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Abstract: In this work, a novel building change detection method from bi-temporal dense-matching
point clouds and aerial images is proposed to address two major problems, namely, the robust
acquisition of the changed objects above ground and the automatic classification of changed objects
into buildings or non-buildings. For the acquisition of changed objects above ground, the change
detection problem is converted into a binary classification, in which the changed area above ground
is regarded as the foreground and the other area as the background. For the gridded points of each
period, the graph cuts algorithm is adopted to classify the points into foreground and background,
followed by the region-growing algorithm to form candidate changed building objects. A novel
structural feature that was extracted from aerial images is constructed to classify the candidate
changed building objects into buildings and non-buildings. The changed building objects are further
classified as “newly built”, “taller”, “demolished”, and “lower” by combining the classification
and the digital surface models of two periods. Finally, three typical areas from a large dataset are
used to validate the proposed method. Numerous experiments demonstrate the effectiveness of the
proposed algorithm.

Keywords: building change detection; digital surface model; structural feature; point cloud;
aerial images

1. Introduction

Building change detection, an important component for updating a geographic information
database, has become a major research topic in the fields of photogrammetry and remote sensing.

Previous automatic change detection studies [1,2], ranging from pixel-based to object-based
approaches, mainly focused on land cover and land use from remotely sensed images, and barely
took into consideration building scale. With the maturity and popularity of high-resolution images,
especially high-resolution satellite images (e.g., QuikBird, GeoEye-1, WorldView-1/2), several
scholars [3–15] have attempted to detect changes in buildings on the basis of spectral information
alone. However, factors such as shadows, occlusions, relief displacement, and spectral variation of
buildings, make obtaining highly accurate results and guaranteeing the reliability and stability of these
methods difficult.

Owing to the breakthrough of laser scanner hardware and the technology of dense image
matching, which effectively obtains the digital surface model (DSM) and supplies the robust height
feature of buildings, numerous scholars have conducted building change detection in three dimensions,
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or the so-called DSM-assisted building change detection. A review of three-dimensional (3D) change
detection is presented in Qin et al. [16]. Building change detection based on LiDAR data has achieved
promising results with DSM comparison [17] and geometric analysis [18,19]. However, considering
the cost of LiDAR data acquisition, many researchers have opted to study stereo pairs for building
change detection because of their low cost and wide availability. In such methods, DSM is obtained by
stereo image matching.

Recently, Tian et al. [20] proposed a region-based method for change detection using spaceborne
panchromatic Cartosat-1 stereo imagery. For IKONOS and WorldView-2 stereo pairs, Tian et al. [21]
adopted Dempster–Shafer fusion theory to combine the height changes that were derived by DSM and
Kullback–Liebler divergence similarity measure between the original images to extract real building
changes. Qin [22] proposed to detect changes from Level of Detail 2 models at the face level with
very high resolution stereo images. Multi-channel indicators were fused with a self-organizing map
to classify the faces as “change”, “no change”, and “uncertain change”. The uncertain changes were
determined through a Markov random field analysis. New buildings were detected by combining
DSM and multispectral orthophotos. For buildings larger than 200 m2, both the synthetic experiment
with WorldView-2 stereo imagery and the real experiment with IKONOS stereo imagery showed the
effectiveness of the proposed method. Tian et al. [23] proposed a novel method for building damage
assessment after the earthquake in Haiti using two post-event satellite stereo imagery and DSMs.
Using multi-temporal aerial stereo pairs, Jung [24] first compared two DSMs to focus on the changed
areas and then classified the resulting regions of interest with decision trees. Meanwhile, Qin [25]
proposed an object-based hierarchical method to detect the changes from multi-temporal unmanned
aerial vehicle images. These images were registered based on scale-invariant feature transform feature
points via the general bundle adjustment framework. Then, a multi-primitive segmentation, followed
by a multi-criteria decision analysis was proposed for change determination. Qin et al. [26,27] proposed
an object-based 3D building change detection method from multi-temporal stereo images based on
supervised classification. Du [28] proposed an automatic building change detection algorithm in urban
areas using aerial images and LiDAR data. In this study, height difference and grayscale similarity were
first calculated as change indicators. The graph cuts method was employed to determine changes, and
then refinement was performed to remove non-building changes. Chen [29] proposed a novel change
detection framework with an RGB-D map that was generated by 3D reconstruction. RGB-D maps were
first generated by the 3D model. Then, building change detection was achieved by combining depth
difference and grayscale difference maps with random forest classification.

The building change detection methods mentioned were primarily based on energy optimization
or a supervised classification framework through the combination of height, spectral, and shape
information. Methods based on a supervised classification framework rely on training samples.
The collection of sufficient training samples usually requires extensive labor. Thus, a method based on
energy optimization framework is proposed in this work to address two major problems. One problem
is the robust acquisition of changed objects above ground to effectively exclude terrain changes and
to maintain the integrity of the changed object, and the other problem is a robust structural feature
constructed to distinguish buildings from non-buildings even for images with radiometric distortion.
The details are as follows. For the gridded points of each period, a graph-cuts-based algorithm
that uses DSM, difference of DSM (dDSM), and normalized DSM (nDSM) as features is proposed to
classify them into changed and unchanged points above ground, and a region-growing algorithm
is performed to form candidate changed building objects. To exclude the non-building changes
mainly caused by trees, a robust structural feature of images is designed to classify the candidate
changed objects into buildings and non-buildings on the basis of the histogram of the direction of
lines (HODOL). Next, the two periods’ classification and DSM information are combined to locate
the actually changed buildings and further classify them as “newly built”, “taller”, “demolished”,
and “lower” with priori-knowledge-guided analysis. Finally, three typical test areas are used to verify
the proposed method.
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The main contributions of our work are as follows:

(1) A graph-cuts-based algorithm is proposed to extract changed objects above ground, which can
effectively exclude terrain changes and extract changed objects as complete as possible.

(2) A robust structural feature of images is designed to classify buildings and non-buildings on the
basis of HODOL, which is suitable for images with radiometric distortion.

The rest of this paper is organized into four sections. Section 2 describes the technical overview
of the proposed algorithm and presents the details of its four major phases. Section 3 presents the
experimental results, followed by a discussion in Section 4. Finally, Section 5 draws the conclusions.

2. Building Change Detection from Dense-Matching Point Clouds and Aerial Images

A novel algorithm for building change detection from dense-matching point clouds and aerial
images is proposed in this work. As shown in Figure 1, the proposed algorithm is composed
of four steps, namely, pre-processing (Section 2.1), graph-cuts-based changed object extraction
(Section 2.2), classification of buildings and non-buildings with a structural feature (Section 2.3),
and priori-knowledge-guided change type determination (Section 2.4).

Figure 1. Workflow of the proposed algorithm for building change detection from dense-matching
point clouds and aerial images.

2.1. Pre-Processing

Pre-processing is performed to obtain gridded DSM, gridded digital terrain model (DTM), gridded
nDSM, and gridded dDSM.

Gridded DSM: Point cloud data is the point cloud that is generated by dense image matching.
First, the points are assigned a grid index, and the grid size is set to a specific distance (e.g., 1.0 m,
which is twice the space between neighbor points). Then, the median of points in each grid cell is
selected as the value of the grid cell. Gridding is repeated on the two periods’ point clouds to obtain
gridded DSMt1 and DSMt2, respectively.
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Gridded DTM: Progressive TIN algorithm [30] is adopted to obtain the ground points from the
point cloud. Gridded DTM is interpolated from these ground points. Interpolation is repeated on the
two periods’ point clouds to obtain gridded DTMt1 and DTMt2, respectively.

Gridded nDSM: Gridded nDSM is obtained by subtracting gridded DTM from the gridded DSM,
i.e., nDSM = DSM − DTM. Thus, nDSMt1 = DSMt1 − DTMt1 and nDSMt2 = DSMt2 − DTMt2.

Gridded dDSM: After the gridded DSMt1 and DSMt2 are obtained, dDSM is derived by
subtracting DSMt1 from DSMt2, i.e., dDSM = DSMt2 − DSMt1.

2.2. Graph-Cuts-Based Changed Object Extraction

On the basis of the gridded DSM, nDSM, and dDSM, the change detection of points above ground
is converted into a binary classification problem. The changed points above ground are considered the
foreground and the other points are the background. The graph cuts algorithm [31,32] is adopted to
achieve this binary classification for extracting the changed points above ground. In this algorithm,
gridded DSM, dDSM, and nDSM data are the data sources. Each gridded point is treated as a node
of the graph cuts, and the energy of the node’s data term is calculated by dDSM and nDSM. The
set of neighborhood points is treated as the edge of the graph cuts, and the energy of the smooth
term of the edge is determined by the Z-value difference of the DSM between two neighbor points.
The graph cuts algorithm is used to assign a label to each node with the minimum energy cost. For the
points that belong to the foreground, a region-growing algorithm is performed to obtain the changed
objects above ground. These extracted changed objects are taken as candidate changed building objects
for further classification in the next step. An overview of graph cuts, the energy definition of our
graph-cuts-based changed points above ground extraction, and the changed object formation by region
growing are described below.

2.2.1. Overview of Graph Cuts

Before the graph-cuts-based changed object extraction is explained in detail, a brief overview
of the graph cuts algorithm, which was initially proposed by Boykov et al. [32], is necessary to be
presented first. The basic idea of the graph cuts algorithm is to construct a weight map and adopt
the max-flow/min-cut algorithm [33] to find the optimal solution. The objective of the graph cuts
algorithm is to assign a label to each element by minimizing the following energy function E [32]:

E = Edata + Esmooth (1)

where Edata represents the data term, which is expressed as follows:

Edata = ∑
p∈P

Dp(lp), (2)

where P is the set of all the elements (i.e., nodes in the graph), and Dp(lp) represents the cost of
assigning label lp to element p.

Esmooth represents the smooth term, which is mainly used to punish assigning the different labels
to adjacent elements, i.e.,

Esmooth = ∑
{p,q}∈N

V{p,q}(lp, lq), (3)

where N is the set of all element pairs in the neighborhood (i.e., edges in the graph); p and q are two
neighbor points; and V{p,q}(lp, lq) defines the cost of assigning labels lp and lq to element pairs p and
q, respectively.

After the data and smooth terms are defined, the minimum cut is obtained using the
max-flow/min-cut algorithm [33]. Binary classification (i.e., foreground and background) graph
cuts are taken as examples, and the basic workflow of the graph cuts algorithm is shown in Figure 2.
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Figure 2. Workflow of binary-classification graph cuts.

2.2.2. Energy Definition

In our algorithm, the graph cuts algorithm is used to assign each grid point a label (including
foreground and background). The foreground represents the changed points above ground, and the
background represents the other points. The cost of each point belonging to either the foreground or
the background is represented by a data term, which is determined through the features of nDSM and
dDSM. dDSM is used to extract the changed object area, while nDSM is used to exclude the terrain
changes. The data term Dp(lp) is defined as

Dp(lp) =

{
f f g(nDSMp, dDSMp) i f lp = f g
fbg(nDSMp, dDSMp) i f lp = bg

, (4)

where lp represents the label of p (including “fg” and “bg”, which are the abbreviations of foreground
and background, respectively). nDSMp and dDSMp are the values of p in nDSM and dDSM,
respectively. f f g(nDSMp, dDSMp) and fbg(nDSMp, dDSMp) represent the cost functions if p belongs
to the foreground and the background, respectively. f f g(nDSMp, dDSMp) and fbg(nDSMp, dDSMp)

are defined as

f f g(nDSMp, dDSMp) =


0 i f nDSMp ≥ TnDSM and

∣∣dDSMp
∣∣≥ TdDSM2

TdDSM2−|dDSMp|
TdDSM2−TdDSM1

· Tmax i f nDSMp ≥ TnDSM and TdDSM1 ≤
∣∣dDSMp

∣∣< TdDSM2

Tmax other

(5)

fbg(nDSMp, dDSMp) = Tmax − f f g(nDSMp, dDSMp), (6)

where TnDSM is the minimum elevation of the building object determined in the experiment. In
this work, TnDSM is set to 2.2 m. TdDSM1 and TdDSM2 are the two thresholds of dDSM. TdDSM1 is
approximately twice the precision of DSM, while TdDSM2 corresponds to the minimum elevation of the
building object, same as that in TnDSM. Tmax denotes a large penalty value, which is denoted as 20 in
this study.
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The smooth term V{p,q}(lp, lq) is determined by the Z-value difference of the DSM between two
neighbor points. It is defined as

V{p,q}(lp, lq) =


0 i f dLen < TdLen1 or lp = lq

dLen−TdLen1
TdLen2−TdLen1

· Tmax i f TdLen1 ≤ dLen < TdLen2 and lp 6= lq
Tmax i f dLen ≥ TdLen2 and lp 6= lq

, (7)

dLen =
∣∣Zp − Zq

∣∣, (8)

where dLen is the absolute value of the Z-value difference of the DSM between two adjacent points.
The greater the difference is, the greater the cost of the smooth term will be. TdLen1 and TdLen2 are two
thresholds of the Z-value difference of the DSM. In this study, TdLen1 and TdLen2 are set to 0.1 and 0.5
m, respectively. Tmax is a large penalty value, which is the same as in Equation (5).

After the data and smooth terms are defined, the max-flow/min-cut algorithm is used to classify
the grid points into foreground and background.

2.2.3. Changed Object Formation by Region Growing

For the points that belong to the foreground, a region-growing algorithm is used to form objects.
The process of region growing is shown in Figure 3. In region growing, two neighbor grid points with
the difference of the DSM less than a defined value (e.g., 0.3 m, values between 0.3 and 0.4 m) grow
together to be a changed object. This process is repeated until such time that the points are unable to
meet the requirement. Objects that are smaller than the defined area (e.g., 50 m2, corresponding to
the minimum area of the building of interest) will be discarded. The extracted objects are taken as the
candidate changed building objects.

Figure 3. Changed object formation by region growing.

2.3. Classification of Buildings and Non-Buildings with a Structural Feature

For the candidate changed building objects, some non-buildings, mainly trees, are still included.
Additional features are required to further exclude these non-buildings from real building changes.
For the aerial images, because of the lack of infrared channels, distinguishing buildings from vegetation
is typically complex if the image color alone is used. The cases of vegetation-covered roof, green house,
and dark vegetation as a result of tone deviation are shown in Figure 4a,b,c, respectively. In these
cases, distinguishing the building from the vegetation by relying solely on the color information
is complicated.
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Figure 4. Roof and vegetation indistinguishable by color alone. (a) Vegetation-covered roof; (b) Green
house; and, (c) Dark vegetation as a result of tone deviation.

To solve this problem, a novel structural feature based on the HODOL derived from image spectral
information is designed in this work to effectively identify building objects. This feature is inspired by
the histogram of gradient [34]. The gradient orientation of buildings generally has distinct regularity,
whereas that of non-buildings is irregular. This difference is attributed to the structures of the buildings
and the non-buildings. Specifically, the former is mainly composed of long lines and have two main
directions perpendicular to each other, whereas the latter is mainly composed of many short lines and
no obvious main direction. With the above consideration, a novel structural feature based on HODOL
is proposed to classify buildings and non-buildings (Figure 5). The details are as follows.

Step 1—Extraction of image patch corresponding to the candidate changed building object.
The best image is first selected from the aerial images with the criterion that the distance between the
center of the object and the principal point of the aerial image is closest. The object’s position on the
best image is then calculated according to the geographical scope of the object. The corresponding
image patch is finally extracted from the best image.

Step 2—Extraction and simplification of the line segment. Edge detection algorithm is used
to extract the edge. In this study, canny algorithm is used for edge extraction. The corresponding
parameters are sigma = 0.4, low threshold = 0.4, and high threshold = 0.6. Based on the extracted edges,
the line segments are simplified through the Douglas–Peucker algorithm. In this study, the distance
threshold for the Douglas–Peucker algorithm is set to 1.0 pixel.

Step 3—Construction of the HODOL. For each straight line segment, calculate its length and
direction (Dir), where the direction is within the range of [0,180]. Then, with a certain step, divide the
direction range equally into several bins. In this study, the used step is 10, and the number of bins is 18.
Finally, calculate the HODOL, which is the basis for the structural feature used to classify buildings
and non-buildings. The HODOL value of each bin (HODOLj) is calculated as follows:

HODOLj =
m

∑
i=1

qiqi/
n

∑
i=1

qi, j ∈ [0, 1, 2, . . . ., 17], (9)

where m represents the straight line segments belonging to bin j, n is all the straight line segments
in the image patch, and qi is the weight of the straight line segment i corresponding to its length.
Normalization suppresses the HODOL value of the image patch comprising a large number of short
line segments. The higher the value of HODOLj, the greater the probability that long straight line
segments exist.

Step 4—Construction of the structural feature. The structural features obtained from HODOL are
characterized by verticality and long linearity.

Verticality: Definition of the threshold T1 of HODOL (e.g., 0.5). If the two bins with HODOLj
larger than T1 exist and these two bins have nine intervals, then two long straight line segments are
considered to exist in the image patch and the two line segments are perpendicular to each other.
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The higher the number of verticality N, the larger the possibility of the image patch belonging to
a building.

Long linearity: For the area where the building exists, long linearity is often present. Long linearity
is measured by HODOL0.

Statistics of the structural feature is calculated as follows,

Astatistics = (1 + N) ·HODOL0, N ∈ [0, 1, 2, . . . ., 9], (10)

Step 5—Classification of the image patch. If the statistics of the structural feature is larger than the
defined threshold T2 (e.g., 3.0), then the image patch is classified as a building. Otherwise, this image
patch is classified as a non-building.

Figure 5. Structural feature for classifying buildings and non-buildings.

2.4. Priori-Knowledge-Guided Change Type Determination

After the classification of changed objects at time t1 or t2 is obtained, several rules are summarized
according to a priori knowledge, as shown in Table 1. The change type of the objects is then determined
using these rules.

Table 1. Change type determination with the guidance of a priori knowledge.

Object Classification at Time t1/
Object Classification at Time t2 Building Non-Building

Building Taller, if DSMt1 < DSMt2
Lower, if DSMt1 > DSMt2

Demolished

Non-building Newly built No change 1

1 “No change” represents no building change.

The change type of the objects can be easily determined from Table 1. The objects that have “no
change” are not labeled. Finally, the small changed objects whose area is smaller than that of the
defined area threshold are merged with their adjacent changed objects.

3. Results

Three typical test areas selected from a large dataset covering 3.28 km2 are chosen for building
change detection to verify the effectiveness of the proposed method.
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3.1. Description of Dataset

The large dataset is composed of two periods’ stereo aerial images that were acquired with the
same type of camera and flight plans. The overview of this dataset at time t1 and t2 is shown in Table 2.
In this work, two periods’ datasets have been georeferenced and registered. The point clouds are
generated by software Inpho 6.0 (Trimble Inc., Sunnyvale, CA, USA). The spacing between neighbor
points is approximately 0.5 m. In this study, Terrasolid (Terrasolid Ltd., Helsinki, Finland) is used to
filter point cloud data. The parameters are as follows: max building size is 100 m, terrain angle is 88◦,
iteration angle is 3◦, and iteration distance is 0.7 m. An overview of the large dataset and selected test
areas is shown in Figure 6.

Table 2. Overview of the datasets used.

Dataset Shooting Time Camera Focal Length Image Size Pixel Size Forward Lap Side Lap

t1 2012 DMC 120 mm 7680 × 13,824 12 µm 65% 35%
t2 2013 DMC 120 mm 7680 × 13,824 12 µm 65% 35%

Figure 6. Overview of the large dataset and the three selected datasets. (a) Overview of the large
dataset; (b) test area 1 in 2012; (c) test area 1 in 2013; (d) test area 2 in 2012; (e) test area 2 in 2013; (f) test
area 3 in 2012; and (g) test area 3 in 2013.

Area 1: The test area is a complex residential area with dense high-rise houses (Figure 6b,c).
The size of this area is 370 m × 200 m.

Area 2: The area is a typical suburban area with sparse housing and dense farmland. It also
contains a small mountain covered by many trees. In this mountain area, there are a few residential
buildings surrounded by trees (Figure 6d,e). The size of this area is 1000 m × 1000 m.

Area 3: The area is characterized by dense low-rise houses with dark roofs (Figure 6f,g). The size
of this area is 373 m × 472 m.
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3.2. Experimental Results

In this section, qualitative and quantitative evaluations of our method, including changed object
extraction by graph cuts, classification of buildings and non-buildings with the structural feature, and
building change detection, are described.

3.2.1. Changed Object Extraction by Graph Cuts

For aerial images, DSM is reliable and has good quality for most scenes. Thus, DSM and its
variant features, such as dDSM and nDSM, are suitable for changed object extraction. In addition,
graph cuts use double thresholds to calculate the change probability of grid points, and its optimized
result is more robust than that with a single threshold. In this study, TnDSM, TdDSM1, TdDSM2, TdLen1,
and TdLen2 are set to 2.2, 0.5, 2.2, 0.1, and 0.5 m, respectively. To show the effectiveness of the proposed
algorithm of changed object area extraction by graph cuts, the rule-based binary classification by nDSM
and dDSM with a “hard” threshold is used for comparison (Figure 7). The blue oval in Figure 7a,b
shows that the integrity of the changed object is poor due to the “hard” thresholds. An inappropriate
threshold also leads directly to the missed detection of the object, as shown in Figure 7b. Figure 7c,d
show that the proposed algorithm, which uses double thresholds and adds DSM difference between
two adjacent points as a smoothness constraint, can effectively ensure the integrity of the extracted
object as well as exclude the rough areas.

Figure 7. Binary classification by nDSM and dDSM and changed building object extraction by graph
cuts. (a) Thresholds of nDSM and dDSM are set to 2.2 and 0.5 m, respectively. (b) Thresholds of nDSM
and dDSM are set to 2.2 and 2.2 m, respectively. (c) Changed building area extraction by graph cuts.
(d) Candidate changed building object formation by region growing.

3.2.2. Classification of Building and Non-Building with a Structural Feature

Changed object extraction and object-based classification are performed separately on each
period’s data. The results of changed object area extraction by graph cuts, changed object formation by
region growing, and object-based classification with the structural feature of the three test areas are
shown in Figure 8.

Figure 8 shows that the changed object extraction by graph cuts followed by region growing
achieves effective changed object extraction above ground. The algorithms ensure the integrity of the
changed objects. Meanwhile, the classification of building and non-building is based on the object scale.
Given that the classification only focuses on objects above ground, the confusion between bare ground
and roof can be dramatically removed. Table 3 shows the corresponding statistics of the performed
object-based classification in the three test areas.
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Figure 8. Changed object area extraction by graph cuts, changed object formation by region growing,
and object classification with the structural feature.

Table 3. Statistics of the object-based classification with the structural feature.

Test Area

Ground Truth Proposed

Building/
Non-Building

Detected as Building (Wrong Detection)/
Detected as Non-Building (Wrong Detection)

Object-Based
Correctness

Area 1 49/1 47(0)/3(2) 96.0%
Area 2 185/162 188(6)/159(3) 97.4%
Area 3 58/27 58(2)/27(2) 95.3%

The proposed HODOL-based structural feature shown in Table 3 is effective in distinguishing
buildings from non-buildings, even for those buildings that are surrounded by trees in test area 2.
However, several wrong classifications occur as follows. (1) A few terrains with strong long linearity
are misclassified as buildings due to wrong filtering; (2) Thin and small buildings whose verticality
and long linearity are weak are easily misclassified as non-buildings; and, (3) Mixed objects composed
of small buildings surrounded by trees are wrongly classified as non-buildings.

3.2.3. Building Change Detection

This work only considers buildings larger than 50 m2. Hence, in evaluating the building change
detection, the statistics of change detection are only derived for the buildings larger than 50 m2.
The minimum building height is 2.2 m. The two thresholds T1 and T2 are set to 0.5 and 3.0, respectively.
The results obtained by the proposed method are compared with the ground truth to effectively
evaluate the building change detection of the proposed method. The ground truth is measured by
manually collecting stereoscopic images, and their change types are manually labeled as “newly built”,
“taller”, “lower”, and “demolished”.

During the comparison, the result evaluations with change types are divided into the
following categories.

Right detection with right class: If the change type of the pixel to be evaluated is consistent
with the change type of the ground truth, then it is considered as the right detection with right class.
For object-based result evaluation, as long as the object to be evaluated is consistent with the change
type of the ground truth and its detected areas are equal or less than the areas of the ground truth, this
object is considered as right detection with right class.
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Right detection with wrong class: If the change type of the pixel is inconsistent with the change
type of the ground truth but is also detected as changed, then this pixel is considered as right detection
with wrong class. For object-based result evaluation, if the object is inconsistent with the change type
of the ground truth but its detected areas are equal to or less than the areas of the ground truth, then
this object is considered as right detection with wrong class.

Wrong detection: If the pixel is detected as changed but the ground truth is not changed, then this
pixel is considered as the wrong detection. For object-based result evaluation, if the object is detected
as changed but the ground truth is not changed, and then this object is considered as wrong detection.

Missed detection: For the pixels where the ground truth is changed but had no change during
the detection, these pixels are considered as missed detection. For object-based result evaluation, if the
object where the ground truth is changed but no change occurred during the detection, then this object
is considered as missed detection.

The result evaluations with change types of the three test areas and the corresponding object-based
confusion matrix are shown in Figure 9 and Table 4, respectively. As shown in Figure 9 and Table 4,
the proposed algorithm is suitable for the three scenes. The detected building changes are well
consistent with the ground truth.

(a) (b) (c)

(d)

(g) (h) (i)

Area 1

Area 2

Area 3

Newly-built

Taller

Demolished

Lower

Right detection with right class

Right detection with wrong class

Missed detection

Wrong detection

Our results Ground truth Result evaluation

(e) (f)

 

Figure 9. Results of the proposed method, ground truth, and the corresponding result evaluation.
(a,d,g) are the results of Area 1, Area 2, and Area 3 with the proposed method, respectively. (b,e,h) are
the ground truths of Area 1, Area 2, and Area 3, respectively. (c,f,i) are the corresponding result
evaluations of Area 1, Area 2 and Area 3, respectively.

To further verify the proposed method, the object-based statistics of the building change detection
in the three test areas with change types are calculated, as shown in Table 5. Table 5 shows the results
obtained by the proposed algorithm in the third column, for example, 15(14), where 15 is the number
of newly built buildings detected by the proposed method, and 14 is the number of truly newly
built buildings. The resulting values of completeness and correctness of the three areas are 96.4%
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and 93.1%, 98.0% and 88.6%, and 100% and 89.7%, respectively. The object-based statistics shows
the effectiveness of the proposed algorithm. These satisfactory results are mainly attributed to the
following reasons. First, the candidate changed object is accurate. This result is attributed to the
graph-cuts-based framework for changed object extraction, which combines robust features, such as
nDSM, dDSM, and DSM. Second, buildings and non-buildings differ significantly in the proposed
HODOL-based structural feature, which conducts the object-based classification well. However, there
are still several miss detections and wrong detections. The miss detections are mainly caused by small
objects with dense matching errors. The wrong detections are mainly caused by wrong filtering of
point cloud data and HODOL-based classification.

Table 4. Confusion matrix of the building change detection in the three test areas.

Proposed/Ground Truth No Change Newly Built Taller Demolished Lower

Test area 1

No change 0 1 0 0 0
Newly built 1 14 0 0 0

Taller 0 0 13 0 0
Demolished 1 0 0 0 0

Lower 0 0 0 0 0

Test area 2

No change 0 1 0 1 0
Newly built 6 55 3 0 0

Taller 0 1 32 0 0
Demolished 2 0 0 6 0

Lower 0 0 0 0 0

Test area 3

No change 0 0 0 0 0
Newly built 2 10 0 0 0

Taller 0 0 24 0 0
Demolished 1 0 1 1 0

Lower 0 0 0 0 0

Table 5. Object-based statistics of building change detection in the three test areas with change types.

Test Area

Ground Truth Proposed Object-Based Statistics

Newly Built/
Taller/Lower/
Demolished

Newly Built (Truly Newly Built)/
Taller (Truly Taller)/

Lower (Truly Lower)/
Demolished (Truly Demolished)

Cm50 Cr50 Q50

Area 1 15/13/0/0 15(14)/13(13)/0(0)/1(0) 96.4% 93.1% 90.0%
Area 2 57/35/0/7 64(55)/33(32)/0(0)/8(6) 98.0% 88.6% 86.9%
Area 3 10/25/0/1 12(10)/24(24)/0/3(1) 100% 89.7% 89.7%

4. Discussion

4.1. Parameter Selection

The parameters in this work involve point cloud filtering, changed object extraction by graph cuts,
edge extraction and line simplification, and HODOL-based classification of objects. When considering
that this study mainly focuses on candidate changed object extraction by graph cuts and HODOL-based
classification of objects, we mainly discuss the parameter selection of graph cuts and classification, and
the other parameters are determined by experience. The parameters of graph cuts are related to the
precision of DSM and prior knowledge of the building, which are determined through an experiment
supported by theoretical basis in this work. The parameters (T1, T2) of HODOL-based classification
are discussed below.

With test area 2 as an example, Tables 6 and 7 present the statistics of the object-based classification
with different T1 and T2, respectively. Table 6 shows that T1 ranges from 0.3 to 1.5. The precision of
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the classification is high with small floating, and the selection of T1 is insensitive. When T1 = 0.5 and
T2 = 3.0, the precision of the classification is the highest. Table 7 shows that T2 = 4.0 achieves the highest
precision of classification, and T2 = 3.0 achieves the second highest precision. However, for T2 = 4.0,
four building objects are misclassified as non-buildings, while for T2 = 3.0, three building objects are
misclassified as non-buildings. To minimize the missed detection of building change, T1 = 0.5 and
T2 = 3.0 are considered as the appropriate choices.

Table 6. Statistics of the object-based classification with different T1.

(T1, T2) Detected as Building (Wrong Detection)/
Detected as Non-Building (Wrong Detection) Object-Based Correctness

(0.1, 3.0) 282(97)/65(0) 72.0%
(0.3, 3.0) 196(12)/151(1) 96.3%
(0.5, 3.0) 188(6)/159(3) 97.4%
(0.7, 3.0) 187(6)/160(4) 97.1%
(0.9, 3.0) 186(6)/161(5) 96.8%
(1.1, 3.0) 185(6)/162(6) 96.5%
(1.3, 3.0) 184(6)/163(7) 96.3%
(1.5, 3.0) 181(5)/166(9) 96.0%

Table 7. Statistics of the object-based classification with different T2.

(T1, T2) Detected as Building (Wrong Detection)/
Detected as Non-Building (Wrong Detection) Object-Based Correctness

(0.5, 1.0) 234(49)/113(0) 85.9%
(0.5, 2.0) 198(14)/149(1) 95.7%
(0.5, 3.0) 188(6)/159(3) 97.4%
(0.5, 4.0) 185(4)/162(4) 97.7%
(0.5, 5.0) 180(3)/167(8) 96.8%
(0.5, 6.0) 171(3)/176(17) 94.2%
(0.5, 7.0) 158(1)/189(28) 91.6%

4.2. Advantages and Disadvantages of the Proposed Algorithm

The proposed algorithm based on graph cuts uses double thresholds to extract changed objects.
The result is more stable than that of a single threshold, and the extracted object is more complete.
At the same time, the HODOL-based structural feature is used to distinguish the building objects
from candidate changed objects. The algorithm does not need training samples and can overcome the
influence of radiation distortion. Experiments show that the proposed algorithm is effective.

However, this algorithm may be affected by the following aspects. (1) Errors in the DSM caused
by dense matching, which leads to wrong detection; (2) Errors in the nDSM that are caused by filtering
of point cloud data, for example, narrow bare ground in the mountain misclassified as non-terrain;
(3) Classification errors caused by the structural feature, such as thin and small buildings whose
verticality and long linearity are weak being misclassified as non-buildings, or non-building areas with
strong linearity and verticality being misclassified as building areas.

5. Conclusions

A novel building change detection framework from bi-temporal dense-matching point clouds
and aerial images is proposed in this work. The proposed method can effectively locate the building
change area and determine the building change type. Moreover, when considering that the features
that are used for classification are geometric-based or HODOL-based, the proposed algorithm is
resistant to image radiation distortion. However, the proposed algorithm is under the assumption that
changed buildings have different heights, thus it will fail to detect buildings that only have roof repairs.
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Furthermore, considering that the structural feature relies on the candidate changed object related to
the quality of DSM, the performance of the proposed algorithm may worsen if the DSM is poor.
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