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Abstract: Fusion of remote sensing images with different spatial and temporal resolutions is highly
needed by diverse earth observation applications. A small number of spatiotemporal fusion
methods using sparse representation appear to be more promising than traditional linear mixture
methods in reflecting abruptly changing terrestrial content. However, one of the main difficulties
is that the results of sparse representation have reduced expressional accuracy; this is due in
part to insufficient prior knowledge. For remote sensing images, the cluster and joint structural
sparsity of the sparse coefficients could be employed as a priori knowledge. In this paper, a new
optimization model is constructed with the semi-coupled dictionary learning and structural sparsity
to predict the unknown high-resolution image from known images. Specifically, the intra-block
correlation and cluster-structured sparsity are considered for single-channel reconstruction, and the
inter-band similarity of joint-structured sparsity is considered for multichannel reconstruction,
and both are implemented with block sparse Bayesian learning. The detailed optimization steps are
given iteratively. In the experimental procedure, the red, green, and near-infrared bands of Landsat-7
and Moderate Resolution Imaging Spectrometer (MODIS) satellites are put to fusion with root mean
square errors to check the prediction accuracy. It can be concluded from the experiment that the
proposed methods can produce higher quality than state-of-the-art methods.

Keywords: remote sensing; image fusion; Landsat-7; MODIS; spatiotemporal fusion; dictionary learning;
reflectance; structural sparsity

1. Introduction

Multi-sensor fusion has always been concerned for complementary information enhancement [1],
especially for the remote sensing big data era [2–5]. With increasing frequency, different types of
remote sensing satellites are used to monitor the Earth’s surface. This has resulted in a wide range
of sensors and observation schemes to obtain and analyze ground status. However, the physical
constraint between temporal and spatial resolutions brings additional cost to providing the available
data with high temporal and spatial resolutions concurrently. This limits the response speed and
processing accuracy of quantitative remote sensing. For instance, the revisiting period of the Moderate
Resolution Imaging Spectrometer (MODIS) is one day, while the revisiting period of the LandSat
Series, equipped with high-resolution sensors, is 16 days. The purpose of spatiotemporal fusion is,
therefore, to employ software and algorithms to leverage the complementarity nature of remote
sensing data of different time and space information to improve multi-source information quality.
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This would allow the remote sensing data from different spatial and temporal resolutions to be fused
to obtain images with higher temporal and spatial resolutions.

The initial spatiotemporal fusion methods [6–12] used spatially linear integration of known
images to construct the high-resolution image at the time of prediction. As linear mixture smoothed
the changing terrestrial contents, sparse representation based methods [13–15] have been proposed,
which assumed that the sparsely coded coefficients of the high-resolution image and the low-resolution
image of the same area should be the same or steadily mapped. Then, the known images could be
used for dictionary learning to obtain the coefficients at the time of prediction.

Though these sparse representation based algorithms took into account the associated mapping
relationship of dictionaries and coefficients, there is a large deviation between the prediction and the
real value. The process of predicting the high-resolution dictionary from the low-resolution dictionary
is an ill-posed inverse problem which requires additional constraints to improve dictionary projection.
Even with an accurate dictionary, errors of coefficients could hardly be avoided in the process of
imposing a mapping matrix of known time onto the coefficient of unknown time. To make it worse,
coefficients from the optimization process of the `1 norm are not accurate and would produce even
more noticeable approximation errors if being mapped to the unknown time.

In fact, sparseness is not the only property of coded coefficients. Some researchers [16–18]
have investigated the support mode of sparse coefficients and found that hidden structures of
nonzero entries existed. As spatiotemporal fusion is partly linked to dictionary learning based remote
sensing reconstruction, two kinds of structures are very possibly available: cluster-structured sparsity,
and joint-structured sparsity. The cluster structure is the most frequently observed structure that
divides coefficients into many groups, and coefficient values in most groups are zeros. Some algorithms,
such as group least absolute shrinkage and selection operator (group LASSO), block orthogonal
matching pursuit (Block-OMP), block compressive sampling matched pursuit (Block-CoSaMP) and
so on, have been proposed to solve the cluster-structured sparsity effectively. The joint structure refers
to the identical nonzero positions of multiple sparse signals or coefficients that are highly correlated,
or a signal in its multiple measurements. The cluster-structured sparsity is useful for single-channel
remote sensing images. The joint-structured sparsity, on the other hand, could be employed by
multispectral or hyperspectral images according to the high correlation or spectral redundancy between
different bands. In fact, Majumdar and Ward [19] have used it for compressed sensing of color images.
Therefore, when the structural information of the representation coefficients is integrated into sparse
reconstruction, the solution is expected to be better than the `1-norm optimization, which will, in turn,
improve the performance of spatiotemporal fusion algorithms.

Generally, this paper will explore the inherent characteristics of sparse coefficients and
improve the spatiotemporal fusion results by means of the a priori structural sparse constraints.
Specifically, the block sparse Bayesian learning (bSBL) is harnessed as the optimization tool of the
single-channel spatiotemporal fusion because it took into account the intra-block correlation to indicate
the cluster-structured sparsity. The joint-structured sparsity of multispectral spatiotemporal fusion is
also implemented with the bSBL method after we realign the coded coefficients into a single column to
turn it to a fixed-size cluster-structured sparsity problem.

The rest of this paper is organized as follows: Section 2 gives a brief survey on spatiotemporal
fusion algorithms and introduces the block sparse Bayesian learning algorithm that will be used for
structural sparsity; Section 3 explains the issue of spatiotemporal fusion, proposes a new model for
this issue, and gives details on the optimization method of training and predicting. In Section 4,
experiments on the fusion of the reflectance images of MODIS and Landsat-7 are demonstrated;
Section 5 discusses the experimental results; and Section 6 presents our conclusions.
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2. Related Work on Spatiotemporal Fusion and Structural Sparsity

2.1. Methods of Spatiotemporal Fusion

At present, there are two kinds of spatiotemporal fusion algorithms at the pixel level, namely:
spatially linear mixing methods and dictionary-pair learning methods.

Spatially linear mixing methods assume that spatial pixels of the same class or adjacent pixels
should have similar pixel values. Thus, we can use the image of a moment as the reference image and
predict the change of the high spatial resolution image in the next moment by matching the neighboring
similar pixels, such as spatial and temporal adaptive reflectance fusion model (STARFM) [6],
enhanced STARFM (ESTARFM) [7], and spatial temporal adaptive algorithm for mapping reflectance
change (STAARCH) [8]. Gao et al. [6] proposed the STARFM algorithm with the blending weights
determined by spectral difference, temporal difference, and location distance. This method accurately
predicted surface reflectance at an effective resolution. Zhu et al. [8] proposed ESTARFM to improve
STARFM using the observed reflectance trend between two points in time and spectral unmixing
to better predict reflectance in changing or heterogeneous landscapes. Hilker et al. [8] proposed
the STAARCH algorithm to use the tasseled cap transform of both Landsat’s Thematic Mapper and
Enhanced Thematic Mapper Plus (TM/ETM+) and MODIS reflectance data to identify spatial and
temporal changes in the landscape with a high level of detail. Performance of these three methods
was compared in [20]. Separately, Wu [9] proposed a spatiotemporal data fusion algorithm (STDFA)
by mapping medium-resolution spatial images to extract fractional covers, using least square for
fractional cover, and calculating surface reflectance using a surface reflectance calculation model.
Huang et al. [11] used a similar method based on the conventional spatial unmixing technique,
which was modified to include prior class spectra estimated from pairs of MODIS and Landsat data
using the spatial and temporal adaptive reflectance data fusion model. In addition, Huang et al. [10]
proposed a new weight function based on bilateral filtering to account for the effect of neighboring
pixels, which is analogous to the warming and cooling effect of ground objects in urban areas.

To address the shortcomings of the linear prediction method in the prediction of urban
expansion, dictionary learning-based spatiotemporal fusion methods introduced sparse similarity
and used nonanalytic optimization methods to predict missing images. Huang et al. [13] proposed
a sparse-representation-based spatiotemporal reflectance fusion model (SPSTFM) to establish
correspondences between structures in high-spatial-resolution images of given areas and their
corresponding low-spatial-resolution-images, and achieved the correspondence relationship by jointly
training two dictionaries generated from high- and low-resolution difference image patches and sparse
coding at the reconstruction stage. SPSTFM was imposed on two assumptions: the learned dictionary
obtained from the prior pair of images is consistent with the dictionary of the subsequent images on the
prediction moment, and the sparse coefficients across the high- and low-resolution image spaces should
be strictly the same. These assumptions are too strict, as semi-coupled dictionary learning (SCDL) [21]
has illustrated that coefficients may have differences. Following this idea, Wu et al. [15] proposed
the error-bound-regularized semi-coupled dictionary learning (EBSCDL) model which adapted the
dictionary perturbations with an error-bound-regularized method and formulated the dictionary
perturbations to be a sparse elastic net regression problem. Song et al. [14] established correspondence
between low-spatial-resolution data and high-spatial-resolution data through the super-resolution and
further fused using a high-pass modulation.

From the perspective of sparse representation, the SCDL algorithm relaxed the coefficient consistency.
It considered that the dictionary has a one-to-one mapping relationship, while there is a fixed coupling
relationship between the coefficients. This improvement is based on the knowledge of the semi-coupled
process of different sensor sources with the same features, which provides a good starting point
for prediction. Therefore, this paper is based on the SCDL algorithm.
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2.2. SCDL: Semi-Coupled Dictionary Learning

SCDL was initially designed for super-resolution of natural images. After the model is trained
using image patches from the Berkeley segmentation dataset, SCDL inputs a low-resolution image and
outputs a high-resolution image of the same content. For remote sensing images, the model trained
from the this dataset does not fit well. Luckily, spatiotemporal fusion is a kind of special applications
that could provide the indispensable training set if both high- and low-resolution images in some
moments are known.

For a known moment, the low-resolution image Y and its counterpart high-resolution image X
could be converted to the patch matrix and represented with over-complete dictionaries as Y = DYαY
and X = DXαX . Mappings between these variables are described as follows:

DX → DY

αX ↔ αY
(1)

Based on the steps of sparse representation, coefficient integration, and dictionary reconstruction,
a low-resolution image can be converted to a high-resolution image. This corresponds to a three-layer
convolutional neural network [22].

Following this concept, Wang et al. [21] proposed the SCDL method to turn it into an
unconstrained cost function. Then, Wu [15] proposed the error bounded version (EBSCDL) that
replaced the standard `1 norm with an elastic network of `1 + `2 to further limit the range of the
coefficient value. In our work, we preferred SCDL to EBSCDL because the bounded `2 norm introduces
very limited improvement towards the optimization, which we will show in the experiment section.
The optimization model of SCDL is as follows:

min
αxi ,αyi

‖X− DXαX‖2
2 + ‖Y− DYαY‖2

2

+ λ1

(
‖αX −WY→XαY‖2

2 + ‖αY −WX→YαX‖2
2

)
+ λ2 (‖αX‖1 + ‖αY‖1)

(2)

In the above equation, X denotes the high-resolution image, Y denotes the low-resolution image,
DX and αX are the dictionary and coefficients of X, DY and αY are the dictionary and coefficients of Y,
WY→X maps from αY to αX and WX→Y maps from αX to αY, and {λ1, λ2} are adjustable parameters
for regularization.

Equation (2) can be used for both training and prediction. During the training stage when the
high-resolution image X is given, the dictionary pairs {DX , DY} are learned, as well as the coefficients’
mapping relationship WX→Y and WY→X. These trained dictionaries and mapping matrix are fixed
during the prediction stage to reconstruct the high-resolution coefficients αX using Equation (2)
(wherein the X item is omitted), and the high-resolution image X is obtained using X = DXαX .

The difficulty lies in the fact that SCDL is relatively sensitive to the decomposition of sparse representation.
Although the feasibility of the SCDL model has been demonstrated in [15,21], the approximation of
`1-norm results in inaccurate sparse coefficients. The latter has a significant deviation from the
ideal `0-norm solution. The mapping function WX→Y and WY→X, however, will magnify this
deviation to even worse coefficients and affect reconstruction performance. Typically, when the
uncertainty between the solved coefficients and the real coefficients is increased, the fidelity term
of the model will be increased, while the similarity between αX and αY is sacrificed and makes the
reconstruction performance worse. Therefore, we hope to improve the optimization solution to obtain
better training results and then lower the prediction loss.
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2.3. Structural Sparsity of Remote Sensing Images

As mentioned above, two kinds of structural consistence of sparse coefficients are used in
this paper. For a single-channel patch (e.g., extracted from a gray image), the cluster-structure sparsity
allows that coefficients be divided into some groups. The coefficients in each group should be either
all zeros or non-zeros. On the other hand, when the same dictionary is used for a multichannel
patch (e.g., extracted from a multispectral image) and each of its bands is represented separately,
the joint-structured sparsity tune the coefficients of different bands to the same form of being zeros
or non-zeros.

For the first constraint, although many algorithms have been proposed to solve it, bSBL [17] is the
only algorithm that investigated the intra-block correlation, which is based on sparse Bayesian learning to
obtain the sparsest solution of a sparse reconstruction problem. Sparse Bayesian learning was proposed by
Wipf and Rao [23] to discover the correlation of sparse coefficients. Then, Zhang et al. [17,18] continued
their work and proposed the blocked version—bSBL, which will be introduced here. After learning
the dictionary for image patches, the over-complete dictionary and corresponding coefficients are
obtained. For the image patch matrix, we could pick any patch and code it with the coefficient vector θ.
Under the assumption of block sparsity, θ could be divided into g continuous groups (see Figure 1):

θ =
[
θT

1 , θT
2 , · · · , θT

g

]T
(3)

θ1

θ2

θg⁞ 

⁞ 

Figure 1. Grouping the sparse coefficients of a single-channel image patch.

The ith group θi in θ obeys the parametric joint Gaussian distribution [23]

p (θi; γi, Bi) ∼ N (0, γiBi) (4)

where γi is non-negative to control the whole sparsity of the ith group, and Bi is a positive
semi-definitive matrix to express the correlation level of coefficients in the ith group. γi could be
zero and make all the coefficients in the ith group converge to zero, which reflects the structural
sparseness at the group level. If θ is considered as the hidden variable, the unknown parameters
γ1, · · · , γg, B1, · · · , Bg could be inferred with expectation maximum (EM). These parameters form the
set of hyper-parameters for updating iteratively, as deduced in [17,18].

When the multichannel reconstruction is concerned, coefficients in some different bands,
typically the red, green, and blue bands, have similar form of being non-zeros. This happens because
these bands have similar local structures. The correlation could be measured with spatial metrics such
as structural similarity (SSIM), correlated coefficient (CC), mutual information (MI), etc. The similarity
property gives auxiliary prior information for better regularization. In this case, bSBL would also
be helpful to a multichannel decomposition. For a patch of three bands (see Figure 2), if we reform
the coefficients as a column first, it could be deemed as grouped coefficients with fixed block length
equaling three. Then, each γi controls coefficients of all bands in the ith position whether zeros
or non-zeros.
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Figure 2. Grouping the sparse coefficients of a multichannel image patch of three bands.

3. Spatiotemporal Fusion Framework, Model and Optimization

In this section, the framework of spatiotemporal fusion is firstly introduced, and a new model
integrating the semi-coupled dictionary learning and structural sparsity of block sparse Bayesian
learning is built to solve this problem. The training method and the prediction method with regard to
the proposed model are detailed below.

3.1. Problem Definition

To perform fusion tasks for remote sensing images, the placement of all images should match
exactly according to the unique geographic location. As differences exist for projection methods and
datums, and geographical calibration errors can hardly be avoided, registration between images should
be performed ahead of the fusion for fine geographic calibration. After the registration procedure,
shown in Figure 3 the spatiotemporal fusion requires that at least three low-resolution images at times
t1, t2 and t3 be provided, as well as high-resolution images of the same locations at times t1 and t3.
The high-resolution image at time t2 is, therefore, the target image to be predicted, which is essentially
improved in its temporal resolution.

high-

resolution

low-

resolution

t1 t2

X1

Y1

X2?

Y2

t3

X3

Y3

Figure 3. Images for spatiotemporal fusion. (t1 < t2 < t3).

Alternatively, some fusion methods [6,14] used only one known pair {Y1, X1} and Y2 to predict X2,
which may produce more errors than those using two-pair images. This happens because when we
have images from three different times, the differences in image could then be obtained for training.
This corresponds to a second-order interpolation that provides a better basis for the predicted images
than the first-order interpolation of one-pair images, and thus contributes to higher accuracy than if
the original image for reconstruction were used directly.

The differences in images are defined as:

Y21 = Y2 −Y1

X21 = X2 − X1
(5)

Y23 = Y2 −Y3

X23 = X2 − X3
(6)

Y13 = Y1 −Y3

X13 = X1 − X3
(7)
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The focus of the spatiotemporal fusion is then to predict the difference image X21 from Y21 and
X23 from Y23. The integrated outcome of X21 and X23 is the final prediction image. The difference pair
{Y13, X13} could then be used to obtain the parameter of prediction. Obviously, Y1, Y2, and Y3 are the
up-sampled low-resolution images that have the same spatial resolution to X1 and X3.

The notations used for the whole paper are defined as follows:

X: the patch matrix extracted from the high-resolution difference image X21, X23, or X13.
Y: the patch matrix extracted from the geographically matched low-resolution difference

image Y21, Y23, or Y13.
DX : the over-complete Dictionary trained for X.
DY: the over-complete Dictionary trained for Y.
αX : the sparse coefficients of X decomposed by DX .
αY: the sparse coefficients of Y decomposed by DY.

WX→Y: the left multiplication matrix mapping from αX to αY.
WY→X : the left multiplication matrix mapping from αY to αX .
{λ1, λ2}: adjustable parameters for regularization.

3.2. Incorporating Block Sparseness and Semi-Coupled Dictionary Learning

We propose the following model for spatiotemporal reconstruction by taking the place of the `1

norm with the constraints of bSBL to represent structural sparseness of coefficients, which is hereafter
referred to as bSBL-SCDL—block Sparse Bayesian Learning for Semi-Coupled Dictionary Learning:

arg min
αX ,αY

‖X− DXαX‖2
2 + ‖Y− DYαY‖2

2

+ λ1

(
‖αX −WY→XαY‖2

2 + ‖αY −WX→YαX‖2
2

)
+ λ2 (bSBL (αX) + bSBL (αY)) ,

(8)

where

bSBL (αX) = ∑m p (am|Xm; λ, γi, Bi, ∀i)

= ∑m N (µαm , Σαm).
(9)

The following will give details on training and prediction based on Equation (8). Similar steps
could be found in [15]. Before that, the solution to the bSBL constraint is introduced, which will be
used in the consequent optimization.

3.3. Optimization to the bSBL Model

For an image patch x that is sparsely represented with an over-complete dictionary D, the bSBL
model gives a solution to this problem:

‖x− Dθ‖2
2 + λ · bSBL (θ) (10)

where

bSBL (θ) = p (θ|x; λ, γi, Bi, ∀i)

= N (µθ , Σθ)
(11)

For a single-channel image patch x, the solution to θ is listed in Algorithm 1, which corresponds
to the Enhanced BSBL Bound Optimization (EBSBL-BO) algorithm with unknown partitions (see [17]
for details). To get the Toeplitz form of correlation matrix B, r = m1/m0, where m1 is the average of the
elements among the main sub-diagonal of the matrix B, and m0 is the average of the elements among
the main diagonal of the matrix B.
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Algorithm 1. bSBL (Block Sparse Bayesian Learning) for single-channel decomposition

1. Initialization:
(1) Set µθ to all zeros and γ to all ones.
(2) Set Σ and Σ0 to the identity matrix.
(3) Set each Bi to the identity matrix.

2. Repeat until the stop-criterion is reached:
(1) Set the coefficient of the ith block to zero when γi is lower than threshold.
(2) Update the sparse coefficient θ with:

θ∗ = µθ = Σ0DT(λI + DΣ0DT)−1x

(3) Update the covariance matrix Σθ with: Σθ =
(

Σ−1
0 + 1

λ DT D
)−1

(4) For each block i = 1, 2, · · · , g, get the average correlation matrix B with:

B = 1
g ∑

g
i=1 Bi =

1
g ∑

g
i=1

Σi
x+µi

x(µi
x)

T

γi

(5) For each block i = 1, 2, · · · , g, constrain Bi to an approximal Toeplitz form:
Bi = B = Toeplitz

([
1, r, · · · , rd−1

])
(6) For each block i = 1, 2, · · · , g, update the general block sparsity γi with:

γi =

√
xT

i B−1
i xi

Tr
(
(Di)

T(Σ∗y)
−1

Di Bi

) , Σ∗y = λI + DiΣ0

(
Di
)T

(7) Update the unconstrained weight λ with:

λ =
‖x−Dµθ‖2

2+Tr(Σθ DT D)
M

(8) Update Σ0 with:
Σ0 = diag (γ1, · · · , γM)⊗ B

For a multichannel image patch x, the solution to θ could be found with Algorithm 2, which is
modified by us from the bSBL Bound Optimization (BSBL-BO) algorithm with known partitions
(see [17] for details). Note that θ and y are 2-D matrix in which different bands are aligned column
by column.

Algorithm 2. bSBL (Block Sparse Bayesian Learning) for multichannel decomposition

1. Initialization:
(1) Set µθ to all zeros and γ to all ones.
(2) Set Σ and Σ0 to the identity matrix.

2. Repeat until the stop-criterion is reached:
(1) Set the coefficient of the ith position to zero when γi is lower than threshold.
(2) Update the sparse coefficient θ with:

θ∗ = µθ = Σ0DT(λI + DΣ0DT)−1x
(3) Update the covariance matrix Σθ with:

Σθ =
(

Σ−1
0 + 1

λ DT D
)−1

(4) For each block i = 1, 2, · · · , g, update the general block sparsity γi with:

γi =

√
γiθ

T
i θi

Tr
(
(Di)

T Di
)

(5) Update the unconstrained weight λ with:

λ =
‖x−Dµθ‖2

2+Tr(Σθ DT D)
M

(6) Update Σ0 with:
Σ0 = diag ({γi})

3.4. Training

The following steps are used to train dictionary pairs and coefficient mapping matrix of high- and
low-resolution patches. Preprocessing and clustering are performed before dictionaries are coupled.
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(1) Preprocessing images of time t1 and t3

The difference images X31 and Y31 are calculated, and divided into patches. Each patch removes
the mean value and is normalized to 1 under the `2 norm.

(2) Clustering

A clustering method (e.g., the k-means algorithm) is employed for the patch X31 set to classify
the patches into different categories according to the distance to the clustered centers.

The following flows are processed independently for each class. To do this, a bank of
high-resolution patches of the same class is extracted to form the new X, and their counterpart
low-resolution patches form the new Y.

(1) Initialization

The sparse coefficients are initially assumed to be the same, i.e., αX = αY = α0. A dictionary
learning method (e.g., online dictionary learning or K-SVD) can then be used to solve
the following:

arg min
α0

‖X−DXα0‖2
2 + ‖Y−DYα0‖2

2 + λ1 ‖α0‖1 (12)

This gives the initial dictionary pair DX and DY.

Then, the bSBL constraint is used to obtain a new α0 by solving the following:

arg min
α0

‖X−DXα0‖2
2 + ‖Y−DYα0‖2

2 + λ2 · bSBL (α0)

= arg min
α0

∥∥∥∥∥
[

X
Y

]
−
[

DX
DY

]
α0

∥∥∥∥∥
2

2

+ λ2 · bSBL (α0)

(13)

WX→Y and WY→X are initialized to be the identity matrix.

(2) Updating dictionaries and mapping matrix

αY is updated with

αY = arg min
αY

‖Y−DYαY‖2
2 + λ1 ‖αX−WY→XαY‖2

2

+ λ2 · bSBL (αY)

= arg min
αY

∥∥∥∥∥
[

Y
λ1αX

]
−
[

DY
λ1WY→X

]
αY

∥∥∥∥∥
2

2

+ λ2 · bSBL (αY)

(14)

αX is updated with

αX =arg min
αX

‖X−DXαX‖2
2 + λ1 ‖αY−WX→YαX‖2

2

+ λ2 · bSBL (αX)

= arg min
αX

∥∥∥∥∥
[

X
λ1αY

]
−
[

DX
λ1WX→Y

]
αX

∥∥∥∥∥
2

2

+ λ2 · bSBL (αX)

(15)

Dictionaries DY and DX are updated with dictionary learning methods.

WY→X and WX→Y could be directly obtained by solving the least square equations

WY→X = arg min
WY→X

‖αX −WY→XαY‖2
2

WX→Y = arg min
WX→Y

‖αY −WX→YαX‖2
2

(16)
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The iteration stops when it reaches the maximal number or the total cost does not decrease
any more.

This process is repeated until all classes have trained the dictionary pair {DX , DY} and the
mapping relations {WY→X , WX→Y}.

3.5. Prediction

To perform spatiotemporal fusion, the patch matrix from the low-resolution difference image Y21

and Y23 are presented, which are used to predict the reconstruction image independently. For simplicity,
the patch matrix of Y21 or Y23 is abbreviated as Y, while the predicted images is X.

(1) Classification

All patches are categorized into different classes according to the distance to the clustering centers
that were produced during the training stage.

(2) Initialization

A class of patches is chosen to form the new Y. The dictionary pair {DX , DY} and the mapping
correlation {WY→X , WX→Y} linking to this class are picked from the trained parameters.

The initial αY, αX , and X are obtained by solving the following:

αY = arg min
αY

‖Y− DYαY‖2
2 + λ2 · bSBL (αY)

αX = WY→X ∗ αY

X = DX ∗ αX

(17)

(3) Updating the predicted image iteratively

Update αY:

αY = arg min
αY

‖Y−DYαY‖2
2 + λ1 ‖αX−WY→XαY‖2

2

+ λ2 · bSBL (αY)

= arg min
αY

∥∥∥∥∥
[

Y
λ1αX

]
−
[

DY
λ1WY→X

]
αY

∥∥∥∥∥
2

2

+ λ2 · bSBL (αY)

(18)

Update αX :

αX = arg min
αX

‖X−DXαX‖2
2+λ1 ‖αY−WX→YαX‖2

2

+ λ2 · bSBL (αX)

= arg min
αX

∥∥∥∥∥
[

X
λ1αY

]
−
[

DX
λ1WX→Y

]
αX

∥∥∥∥∥
2

2

+ λ2 · bSBL (αX)

(19)

Update X:
X = DX ∗ αX (20)

4. Experiments and Validation

Performance of the proposed fusion method is evaluated in this section, which is compared with
four state-of-the-art methods that were proposed recently to show the validation. The comparison
demonstrates the digital differences and visual differences when these methods are used to fuse images
of MODIS and Landsat-7.
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4.1. Experimental Scheme

Five spatiotemporal fusion methods are used for fusion, including STARFM [6], class-RSpatialU [11],
EBSCDL [15], and the bSBL-SCDL method proposed in this paper. An additional algorithm is the
multichannel version of bSBL-SCDL, which we called msSBL-SCDL. The parameters of bSBL-SCDL
are set as follows: size of each image patch is 5 × 5, γ is 0.01, λ1 is 0.01, dictionary size is 128,
classified number is 32, and the block length of bSBL is 3 with unknown partitions. These parameters
are also used by SCDL and EBSCDL. λ2 of EBSCDL is 0.1. Parameters of msSBL-SCDL are exactly the
same as bSBL-SCDL.

The red, green, and near-infrared (NIR) bands of the reflection products from Landsat-7 ETM+
and MODIS multispectral (MS) sensors are selected as the source images for fusion. These images
have been used in [6,15]. Here, we divided them into multiple 300 × 300-size images for comparison.
The Landsat-7 ETM+ images have a revisiting period of 16 days with 30 m of the ground resolution,
while the MODIS MS images could be captured daily with 500 m of the ground resolution. The data
used in this paper were captured on 24 May, 11 July, and 12 August of 2001, respectively. The Landsat-7
data on 11 July 2001 was set as the data to be reconstructed, which would be verified with the real
data to determine the performance of the comparison algorithms. Before the fusion was performed,
each low-resolution image was scaled to the same resolution as that of high-resolution images.

High structural correlation was the initial motivation that msSBL-SCDL works. We could find,
however, that high correlation exists only between the red band and the green band. For example,
we tested the structural similarity between bands of the ground image to be predicted with the
metric of SSIM, which are 0.7993 for red-green, 0.0654 for red-NIR, and 0.0952 for green-NIR.
The evaluated numbers of correlation coefficients are 0.9570 for red-green, 0.4200 for red-NIR,
and 0.5169 for green-NIR. Therefore, we used msSBL-SCDL only for the red band and the green
band as a whole.

4.2. Comparative Summary: Prediction Performance

The root mean square error (RMSE) of fused images with respect to varied algorithms were
measured for performance validation by comparing the predicted images to the real images—see
Tables 1–3. The peak signal-to-noise ratio (PSNR) was not evaluated because reflectance ranges from 0
to 1. As RMSE is not the most suitable metric for remote sensing applications when spectral loss is
involved , some popular metrics are also used in Tables 4 and 5, including spectral angle mapper (SAM),
relative average spectral error (RASE) [24], Erreur Relative Globale Adimensionnelle de Synthese
(ERGAS) [25], and Q4 [26]. Note that the ideal result is 0 for SAM, RASE, and ERGAS, while it is 1 for
Q4. msSBL-SCDL was only evaluated in Tables 1 and 2 due to the correlation limit between bands.

Table 1. Reflectance root mean square error (RMSE) of the Red Band.

Image Number 1 2 3

mean 0.0345 0.0367 0.0355
stdvar 0.0141 0.0124 0.0108

STARFM 0.0105 0.0058 0.0067
class-RSpatialU 0.0106 0.0061 0.0056
SCDL 0.0108 0.0060 0.0058
EBSCDL 0.0108 0.0060 0.0058
bSBL-SCDL 0.0102 0.0055 0.0059
msSBL-SCDL 0.0104 0.0059 0.0062
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Table 2. Reflectance RMSE of the Green Band.

Image Number 1 2 3

mean 0.0476 0.0511 0.0487
stdvar 0.0121 0.0079 0.0084

STARFM 0.0098 0.0042 0.0044
class-RSpatialU 0.0110 0.0065 0.0065
SCDL 0.0102 0.0039 0.0040
EBSCDL 0.0102 0.0039 0.0040
bSBL-SCDL 0.0095 0.0037 0.0038
msSBL-SCDL 0.0095 0.0037 0.0038

Table 3. Reflectance RMSE of the NIR Band.

Image Number 1 2 3

mean 0.2113 0.2249 0.2320
stdvar 0.0383 0.0413 0.0413

STARFM 0.0200 0.0164 0.0179
class-RSpatialU 0.0263 0.0283 0.0343
SCDL 0.0192 0.0153 0.0164
EBSCDL 0.0191 0.0154 0.0164
bSBL-SCDL 0.0190 0.0150 0.0173

Table 4. Spectral evaluation of NIR/Red/Green bands: image 1.

SAM RASE ERGAS Q4

STARFM 0.0314 0.1452 0.0546 0.7933
class-RSpatialU 0.0339 0.1793 0.0582 0.7394
SCDL 0.0307 0.1431 0.0563 0.8086
EBSCDL 0.0307 0.1429 0.0563 0.8094
bSBL-SCDL 0.0296 0.1395 0.0534 0.8105

Table 5. Spectral evaluation of NIR/Red/Green bands: image 3.

SAM RASE ERGAS Q4

STARFM 0.0311 0.1057 0.0291 0.8903
class-RSpatialU 0.0371 0.1939 0.0366 0.8161
SCDL 0.0300 0.0977 0.0284 0.9107
EBSCDL 0.0300 0.0976 0.0284 0.9110
bSBL-SCDL 0.0308 0.1023 0.0285 0.8970

The digital evaluation of Tables 1–3 shows that all these methods could reconstruct the
“unknown” high-resolution image for the given time effectively. STARFM, SCDL, EBSCDL, bSBL-SCDL,
and msSBL-SCDL perform steadily in producing similar digital errors. The differences between SCDL
and EBSCDL are hardly distinguished. The bSBL-SCDL and msSBL-SCDL methods that we proposed
in this paper could slightly outweigh other methods in most cases. Table 2 shows that bSBL-SCDL and
msSBL-SCDL produced very similar results for the green band, but Table 1 shows that bSBL-SCDL
could outperform msSBL-SCDL for the red band.

The spectral evaluation of Tables 4 and 5 illustrates that SCDL, EBSCDL and bSBL-SCDL could
maintain a slightly higher spectral fidelity than methods of STARFM and class-RSpatialU, which offers
substantial benefits for remote sensing applications. Our bSBL-SCDL method produces the least
spectral distortion for image 1 and just a bit more for image 3.
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Figures 4 and 5 are displayed with the tool of ENVI 2% enhancement. As the histogram
distributions of reconstructed images are not exactly the same, the spectral evaluation is more
trustworthy than displayed colors. However, the degree of spatial enhancement is distinguishable,
which shows that STARFM and class-RSpatialU reconstruct textural details well, while SCDL, EBSCDL,
and bSBL-SCDL reconstruct more structural details.

(a) (b)

(c) (d)

(e) (f)

Figure 4. Fused image 1 with r/g/NIR bands. (a) STARFM, (b) class-RSpatialU, (c) True, (d) bSBL-SCDL,
(e) EBSCDL, (f) SCDL.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Fused image 3 with r/g/NIR bands.(a) STARFM, (b) class-RSpatialU, (c) True, (d) bSBL-SCDL,
(e) EBSCDL, (f) SCDL.
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5. Discussion

We noticed that, in the comparison of the third reconstruction of the NIR band, bSBL-SCDL
is inferior to SCDL and EBSCDL. To disclose the reason, the produced images were compared
block by block. Then, it is confirmed that the differences exist mainly in some smoothing areas.
Specifically, our method produced even more details than expected in these areas. This is quite
possibly due to the insufficient coefficients sparsity for the plain terrestrial content. However, in the
areas of rich edges and contours, bSBL-SCDL could perform better steadily. This shows that the
proposed method could be further improved either by treating the smoothing areas separately or by
integrating other fusion methods that have slight advantages for smoothing content. Additionally,
msSBL-SCDL could be expected to obtain even better results when more correlated bands, for instance
the red, green, and blue bands, are involved.

The images in Figures 4 and 5 could explain the characteristics of two classes of spatiotemporal
fusion methods. Combining methods (STARFM and class-RSpatialU) in a linear fashion has advantages
for the seasonally changing areas, typically forests and water. By observing the structures within
images, it is confirmed that sparse representation methods, including SCDL, EBSCDL, and bSBL-SCDL,
could produce even richer edges and contours. Therefore, the latter method could perform better for
applications of urban environments. The former class is relatively simple and fast, which is suitable
for statistical applications of vegetation and crops.

The relative radiometric error (RAE) could be otained with RAE = RMSE/mean. Then, the
best RAEs of all images are calculated: 29.61%, 15.02%, 16.49%, 19.99%, 7.31%, 7.85%, 9.01%, 6.68%,
and 7.47%. It is evident that the red and green band of image 1 fall out of the acceptable range of 15%
maximum errors. This could be explained with the detail level of “stdvar/mean”. It then becomes
clear that the challenging issue still exists in predicting images of rich details.

The main obstacle of the bSBL-SCDL algorithm that we proposed in this paper is the
processing speed. Generally, it requires a long time to produce an optimization solution. Two possible
accelerations are therefore considered in the future work: coding with OPENMP/MPI/GPU support
for parallel running, or improving the bSBL optimization method theoretically.

6. Conclusions

In this paper, we proposed a fusion method to integrate remote sensing images of different spatial
and temporal resolutions to construct new images of high spatial and temporal resolutions. The new
method follows the concept of coupling dictionaries and coefficients of images of the same content from
different sensors, but the critical sparse term of coded coefficients is replaced with the block sparseness
constraint to find even more accurate coefficients. The new regularization method is significant for the
spatiotemporal fusion task because the inaccurate sparse representation in the training stage would be
amplified when it is used for prediction.

We named the proposed method as bSBL-SCDL for single-channel prediction and msSBL-SCDL
for multichannel prediction. bSBL-SCDL could improve the prediction accuracy because it employs
the structural sparseness property of coefficient that makes better approximation to the `0 norm than
the `1-norm solutions from LASSO, OMP, and so on. msSBL-SCDL, on the other hand, employs the
property that coefficients of highly correlated bands should have similar sparseness distribution.
To validate this, we compared them with some state-of-the-art fusion methods including STARFM,
class-RSpatialU, SCDL, EBSCDL using the red, green, and NIR bands of Landsat-7 and MODIS.
The experiment shows that, in most cases, the proposed bSBL-SCDL method obtained the best
reconstruction results under the metric of root mean square errors. Quantitatively for the red and green
bands, bSBL-SCDL is around 5% better than SCDL and EBSCDL, and 3%–20% better than STARFM.
For the NIR band, bSBL-SCDL shows a similar performance to SCDL and EBSCDL, but is obviously
better than STARFM. This proves that its reconstruction is generally closer to the real images than
other latest methods. The proposed msSBL-SCDL could also slightly improve the reconstruction
performance for the red and green band.
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