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Abstract: If the characteristic polynomial of a discrete-time system has all its roots in the open unit
disc of the complex plane, the system is called Schur stable. In this paper, the Schur stabilization
problem of closed loop discrete-time system by affine compensator is considered. For this purpose, the
distance function between the Schur stability region and the affine controller subset is investigated.
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1. Introduction

A polynomial p(s) = sn + ansn−1 + · · ·+ a2s + a1 with real coefficients is called Schur stable if
all its roots lie in the open unit disc of the complex plane. Schur stability is very important in the
investigation of discrete-time systems. One of the ways to investigate of Schur stability is the use of the
well-known bilinear transformation between the open left half plane and the open unit disc. By using
this transformation, the Schur stability problem of a given system can be transformed into Hurwitz
stability problem of transformed polynomial (Recall that a system is called Hurwitz stable if all roots
of its characteristic polynomial belong to the open left half plane) [1–5].

Each polynomial p(s) corresponds to an n-dimensional vector p = (a1, a2, . . . , an)T ∈ Rn.
The vector p is called stable if the corresponding monic polynomial p(s) is Schur stable. Denote the
set of such stable vectors by D. In other words D = {(a1, a2, . . . , an)T ∈ Rn : The polynomial
p(s) = sn + ansn−1 + · · ·+ a2s + a1 is Schur stable}. It is well-known that the set D is non-convex for
n > 2 and open. The closed convex hull of D is a polytope [6,7].

Many stabilization problems of discrete-time systems by feedback controller can be reduced to
the following: Consider a family

p(s, c) = p0(s) + c1 p1(s) + c2 p2(s) + · · ·+ cl pl(s) (1)

where degree(p0) = n, degree(pi) < n (i = 1, 2, . . . , l) and l < n. Find l-dimensional vector
c = (c1, c2, . . . , cl)

T ∈ Rl such that the corresponding polynomial p(s, c) is Schur stable. In this case, the
vector c is called a stabilizing vector. The polynomial equality (1) can be written in vector-matrix form
as follows. Consider column vectors p0, p1, . . . , pl where p0 corresponds to p0(s) and pi (i = 1, 2, . . . , l)
correspond to pi(s) with the property that added zero component have dimension n. For instance,
assume p0(s) = s4 + 5s3 + 2s2 + s + 1 and p1(s) = 2s3 + s. Then p0 = (1, 1, 2, 5)T , p1 = (0, 1, 0, 2)T .

Define n × l dimensional matrix A =
[

p1, p2, . . . , pl
]
. Then relation (1) can be written in

vector-matrix form as follows:
p(c) = Ac + p0. (2)

The stabilization problem is the determination of a parameter c ∈ Rl with the property that
Ac + p0 ∈ D, namely, find conditions under which P ∩D 6= ∅, where P = {Ac + p0 : c ∈ Rl} is an
affine subset of Rn.
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In [8,9] for determination of a stabilizing parameter c, the method of random generation of stable
vectors and stable segments are suggested. In [10], for stabilization of continuous-time systems part of
specially selected parameters are chosen randomly and another part deterministically. The combination
of sum of square and linear matrix inequalities techniques for approximation of the set of stabilizing
controllers for continuous time system has been considered in [11]. For such systems, a linear
programming approach is considered in [12]. Stabilizing controls based on matrix inequalities have
been considered in [13–15].

In this paper, we consider the problem of existence of an affine controller for discrete-time systems.
In Section 2, we give a simple condition for the existence of a stabilizing parameter c. In Section 3,
the Euclidean distance between the sets D and P is investigated, from which some existence and
nonexistence conditions are obtained.

2. Rank Condition

In this section we give condition for the existence and evaluating of a stabilizing parameter c
and corresponding examples. The condition is based on Rouché-Capelli theorem [16]. Without loss
of generality we can assume that p1, . . . , pl are linearly independent. If these vectors are linearly
dependent then number of uncertain parameters c1, c2, . . . , cl will be reduced.

Proposition 1. Assume that the vectors p1, p2, . . . , pl are linearly independent. Then there exists a stabilizing
parameter c ∈ Rl if and only if there exists q ∈ D such that

rank
[

p1, p2, . . . , pl , q− p0
]
= l. (3)

Proof. There exists a stabilizing vector if and only if there exist q ∈ D, c ∈ Rl such that

Ac + p0 = q or Ac = q− p0. (4)

By Rouché-Capelli theorem, for given q ∈ D, the linear system (4) on unknown vector c has
unique solution c ∈ Rl if and only if

rank
[

p1, p2, . . . , pl , q− p0
]
= rank

[
p1, p2, . . . , pl

]
= l.

Corollary 2. Assume that p1, p2, . . . , pl are linearly independent and

rank
[

p0, p1, . . . , pl
]
= l.

Then there exists a stabilizing parameter c ∈ Rl .

Proof. In Proposition 1, take q = 0 which corresponds to the Schur stable polynomial p(s) = sn.
Then (4) is satisfied for q = 0 ∈ D.

Example 1. Consider the proper plant

G(s) =
s2 + 0.8s− 0.5

s4 + 0.7s3 + 0.16s2 − 0.67s + 0.2

with PID controller C(s) =
c3s2 + c2s + c1

s
.
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The closed loop characteristic polynomial is

p(s, c) = (s2 + 0.8s− 0.5)(c3s2 + c2s + c1) + s(s4 + 0.7s3 + 0.16s2 − 0.67s + 0.2)
= s5 + 0.7s4 + 0.16s3 − 0.67s2 + 0.2s + c1(s2 + 0.8s− 0.5)+

c2(s3 + 0.8s2 − 0.5s) + c3(s4 + 0.8s3 − 0.5s2).

The polynomial p0(s) = s5 + 0.7s4 + 0.16s3 − 0.67s2 + 0.2s is not Schur stable. Here

p0 = (0, 0.2,−0.67, 0.16, 0.7)T , p1 = (−0.5, 0.8, 1, 0, 0)T , p2 = (0,−0.5, 0.8, 1, 0)T ,
p3 = (0, 0,−0.5, 0.8, 1)T .

The vectors p1, p2, p3 are linearly independent, whereas p0, p1, p2 and p3 are linearly dependent:

p0 + 0.4p2 − 0.7p3 = 0.

Therefore, by Corollary 2 the vector c = (0, 0.4,−0.7)T is a stabilizing parameter.

Example 2. Consider the fourth-order polynomial family

p(s, c) = s4 − 1.8s3 + 1.86s2 − 0.52s + c1(s3 − 3s2 − s− 0.4)+
c2(s2 − s− 0.5) + c3(s3 − s2 + 0.5s− 0.6)

where the polynomial p0(s) = s4 − 1.8s3 + 1.86s2 − 0.52s is not Schur stable. For this family,
corresponding vectors are

p0 = (0,−0.52, 1.86,−1.8)T , p1 = (−0.4,−1,−3, 1)T , p2 = (−0.5,−1, 1, 0)T ,
p3 = (−0.6, 0.5,−1, 1)T

and the vectors p1, p2, p3 are linearly independent. For the Schur stable polynomial
q(s) = s4 − 2.1s3 + 2.16s2 − 1.02s + 0.1, the vectors p0 − q p1, p2, p3 are linearly dependent, where
q = (0.1,−1.02, 2.16,−2.1)T . We have 0.1p1 + 0.2p2 − 0.4p3 = q− p0 and by Proposition 1 the vector
c = (0.1, 0.2,−0.4)T is a stabilizing parameter.

3. Schur-Szegö Parameters and Polynomial Optimization

Schur-Szegö parameters [17] or reflection coefficients are widely used in the stability problems
of discrete time systems. Let us briefly recall these coefficients. In [18], for ki ∈ R (i = 1, 2, . . . , n) the
reflection map f = ( f1, f2, . . . , fn)T is defined recursively:

( f1, f2, . . . , fn)
T = Rn(kn)

[
0T

Rn−1(kn−1)

]
· · ·

[
0T

R1(k1)

] [
0
1

]

where Rj(k j) = Ij+1 + k jEj+1, Ij is j× j unit matrix and, Ej is j× j dimensional, defined by

Ej =

 0 · · · 1
...

. . .
...

1 · · · 0

 .

In the above formula, the first zero is n-dimensional, whereas the last is one-dimensional.
The above formula gives
for n = 3,

f1(k1, k2, k3) = −k3, f2(k1, k2, k3) = −k1k2k3 + k1k3 − k2, f3(k1, k2, k3) = k1k2 + k2k3 − k1,
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for n = 4,
f1(k1, k2, k3, k4) = −k4,
f2(k1, k2, k3, k4) = −k1k2k4 − k2k3k4 + k1k4 − k3,
f3(k1, k2, k3, k4) = k1k2k3k4 − k1k2k3 − k1k3k4 + k1k3 + k2k4 − k2,
f4(k1, k2, k3, k4) = k1k2 + k2k3 + k3k4 − k1

and so on. The polynomial p(s) = sn + fnsn−1 + · · ·+ f2s + f1 is Schur stable if and only if |ki| < 1 for
all i = 1, 2, . . . , n. The map f (k) between the reflection vector k = (k1, k2, . . . , kn)T and the coefficient
vector p = ( f1, f2, . . . , fn)T is multilinear. By known property of multilinear maps [1] (p. 435) namely,
the convex hull of the image of a multilinear map defined on a box Q is equal the convex hull of the
images of vertices of Q. In [6], it has been proven that there is no need to take all vertices of Q, the
convex hull of the image of f is a polytope, whose vertices correspond to the n + 1 polynomials for
which zeros are equal to −1 or 1.

By using Schur-Szegö parameters, we can generate an arbitrary number of Schur stable
polynomials: For this purpose it is sufficient to choose any vector k = (k1, k2, . . . , kn) ∈ (−1, 1)×
(−1, 1)× · · · × (−1, 1) and find the image f (k). The obtained vector f (k) is stable.

Consider the distance function between the sets P and Dn. Recall that P is closed affine set
whereas Dn is an open set. We show that the distance function between them is n-variable polynomial
with total degree 2n. The variables of this polynomial are Schur-Szegö parameters k = (k1, k2, . . . , kn) ∈
(−1, 1)n. We consider the minimization of this polynomial over the closed cube [−1, 1]n and use the
Bernstein expansion for the outer approximation of the range.

Consider the number

α := inf
c∈Rl , k∈[−1,1]n

‖Ac + p0 − f (k1, k2, . . . , kn)‖ (5)

where c = (c1, c2, . . . , cl)
T , A is n× l matrix with column vectors p1, p2, . . . , pl , i.e., A =

[
p1, p2, . . . , pl

]
,

‖x‖ is the Euclidean norm of x, f is multilinear reflection map.

Theorem 3. The equality

α = min
k∈[−1,1]n

‖A(AT A)−1 AT( f (k1, k2, . . . , kn)− p0) + p0 − f (k1, k2, . . . , kn)‖ (6)

is satisfied.

Proof. Write
α = inf

k
inf

c
‖Ac− y‖ = inf

k
F(k1, k2, . . . , kn)

where y = f (k1, k2, . . . , kn)− p0, F(k1, k2, . . . , kn) = inf
c
‖Ac− y‖.

Define l-dimensional subspace W = span{p1, p2, . . . , pl}. Then F(k1, k2, . . . , kn) is the distance
from the point y to W. By the well-known theorem of functional analysis [19], the nearest point ŷ ∈W
exists and satisfies (y− ŷ) ⊥ W, where x ⊥ W means 〈x, w〉 = 0 for all w ∈ W and the symbol 〈·, ·〉
stands for the scalar product.

We have
(y− ŷ) ⊥ pi, (pi)T(y− ŷ) = 0 (i = 1, 2, . . . , l)

or
AT(y− ŷ) = 0, ATy = AT ŷ.

Since ŷ ∈W, where ŷ = c∗1 p1 + c∗2 p2 + · · ·+ c∗l pl = Ac∗, where c∗ = (c∗1 , c∗2 , . . . , c∗l )
T , we have

ATy = AT Ac∗.
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The matrix AT A is nonsingular. By contradiction, assume that there exists nonzero x ∈ Rl such
that AT Ax = 0. Then

‖Ax‖2 = 〈Ax, Ax〉 = (Ax)T Ax = xT AT Ax = xT0 = 0

and Ax = 0. The last equality contradicts to the linear independence of p1, p2, . . . , pl .
Therefore c∗ = (AT A)−1 ATy and

F(k1, k2, . . . , kn) = inf
c
‖Ac− y‖ = ‖Ac∗ − y‖

= ‖A(AT A)−1 AT( f (k1, k2, . . . , kn)− p0)− ( f (k1, k2, . . . , kn)− p0)‖

and the equality (6) follows.

Proposition 4. If α > 0 then there is no stabilizing parameter c.

If α = 0 then P ∩D 6= ∅ and either there exists a stabilizing parameter c or there is no stabilizing
parameter c, but there exists a parameter c such that p(s, c) is marginally stable, i.e., has all roots in the
closure of the open unit disc. It should be noted that the last case is rather a pathological than a typical
one.

Consider the number
α2 = min

k∈[−1,1]n
F2(k1, k2, . . . , kn).

The function (k1, k2, . . . , kn) → F2(k1, k2, . . . , kn) is a multivariable polynomial defined on the
box [−1, 1]n. The range F2(k1, k2, . . . , kn) can be estimated by the Bernstein expansion. Let us briefly
describe this expansion for n-variate polynomials [20].

An n-variate polynomial v(x) is defined as

v(x) = ∑
L≤N

aLxL (x ∈ Rn), (7)

where L = (i1, i2, . . . , in), N = (s1, s2, . . . , sn), xL = xi1
1 xi2

2 · · · xin
n and

L ≤ n ⇔ 0 ≤ ij ≤ sj (j = 1, 2, . . . , n).

The Lth Bernstein polynomial of degree d is defined by

BN,L(x) = bs1,i1(x1) · · · bsn ,in(xn) (x ∈ Rn)

where bs,i(t) = (n
i )t

i(1− t)n−i. The transformation of a polynomial from its power from (7) into its
Bernstein form result in

v(x) = ∑
L≤N

vL(U)BN,L(x),

where the Bernstein coefficients vL(U) of v over the n-dimensional unit box U = [0, 1]× · · · × [0, 1] are
given by

vL(U) = ∑
j≤N

(L
J)

(N
J )

aJ (L ≤ N).

Here (N
L) is defined as (s1

i1
) · · · (sn

in).
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Let
m = min{v(x) : x ∈ U},
m = max{v(x) : x ∈ U},
α = min{vL(U) : L ≤ N},
β = max{vL(U) : L ≤ N}.

Theorem 5. [20] The following inequalities

α ≤ m ≤ m ≤ β

are satisfied.

Theorem 5 gives outer approximation of the range of v(x) over the unit box U.
In order to obtain the Bernstein coefficients and bounds over an arbitrary box D rather the unit

box U, the box D should be affinely mapped onto U. To obtain convergent bounds for the range of the
polynomial (7) over the box U, the box U should be divided into small boxes.

If α > 0 (β < 0) then the polynomial is positive (negative) on U. If α ≤ 0, β ≥ 0 then by the
bisection in the chosen coordinate direction, the box U is divided into two boxes. A new box on which
the inequality α > 0 or β < 0 is satisfied should be eliminated, since our polynomial has constant sign
on this box. Otherwise, the box should be divided into two new boxes.

If at some step of the Bernstein expansion the lower bound is positive then α2 > 0 and α > 0 and
there is no stabilizing c. If this is not the case, an additional investigation on existence is required.

Taking into account the definition of α and Proposition 4, we can suggest the following algorithm
for a stabilizing vector.

Algorithm 6.

(1) Given family (1), explicitly calculate the multivariable polynomial F2(k1, k2, . . . , kn).
(2) Calculate step-by-step the Bernstein coefficients for the function F2 over the box [−1, 1]n.

If at some step, the minimal Bernstein coefficient is positive then stop, there is no stabilizing
parameter c.

(3) If after a sufficiently large number of steps the lower Bernstein coefficient remains negative, then
stop and carry out an additional test for the existence of a stabilizing vector c. A cycling of the
calculation indicates the existence of a stabilizing parameter. In this case, we can proceed to a
random search if number of remaining boxes is small. For example, choose the center point k∗

of a remaining box, calculate c∗ = (AT A)−1( f (k∗)−U0) and test c∗ for a stabilizing vector, i.e.,
test Schur stability of p(s, c∗). Alternatively, the gradient minimization method of the smooth
function F2 could be applied.

Example 3. Consider stabilizing problem for the following polynomial family:

p(s, c) = s5 + (c1 + c2)s4 + (−2 + 3c1 − c2)s3 + (−2c1 + 4c2)s2 + (1− c1 − 5c2)s− 1 + c1 − 3c2.

The matrix A (see (2)) and the vector p0 are

A =


1 −3
−1 −5
−2 4
3 −1
1 1

 , p0 =


−1
1
0
−2
0
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and we have

F2(k1, k2, k3, k4, k5) = ‖A(AT A)−1 AT( f (k1, k2, k3, k4, k5)− p0) + p0 − f (k1, k2, k3, k4, k5)‖2

=
83

192
k2

1k2
2k2

4k2
5 +

9
16

k2
1k2

3k2
4k2

5 + · · ·+
11
8

k2
1k2k3k2

4k2
5 −

61
24

k1k2k2
3k2

4k5+

· · ·+ 9
16

k2
2k2

3k2
4 −

11
16

k2
1k2

3k5 −
11
16

k2
1k3k2

4 −
7

16
k2

1k3k2
5 + · · · −

1
2

k1k2k5

−9
4

k1k2k4 −
29
24

k1k3k5 −
9
4

k2k3k4 −
29
24

k2k4k5 −
31
16

k2k3k5 −
1
2

k5 +
5
3

.

When Algorithm 6 is applied, 477 subboxes remained at the end of 1000 steps after 48 seconds.
Consider one of these subboxes:

[0.625, 0.75]× [0.625, 0.75]× [0.875, 1]× [0.5, 0.75]× [0.5, 0.75].

The center of this subbox is k∗ = (0.6875, 0.6875, 0.9375, 0.625, 0.625)T and the corresponding c∗

can be calculated as

c∗ = (AT A)−1( f (k∗)−U0) = (0.992173, 0.241873)T .

The corresponding polynomial p(s, c∗) is Schur stable, i.e., c∗ is a stabilizing vector.

Example 4 (There is no stabilizing c). Consider the family

p(s, c) = s5 + (c1 + c2)s4 + (0.9− 3c1 − 2c2)s3 + (−3c1 − 4c2)s2 + (−1.8− 3c1 + 6c2)s− 1.1 + c1 − c2.

Here p0 = (−1.1,−1.8, 0, 0.9, 0)T , p1 = (1,−3,−3,−3, 1)T and p2 = (−1, 6,−4,−2, 1)T .
The polynomial F2 is 5-variate quadratic polynomial. We apply the Bernstein expansion,
splitting-elimination procedure and after 698 steps (during 34.5 second) conclude that F2 > 0 on
[−1, 1]5. Therefore, there is no stabilizing parameter c.

Example 5. Let the control system shown in the Figure 1 be given. Assume that transfer function and
controller are

G(s) =
s3 − 0.3s2 − 0.1s + 1.6

s5 + 0.4s4 − 1.8s3 − 0.7s2 + 0.2s− 0.6
and C(s) =

c3s2 + c2s + c1

s
.

The characteristic polynomial of the closed-loop system becomes

p(s, c) = s6 + (0.4 + c3)s5 + (−1.8 + c2 − 0.3c3)s4 + (−0.7 + c1 − 0.3c2 − 0.1c3)s3+

(0.2− 0.3c1 − 0.1c2 + 1.6c3)s2 + (−0.6− 0.1c1 + 1.6c2)s + 1.6c1

Let c3 = 1. We apply Algorithm 6, part 2 and after 3726 steps conclude that there is no stabilizing
parameter c.

Let c3 = 0.5. In this case, Algorithm 6 applied to the problem of stabilization does not give a
negative result after 20000 steps with 6538 subboxes, and

[0.9375, 1]× [0.1875, 0.25]× [0, 0.125]× [0, 0.125]× [0, 0.125]× [0.625, 0.75]

is one of them. The center of this subbox is k∗ = (0.96875, 0.21875, 0.0625, 0.0625, 0.0625, 0.6875)T and
calculations give c∗ = (0.05756065, 0.91839451, 0.5)T . Since the polynomial p(s, c∗) is Schur stable, c∗ is
a stabilizing vector.
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C(s) G(s)
+
−

Figure 1. A closed loop system for Example 5.

Remark 1. Here, we indicate advantages and disadvantages of our results given in this paper.
Firstly, note that Proposition 1 has a simple form. On the other hand the results existing in the
literature on the existence and evaluation of Schur stable element in an affine polynomial family
are mainly random search methods (see [9] and references therein). Algorithm 6 gives an answer
when there does not exist a stabilizing parameter; however, it gives a useful hint as to whether such
a parameter exists. The main setback of Algorithm 6 is that high-dimensional systems require long
calculations.

4. Conclusions

In this paper, the stabilization problem of closed-loop discrete-time systems by affine compensator
is considered. A condition based on linear dependence of system vectors is obtained. The distance
function between the Schur stability region and the affine controller subset is investigated. The optimal
value of this function gives the conditions for stabilizability of the system.
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