value. tTau and pTau are typically associated with neuronal
and axonal damage, while Aβ-1-42 is a reflection of the amyloid burden in the brain. Although CSF
measures may be useful in identifying individuals at risk for disease progression, they are not as useful
as MRI or neuropsychological tests at differentiating between the groups [71]. This may be in part
because the CSF measures are not exclusively brain derived, nor do they provide insight as to the
localization of the AD-related pathology.
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4.1.4. Role of FDG PET

In this study, we observed very little added benefit for FDG PET scans compared to MRI.
This is in agreement with a number of previous studies [56,70,71] and at odds with others that
have found evidence for better prediction with FDG PET than with MRI [27,69,73]. While some of
these discrepancies may be accounted for by sample, scanner, and scanning protocol, a portion of the
difference may be accounted for by differences in post-processing methods. While here we present
data from a data-driven ROI-based approach that resampled the PET data into MRI space, many of
the other studies use a priori ROIs or a voxel-based approach using relatively large voxels, which may
be less sensitive to group changes, particularly in small structures or those that may show more
anatomical variability. Another post-processing difference lies in the treatment of partial volume
effects and normalization region. We controlled for partial volume effects, which diminished some of
the group differences [52] and may have contributed to its relatively poor performance compared to
MRI morphometric variables. Many of the studies citing an increased ability of FDG PET to detect
AD compared to normal aging do not adjust for partial volume errors that occur in PET imaging in
atrophic structures, which likely artificially inflates the ability of FDG PET to predict group [69,73,74].
We also normalized to the cerebellum rather than the pons or whole brain based on results of one of
our previous studies [52].

4.2. Models Predicting Longitudinal Decline in Cognitive Performance

The results of this study indicate that MRI performs better than FDG PET or CSF measures
at accounting for variance in the neuropsychological measures at every stage of disease.
Combining modalities did not consistently improve the adjusted R2 values, nor did FDG PET and
CSF alone account for any variance. In many instances, no FDG PET or CSF biomarker concentration
variables made it through the initial cutoff stages of building the models. Each of the tests was
associated with measures related to widespread regions in the brain, which suggests that each of these
tests involves a network of neuronal processing for efficient function. In addition, different regions
were typically predictive of baseline performance and decline within each group, and the regions
and types of measures varied between groups, illustrating the complex nature of structure-function
relationships and the impact of disease upon them.

A number of imaging variables showed opposite relationships than originally anticipated
(e.g., larger volumes predicting worse test scores or greater decline). While we are still investigating the
exact origins of this negative relationship, one potential explanation is that it represents a compensatory
mechanism. This phenomenon is not well understood but has been observed previously [35,75–81].
The underlying premise being that these brain regions are more associated with a specific task
than would normally be the case to help cope with the loss of function in related structures
(e.g., the pericalcarine may be compensating for decreased visuospatial processing abilities in other
brain regions). Undoubtedly, this may account for some of the inverse relationships that were observed.

4.3. Trails A

The neural correlates of Trails A are not well identified and it has not been well characterized on
its own in normal aging, MCI and AD, in part because it tends to be used in conjunction with Trails B.
We examined both tests individually, rather than taking the ratio of the two, because with ratios, it is
unknown whether it is the numerator or denominator that is the driving force behind the relationship.
Trails A is thought to reflect abilities in visual scanning, graphomotor and psychomotor speed and
attention; as such, we would expect to see associations with the occipital areas, precentral gyrus and
regions critical to attention. Baseline FDG uptake in the precentral and postcentral gyri was predictive
of APC in the normal aging group, confirming the role of brain regions controlling motor function in
Trails A. Attention has also been implicated in Trails A. There are various forms of attention that may
be more closely linked with distinct brain regions. Selective attention, whereby attention is focused on
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a single stimulus while ignoring irrelevant information, is modulated by posterior parietal systems.
These areas are important for orienting and shifting attention and may be modulated by basal ganglia
structures [82]. According to the Posner model, the intraparietal sulcus/superior parietal lobe and the
temporoparietal junction are involved orienting attention to the appropriate location along with the
frontal eye fields and inferior frontal gyrus [83,84]. In our normal subjects, Trails A decline was not
predicted by the frontal eye fields, which are located in the caudal middle frontal gyrus [85] but rather
by the rostral middle frontal and the right pars orbitalis in the inferior frontal gyrus. Thus, our results
support the attention component of Trails A.

4.4. RAVLT Delayed Recall

Entorhinal associations with declines in recall for the MCI group provide support for the thought
that there may be a connection between episodic memory and NFT pathology in the medial temporal
lobes. The associations between frontal and parietal regions with declines in recall scores is not
surprising, as these regions have been shown to subserve working memory ability [86]. The posterior
cingulate is highly interconnected with the medial temporal lobes and has previously been shown to
play a role in memory function. In our study, volume of the left posterior cingulate was predictive
of declines in recall scores in MCI. In a study examining the correlations between baseline FDG
metabolism and subsequent decline in verbal memory in pre-MCI individuals, the posterior cingulate,
bilateral parietal and left prefrontal were all correlated with higher rates of decline [87]. Interestingly,
in the same study, those who did not decline but remained in the normal aging category at follow-up,
showed significant correlations in the posterior and mid-cingulate regions with verbal memory
decline [87].

One difficulty in assessing the impact of deficits in recall is that it may represent problems in
either learning or in retention, since both would affect the ability to recall information after delays.
Although the present study did not separate the results into retention and learning, a previous report
in MCI subjects examined high vs. low retainers and learners and observed that both learning
and retention were significantly correlated with cortical thickness in the lateral and medial frontal
cortex, lateral temporal, medial temporal, anterior temporal, parietal and anterior and posterior
cingulate cortices [88]. Meanwhile, retention on its own, after removing the effects of learning,
showed correlations with the anterior, medial and ventral temporal lobe, entorhinal, parahippocampus,
temporal pole, fusiform and hippocampus [88]. Thus, retention tended to involve more medial
structures, while learning was more widespread. In our MCI subjects, we observed more widespread
changes, involving temporal as well as frontal and parietal regions, suggesting that as memory deficits
progress, difficulties in learning and retention also become more evident. It is also possible that as
medial temporal regions become increasingly atrophic they are no longer able to mediate memory
function and other brain regions are recruited. This has been observed in functional imaging studies
that show the compensatory involvement of a number of regions including the frontal [77,78,89] and
cingulate cortices [76,78].

4.5. Limitations

There are a few limitations of the present study. The first is that there is a larger proportion
of males to females throughout the entire ADNI sample. This is consistent throughout each of the
diagnostic groups and was included in each of our models to control for this. Although ADNI
collected genetic information on its participants, we did not examine genetic variables, such as ApoE
status, which has been shown to influence rate of disease progression in a dose-dependent manner.
Also, not all the subjects in our sample had CSF data, which resulted in a smaller sample for the
multimodal model including CSF. The predictive models presented herein should also be validated in
an independent sample.

There are multiple methods to assess the overall fit of logistic regression statistical models, each of
which has its limitations. The pseudo R2 indices used in this study have been shown to correlate
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strongly with other pseudo R2 measures, such as the McFadden [90]. Furthermore, there is no clear
consensus as to which method is optimal [91]. Although a comparison of these methods is beyond the
scope of the current study, it may be worthwhile to investigate the fit of our models using additional
metrics in future studies.

Along the same lines, the current study is limited in that that the model was not evaluated
on an independent dataset, which is the gold standard in evaluating model efficacy. The subjects
enrolled in ADNI may not be representative of the entire population due to the restrictions on subject
enrollment. The MCI and normal aging groups in particular, might be more diverse in the general
population. As such, utilizing subject enrolled in later phases of ADNI may not represent a truly
independent sample and there are limited large-scale studies that have not only structural MRI but also
FDG PET, CSF biomarker collection and a batter of cognitive neuropsychological testing on a sample
of healthy aging, MCI and AD participants.

Finally, because all of the data was used to build the model used in this study, it needs to be
validated in a separate population to ensure that the predictions being made represent true disease
etiology and to eliminate inherent group differences.

5. Conclusions

This study shows that combining modalities better differentiates between normal aging and MCI
subject groups. It is important to be able to distinguish individuals with MCI as early as possible.
By looking outside the typical a priori regions, we may improve the ability to identify individuals
at risk for developing AD. These individuals should then be followed over a longer period of time
to determine who declines in memory and executive function and the brain regions associated with
these changes.

In the first portion of this study, a set of MRI, FDG PET, CSF and neuropsychological variables
that best differentiates between normal aging, MCI and AD subject groups was determined in a large
sample from the ADNI database. In the second part of this study, we generated statistical models
for predicting future cognitive decline within normal aging, MCI and AD groups from a number of
neuropsychological tests, which each address specific cognitive functions. At baseline, we observed
progressively worse scores on neuropsychological tests of visuospatial abilities, attention, executive
function, delayed recall, recognition and working memory in MCI and AD. However, over time,
the MCI group declined mainly on delayed recall, whereas the normal aging group declined only
on Trails A. Overall, the models indicate that MRI was better able to predict future decline than
either FDG PET of CSF biomarker concentrations. The brain regions that were associated with each
task highlighted the types of cognitive skills required for successful completion of the test and also
highlighted that these regions, when damaged, can result in poor memory, executive function and
visuospatial abilities.

The results of this study suggest that the imaging and CSF biomarkers most telling of disease
severity and decline may be outside the medial temporal lobes and that perhaps it is these other
regions, such as the frontal, parietal and cingulate cortices that may be more telling clinical end points.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/2075-4418/8/1/14/s1.
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