
remote sensing  

Article

Multi-Scale Residual Convolutional Neural Network
for Haze Removal of Remote Sensing Images

Hou Jiang 1,2 ID and Ning Lu 1,3,* ID

1 State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences
and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
jh1225357498@gmail.com

2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
3 Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and

Application, Nanjing 210023, China
* Correspondence: lvn@lreis.ac.cn; Tel.: +10-86-6488-9981

Received: 14 May 2018; Accepted: 12 June 2018; Published: 14 June 2018
����������
�������

Abstract: Haze removal is a pre-processing step that operates on at-sensor radiance data prior to
the physically based image correction step to enhance hazy imagery visually. Most current haze
removal methods focus on point-to-point operations and utilize information in the spectral domain,
without taking consideration of the multi-scale spatial information of haze. In this paper, we propose
a multi-scale residual convolutional neural network (MRCNN) for haze removal of remote sensing
images. MRCNN utilizes 3D convolutional kernels to extract spatial–spectral correlation information
and abstract features from surrounding neighborhoods for haze transmission estimation. It takes
advantage of dilated convolution to aggregate multi-scale contextual information for the purpose
of improving its prediction accuracy. Meanwhile, residual learning is utilized to avoid the loss of
weak information while deepening the network. Our experiments indicate that MRCNN performs
accurately, achieving an extremely low validation error and testing error. The haze removal results
of several scenes of Landsat 8 Operational Land Imager (OLI) data show that the visibility of the
dehazed images is significantly improved, and the color of recovered surface is consistent with the
actual scene. Quantitative analysis proves that the dehazed results of MRCNN are superior to the
traditional methods and other networks. Additionally, a comparison to haze-free data illustrates the
spectral consistency after haze removal and reveals the changes in the vegetation index.

Keywords: haze removal; multi-scale context aggregation; residual learning; convolutional neural
network; Landsat 8 OLI

1. Introduction

During the acquisition of optical satellite images, light reflected from the surface is usually
scattered in the process of propagation due to the presence of water vapor, ice, fog, sand, dust, smoke,
or other small particles in the atmosphere. This process reduces the image contrast and blurs the
surface colors, leading to difficulties in many fields including cartography and web mapping, land use
planning, archaeology, and environmental studies. Therefore, an effective haze removal method is
of great importance to improve the capability and accuracy of applications that use satellite images.
Haze removal aims at eliminating haze effects on at-sensor radiance data prior to the physically
based image correction that converts at-sensor radiance to surface reflectance. In cloudy areas,
there is no information about the ground surface, whereas in areas affected by haze the image still
contains valuable spectral information. Although haze transparency presents an opportunity for image
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restoration, an efficient and widely applicable haze removal method for handling various haze or thin
clouds is still a great challenge, especially when only a single hazy image is available.

Single-image based haze removal has made significant progress recently by relying on different
assumptions and prior information. Chavez [1,2] presented an improved dark object subtraction
(DOS) technique to correct optical data for atmospheric scattering, assuming a constant haze over
the whole scene. Liang et al. [3,4] proposed a cluster matching technique for Landsat TM data,
assuming that each land cover cluster has the same visible reflectance in both clear and hazy regions.
The demand for existing aerosol transparent bands makes it impractical in some situations, as visible
and near-infrared bands are usually contaminated by haze. Zhang et al. [5] proposed a haze optimized
transformation (HOT) to characterize the spatial distribution of haze based on the assumption that the
radiances of the red and blue band are highly correlated for pixels within the clearest portions of a
scene and that this relationship holds for all surface types. However, the sensitivity of HOT to water
bodies, snow cover, bare soil, and urban targets limits its application. To reduce the impact of spurious
HOT responses, various strategies are proposed in the literature [6–9]. Liu et al. [10] developed a
background suppressed haze thickness index (BSHTI) to estimate the relative haze thickness and used
a virtual cloud point method to remove haze. Makarau et al. [11,12] utilized a haze thickness map
(HTM) for haze evaluation, based on the premise that a local dark object reflects the haze thickness of
the image. Shen et al. [13] developed a simple and effective method by using a homomorphic filter [14]
for the removal of thin clouds in visible remote sensing (RS) images.

He et al. [15] discovered the dark channel prior (DCP) that in most of the non-sky patches
of haze-free outdoor images, at least one color channel has very low intensity at some pixels.
DCP combined with an image degradation model has proved to be simple and effective enough
for haze removal. However, it is computationally intensive and may be invalid in special cases.
Some improved algorithms [16–20] are proposed to overcome these limitations. The great success
of DCP in computer vision attracted the attention of researchers working on satellite application.
Long et al. [21] redefined the transmission of DCP and used a low-pass Gaussian filter to refine the
atmospheric veil instead of using soft matting method. Pan et al. [22] noted that the average intensity
of remote sensing images’ dark channel is low, but not close to zero. Thus, they added a constant
term into the image degradation model for haze removal. Jiang et al. [23] utilized a proportional
strategy to gain accurate haze thickness maps for all bands from the original dark channel in order to
prevent underestimation. These methods succeed in solving specific scenarios in practical applications.
However, adjustable parameters in an algorithm must be well designed for various situations to obtain
ideal results, which requires a considerable number of experiments on a wide variety of selected images.
In addition, these algorithms are effective for local operations, but cannot handle a whole satellite
image properly.

In recent years, haze removal methods were developed in the machine learning framework.
Tang et al. [24] combined four types of haze-relevant features with random forests [25] to estimate the
haze transmission. Zhu et al. [26] created a linear model to evaluate the scene depth of a hazy image,
depending on a prior color attenuation. The parameters of the model are learned with a supervised
learning method. Despite the remarkable progress, the limitation of these methods lies in the fact
that the haze-relevant features or heuristic cues are not effective enough. Following the success of the
convolutional neural network (CNN) for image restoration or reconstruction [27–29], Cai et al. [30]
proposed DehazeNet, a trainable CNN-based end-to-end system for haze transmission estimation.
DehazeNet provides superior performance on natural images over existing methods and maintains
efficiency and ease of use. Nevertheless, the “shallow” DehazeNet cannot handle RS images properly
due to the dramatic spatial variability of images or haze in it and complicated nonlinear relationship
between haze transmission and spectral-spatial information of images [31]. It is believed that deep
learning architectures are generally more robust to the nonlinear input data owing to the ability to
extract high-level, hierarchical, and abstract features. In the RS community, large numbers of deep
networks are currently developed in the field of hyperspectral image classification [32,33], semantic
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labelling [34,35], image segmentation [36], object detection [37,38], change detection [39], etc. However,
to the best of our knowledge, a deep network has not been proposed for haze removal of RS images.

In this study, we propose a multi-scale residual convolutional neural network (MRCNN) for
the first time that can learn the mapping relations between hazy images and their associated
haze transmission automatically. MRCNN behaves well in predicting accurate haze transmission
by extracting spatial–spectral correlation information and high-level abstract features from hazy
image blocks. Specifically, the dilated convolution is utilized to obtain local-to-global contexts including
details of haze and the trend of haze spatial variations. Technically, residual blocks are introduced into
the network to avoid loss of weak information, and dropout is used to improve the generalization
ability and prevent overfitting. Experiments on Landsat 8 Operational Land Imager (OLI) data
demonstrate the effectiveness of MRCNN for haze removal.

The remaining parts of this paper are organized as follows. Section 2 briefly introduces the haze
degradation model and provides some basic information about CNNs. Section 3 describes the details
of the proposed MRCNN. The experimental results and comparison to other state-of-the-art methods
are showed in Section 4. The model performance, spectral consistency before and after haze removal,
and influence on vegetation index are discussed in Section 5. Finally, our conclusions are outlined
in Section 6.

2. Preliminaries

2.1. Haze Degradation Model

To describe the formation of a hazy image, different haze models have been proposed in
the literature. The widely used models include an additive model [11,12] and a haze degradation
model [40,41]. Herein, we adopt the latter for the sake of developing a trainable end-to-end deep
neural network. The mathematical expression is written as follows [40,41]:

I(x) = J(x)t(x) + A(1− t(x)) (1)

t(x) = e−βd(x) (2)

where x is the position of a pixel in the image, I is the hazy image, J is the clear image to be
recovered, A is the global atmospheric light, t represents the haze transmission describing the portion
of atmospheric light that reaches the sensor, d is the distance between the object and the observer, and
β represents the scattering coefficient of the atmosphere. The clear image J can be recovered after A
and t are estimated properly. Equation (2) suggests that when d goes to infinity, t approaches zero.
Together with Equation (1) we have:

A = I(x), d(x)→ ∞. (3)

In a practical imaging process, d cannot be infinity, but it can be a long distance that leads to a
very low transmission t0. Thus, the atmospheric light A is estimated as follows:

A = max
y∈{x|t(x)≤t0}

I(y). (4)

The discussion above indicates that to recover a clear image, i.e., to achieve haze removal, the
key is to estimate an accurate haze transmission map. In this paper, we plan to build a deep neural
network for the estimation of haze transmission according to the input of hazy images, i.e., taking
hazy images as input and outputting corresponding transmission maps. Once A and t are estimated,
the clear image J can be recovered as follows:

J(x) =
I(x)− A

t(x)
+ A. (5)
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In this paper, the haze degradation model is used to simulate training pairs of hazy patches and
target haze transmission from sampled clear blocks, and finally recover a clear image according to the
predicted transmission map.

2.2. CNNs

CNNs [42] are biologically inspired variants of multilayer perceptron that can learn hierarchical
representations from raw data and are capable of initially abstracting simple concepts and then
constructing more complex concepts by comprehending the simpler ones. There are two special
aspects in the architecture of CNN, i.e., sparse connections and shared weights. CNNs exploit a
spatially local correction by enforcing a local connectivity pattern between neurons of adjacent layers.
We illustrate this graphically in Figure 1, where units in layer m are connected to three spatially
contiguous units in layer m − 1. In addition, in CNNs, each convolutional filter is replicated across
the entire layer, sharing the same weights and biases. In Figure 2, the weights of the same color are
shared-constrained to be identical. In this way, CNNs are able to achieve better generalization on vision
problems and the learning efficiency is increased by greatly reducing the number of free parameters to
be learnt.
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The input and output of each layer are sets of arrays called feature maps. A standard CNN
usually contains three kinds of basic layers: a convolutional layer, nonlinear layer, and pooling layer.
Deep CNNs are constructed by stacking several basic layers to form the deep architecture.

The convolutional layer performs a series of convolutional operations on the previous layer
with a small kernel (e.g., 3 × 3, 5 × 5, etc.). Each convolutional operation computes the dot product
between the weights of the kernel and a local region (called the receptive field) of the input feature map.
The value ν

xy
mj at position (x, y) of the jth feature map in the mth layer is denoted as follows:

ν
xy
mj = bmj +

N

∑
i=0

P−1

∑
p=0

Q−1

∑
q=0

ω
pq
mjiν

(x+p)(y+q)
(m−1)i , (6)

where i indexes the feature map in the (m − 1)th layer connected to the current jth feature map,
N represents the number of feature maps in (m − 1)th layer, ω

pq
mji is the weight at position (p, q)

connected to the ith feature map, P and Q are the height and the width of the convolutional kernel, and
bmj is the bias of the jth feature map in the mth layer. Figure 3 shows two layers of a CNN. Layer m − 1
contains four feature maps and layer m contains two feature maps. The pixels in layer m (blue or red
squares) are computed from the pixels of layer m − 1, which fall within their 2 × 2 receptive field
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in the layer below (shown as colored rectangles). It is noted that the subscript m is omitted in the
weight matrices.

The nonlinear layer embeds a nonlinear activation function that is applied to each feature map
to learn nonlinear representations. The rectified linear unit (ReLU) [43,44] is widely used in recent
deep neural networks and can be defined as f (x) = max(0, x). In other words, ReLU thresholds the
non-positive value as zero and keeps the positive value unchanged. ReLU can alleviate the vanishing
gradient problems [45] and speed up the learning process to achieve a considerable reduction in
training time [46].

The pooling layer provides a way to perform sub-sampling along the spatial dimension and to
make features invariant from the location. It summarizes the outputs of neighboring groups of neurons
in the same kernel map. There are two kinds of pooling operations: max-pooling and average-pooling.
The former samples the maximum in the region to be pooled while the latter computes the mean value.
Figure 4 shows an example of different pooling operations. Traditionally, neighborhoods summarized
by adjacent pooling units do not overlap. Overlapping max-pooling (OMP) is used in ImageNet [46],
which is proven to be an effective way to avoid overfitting.
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3. Data and Method

3.1. Data

The remote sensing (RS) images used in this study are Landsat 8 Operational Land Image
(OLI) data, obtained from the Earth Explorer of the United States Geological Survey (USGS)
(https://earthexplorer.usgs.gov/). The OLI is an instrument onboard the Landsat 8 satellite, which
was launched in February 2013. The satellite collects images of the Earth with a 16-day repeat cycle.

https://earthexplorer.usgs.gov/
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The approximate scene size is 170 km north–south by 183 km east–west. In total, the OLI sensor has
eight multispectral bands. The spatial resolution of the OLI multispectral bands is 30 m, and the digital
numbers (DNs) of the sensor data are 16-bit pixel values. As haze usually has an influence on the
visible and near-infrared (NIR) bands, sequentially including band 1 (coastal/aerosol, 0.43–0.45 µm),
band 2 (blue, 0.45–0.51 µm), band 3 (green, 0.53–0.59 µm), band 4 (red, 0.64–0.67 µm), and band 5 (NIR,
0.85–0.88 µm), thus just the first five bands of the OLI images are used as inputs of the following
network for the prediction of haze transmission.

3.2. CNN Architecture

The haze degradation model in Section 2.1 suggests that the estimation of the haze transmission
map is of the most important task to recover a clear image. To this end, we present a multi-scale
residual CNN (MRCNN) to learn the mapping relations between the raw hazy images and their
associated haze transmission automatically. Figure 5 illustrates the architecture of MRCNN, which
mainly consists of four modules: spectral–spatial feature extraction, multi-scale context aggregation,
residual learning and fully connected layers. The detailed configurations of all layers are summarized
in Table 1, and are explained in the following.
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Figure 5. Overview of the proposed MRCNN. The network mainly consists of four modules:
spectral–spatial feature extraction, multi-scale context aggregation, residual learning, and fully
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Table 1. Detailed configurations of MRCNN. Conv represents the convolutional layer, Conv-i (i = 1, 2, 4)
represents the dilated convolutional layer, whose dilation rate equals i, OMP represents the overlapping
max-pooling layer, and FC represents the fully-connected layer.

Module Unit Input Size Kernel
Num.

Kernel
Size Pad Activation

Function Output Size

Input - - - - - - 5 × 16 × 16

M1
Conv 5 × 16 × 16 64 3 × 3 1 - 64 × 16 × 16

Maxout 64 × 16 × 16 4 - 0 - 16 × 16 × 16

M2

Conv-1 16 × 16 × 16 16 3 × 3 1 - 16 × 16 × 16
Conv-2 16 × 16 × 16 16 3 × 3 3 - 16 × 16 × 16
Conv-4 16 × 16 × 16 16 3 × 3 7 - 16 × 16 × 16
OMP 48 × 16 × 16 - 9 × 9 0 - 48 × 8 × 8

M3

Conv 48 × 8 × 8 64 3 × 3 1 ReLU 64 × 8 × 8
Conv 64 × 8 × 8 64 3 × 3 1 ReLU 64 × 8 × 8
Conv 64 × 8 × 8 64 3 × 3 1 ReLU 64 × 8 × 8
OMP 64 × 8 × 8 - 5 × 5 0 - 64 × 4 × 4
Conv 64 × 4 × 4 128 3 × 3 1 ReLU 128 × 4 × 4
Conv 128 × 4 × 4 128 3 × 3 1 ReLU 128 × 4 × 4
Conv 128 × 4 × 4 128 3 × 3 1 ReLU 128 × 4 × 4
OMP 128 × 4 × 4 - 3 × 3 0 - 128 × 2 × 2

FCs
FC 512 - - - ReLU 512
FC 512 - - - ReLU 64
FC 64 - - - ReLU 1
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3.2.1. Spectral–Spatial Feature Extraction

To address the ill-posed nature of the single image dehazing problem, existing methods propose
various empirical assumptions or prior knowledge to extract intermediate haze-relevant features, such
as dark channel [15], hue disparity [47], and color attenuation [26]. These features reflect different
perspectives of the original image and are helpful for the estimation of haze transmission. Inspired by
this, we design the first module of (M1) MRCNN for haze-relevant feature extraction. In the field of
image classification, it is proved that the usage of spectral features and spatial information in combined
fashion can significantly improve the final accuracy [48]. Thus, we utilize 3D convolutional kernels to
extract spectral and spatial features simultaneously in M1. The 3D convolution operation computes
each pixel in association with d× d spatial neighborhoods and n spectral bands to exploit the important
discriminative information and take full advantage of the structural characteristics of the 3D input
data cubes.

After feature extraction, we apply a Maxout unit [49] for nonlinear mapping as well as dimension
reduction, which is able to eliminate information redundancies and improve the performance of the
network by removing multi-collinearity. Maxout generates a new feature map by taking a pixel-wise
maximization operation over k feature maps in the layer below:

hmj(x) = max
i∈[k∗j,k∗j+k)

f(m−1)i(x), j ∈ [0, N − 1], (7)

where j indexes the feature map in the mth layer, i indexes the feature map in the (m − 1)th layer, N
means the number of feature maps in mth layer, and ∗ denotes multiplicative operation.

Specifically, M1 connects to the input layer that contains 3D hazy patches of size 5 × 16 × 16
(channels × width × height, similarly hereafter). The inputs are padded with one pixel in the
spatial dimensions. We use zero padding in this paper. The convolutional layer filters inputs with
64 kernels of size 5 × 3 × 3. The stride of these kernels, or the distance between the receptive fields’
centers of the neighboring neurons, is one pixel. The 3 × 3 convolutional filter is the smallest kernel
to seize patterns in different directions, such as center, up/down, and left/right. Additionally, small
convolutional filters will increase the nonlinearities inside the network and thus make the network
more discriminative. The Maxout unit takes four feature maps that are generated by the convolutional
layer in a non-overlapping manner as input, calculates maximum value at each pixel, and finally
outputs one feature map with an unchanged size. Finally, M1 outputs 16 feature maps of size 16 × 16.

3.2.2. Multi-Scale Context Aggregation

When observing an image, we often zoom in or out to recognize its characteristics from local
to global. This process demonstrates that features in different scales are important for inference of
relative haze thickness from a single image when additional information is lacking. Herein, we design
the second module (M2) for multi-scale context aggregation. Basically, there are two approaches
to gain the feature in a large receptive field: deepening the network or enlarging the size of the
convolutional kernels. Although theoretically, features from high-level layers of a network have
a larger receptive field on the input image, in practice, they are much smaller [37]. Enlarging the
convolution kernel size directly can also obtain wider information, but it is always associated with
exponential growth of learnable parameters. Dilated convolution [50] provides us with a new approach
to capture multi-scale context by using different dilation rates. Dilated convolution expands the
receptive field without extra parameters so that it can efficiently learn more extensive, powerful and
abstract information. In addition, dilated convolution is capable of aggregating multi-scale contextual
information without losing resolution or analyzing rescaled images.

Figure 6 illustrates an example of 2-dilated convolution. The convolution kernel is of size 3 × 3
and its dilation rate equals 2. Thus, each element in the feature map after dilated convolution has a
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receptive field of 7 × 7. In general, the size of receptive field Fr of 3 × 3 filters with different dilation
rate r can be computed as follows:

Fr = (2i+2 − 1)× (2i+2 − 1), i = max
{

j
∣∣∣ 2j ≤ r, j ∈ N

}
, (8)

where N represents the set of natural numbers. To make the size of resulting feature map unchanged,
the padding rate should be set as Fr/2 in the corresponding direction. By setting a group of
small-to-large dilation rates, a series of feature maps with local-to-global contexts can be obtained.
Local contexts record low-level details of haze while global contexts identify the trend of haze spatial
variations with its wide visual cues. Meanwhile, generated feature maps with multi-scale contexts can
be aligned automatically due to their equal resolution.
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Figure 6. An illustration of dilated convolution. The input feature map is of size 9 × 9 and padded
with 3 pixels. The padding value is zero. The convolution kernel is of size 3 × 3 and its dilation rate
equals 2. Each element in the resulting feature map has a receptive field of 7 × 7.

Specifically, M2 takes as input the output of M1. It contains three parallel sub-layers using
1-dilated, 2-dilated and 4-dialated convolution, respectively. Each layer has 16 convolution kernels
of size 3 × 3. Thus, their actual receptive fields correspond to 3 × 3, 7 × 7 and 15 × 15. To ensure
the multi-scale outputs are with the same size, inputs for three sub-layers are padded with 1, 3 and 7
pixels, respectively. Multi-scale feature maps are concatenated to form a 48 × 16 × 16 feature block
before being fed into the following OMP layer. The kernel size of the pooling layer is 9 × 9 and its
stride is 1 pixel. Therefore, the final output of M2 is 48 feature maps of size 8 × 8.

It should be noted that no activation function is used in M1 and M2 due to the experimental
fact that remote sensing image blocks usually produce large gradients in the early stage. A large
gradient flowing through a ReLU neuron could cause the weights to update in such a way that the
neuron will never activate on any data point again. If this occurs, then the gradient flowing through
the unit will forever be zero from that point on, i.e., the training process would “die”. As the process
of extracting features proceeds, the distribution of the feature maps in deeper layers tends to be
more stable. Therefore, it is more appropriate to add the ReLU activation function in the deeper
convolutional layers instead of the shallow ones.

3.2.3. Residual Learning

Obtaining an accurate estimation of haze is not easily accessible, because surface coverage, not
haze, is the dominant information in RS images. The features from high-level layers are likely to
lose weak information, such as haze. Deeper networks also face a degradation problem [51]: with an
increase in the network depth, accuracy gets saturated and then degrades rapidly; this outcome is not
caused by overfitting. Herein, we introduce residual learning [52] to resolve these issues. Instead of
anticipating that each layer will directly fit a desired underlying mapping, we explicitly allow some
layers to fit a residual mapping. Formally, denoting the desired underlying mapping as (x), we expect
stacked layers to fit another mapping of F(x) = (x)− x. Therefore, the original mapping is recast into
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F(x) + x. The residual learning is very effective in deep network, because it is easier to fit F(x) than to
directly fit (x) when the network deepens.

Figure 7 shows the residual block used in the third module (M3). All three convolutional layers
have k kernels of size 3 × 3, equipped with ReLU nonlinear activation function. The first convolutional
layer outputs its learned features x, which are sent to the second and third convolutional layer for
learning residual features F(x). F(x) and x are then fused using the sum operation to form the target
features (x). The following OMP layer performs local aggregation on (x) without padding. Specifically,
M3 connects to the outputs of M2, which are of size 48 × 8 × 8. The inputs are sent to two sequential
residual blocks. The convolutional layer in the first block has 64 kernels while 128 kernels are used
in the second block. The kernel size of the OMP layers is 5 × 5 and 3 × 3, respectively. Finally, M3
outputs features of size 128 × 2 × 2.Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 24 

 
Figure 7. Residual block used in MRCNN. The first convolutional layer outputs its learned features 
x, which are sent to the second and third convolutional layer for learning residual features F(x). F(x) 
and x are then fused using a sum operation to form the target features H(x). 

3.2.4. Fully Connected Layers 

At the end of the proposed network, we utilize fully connected (FC) layers to achieve our 
regressive task, i.e., predicting haze transmission relying on abstract features from stacked 
convolutional layers. The feature maps of the last convolutional layer are flattened and fed into the 
FC layers. However, the FC layers are prone to overfitting, thus hampering the generalization ability 
of the overall network. Dropout, a regularization method proposed by Hinton et al. [53], randomly 
sets a portion of the hidden neurons to zero during training. The dropped neurons do not contribute 
in the forward pass and are not used in the back-propagation procedure. Dropout has been proven 
to improve the generalization ability and largely prevents overfitting [54]. 

Specifically, three FC layers are implemented with 512, 64, and one nodes, respectively. They 
computes their output as )(

1- byfy iiii   , where i  are weight matrices, bi  are bias 

vectors, y i 1-
 is the output of the previous layer and )(f  represents the ReLU activation function. 

In addition, we have allowed a 50% dropout in the first FC layer. Finally, the FC layers produce a 
single value representing the haze transmission at the central pixel of each input of hazy patches. 

3.3. Training Process 

To train the designed MRCNN, a large number of training samples consisting of hazy patches 
and their corresponding haze transmissions are required. However, it is challenging to obtain the 
real haze transmission. Inspired by Tang et al.’s method [24], we generate training samples from clear 
image blocks by simulating the haze degradation process according to the model in Section 2.1. This 
work is based on two assumptions: first, the image content is independent of transmission, i.e., the 
same content can appear under any transmission; and second, the transmission is locally constant, 
i.e., image pixels in a small patch have a similar transmission. Given a clear patch P J , the 
atmospheric light A , and a random transmission ]1,0[t , a simulated hazy patch P I  is 

generated as AtPtP JI )1(  . As the surface radiances reached the sensor would be too weak 
when the transmission is lower than 0.3, we restrict t  in the range ]95.0,3.0[ . To reduce the 
uncertainty of variables in learning, A  is simply set to 1 in all five channels, i.e., ]1,1,1,1,1[A . 
Herein, a training pair is composed of the generated P I  and given t . 

Considering the difficulty of building a complete dataset containing various kinds of surface 
cover types, clear samples are collected in a local clear region of a single scene of Landsat 8 OLI data 
(path 123, row 032, acquisition date 23 September 2015) in our experiments. In addition, if too many 
surface types are selected for training, the dataset would become extremely large when ensuring 
sufficient samples for each type, which requires a considerable amount of computer memory and 
training time. In total, 60 clear blocks of size 240 × 240 are sampled from the test scene. Some examples 
are shown in Figure 8. All original clear blocks are normalized using the max-min method to ensure 
identical scale and that the atmospheric light equals 1. For each block, we uniformly generate 20 
random transmissions to generate hazy blocks, which are then tiled into patches with a size of 16 × 
16. Thus, 270,000 simulated hazy patches are collected. To ensure the robustness, these patches are 
shuffled to break potential correlation. Finally, all patches are sorted into a 90% training set and a 
10% testing set, whose numbers are 243,000 and 27,000, respectively. Hereafter, we refer to this 

Figure 7. Residual block used in MRCNN. The first convolutional layer outputs its learned features x,
which are sent to the second and third convolutional layer for learning residual features F(x). F(x) and
x are then fused using a sum operation to form the target features H(x).

3.2.4. Fully Connected Layers

At the end of the proposed network, we utilize fully connected (FC) layers to achieve
our regressive task, i.e., predicting haze transmission relying on abstract features from stacked
convolutional layers. The feature maps of the last convolutional layer are flattened and fed into
the FC layers. However, the FC layers are prone to overfitting, thus hampering the generalization
ability of the overall network. Dropout, a regularization method proposed by Hinton et al. [53],
randomly sets a portion of the hidden neurons to zero during training. The dropped neurons do not
contribute in the forward pass and are not used in the back-propagation procedure. Dropout has been
proven to improve the generalization ability and largely prevents overfitting [54].

Specifically, three FC layers are implemented with 512, 64, and one nodes, respectively.
They computes their output as yi = f (ωiyi−1 + bi), where ωi are weight matrices, bi are bias vectors,
yi−1 is the output of the previous layer and f (·) represents the ReLU activation function. In addition,
we have allowed a 50% dropout in the first FC layer. Finally, the FC layers produce a single value
representing the haze transmission at the central pixel of each input of hazy patches.

3.3. Training Process

To train the designed MRCNN, a large number of training samples consisting of hazy patches
and their corresponding haze transmissions are required. However, it is challenging to obtain the
real haze transmission. Inspired by Tang et al.’s method [24], we generate training samples from
clear image blocks by simulating the haze degradation process according to the model in Section 2.1.
This work is based on two assumptions: first, the image content is independent of transmission, i.e., the
same content can appear under any transmission; and second, the transmission is locally constant, i.e.,
image pixels in a small patch have a similar transmission. Given a clear patch PJ , the atmospheric light
A, and a random transmission t ∈ [0, 1], a simulated hazy patch PI is generated as PI = tPJ + (1− t)A.
As the surface radiances reached the sensor would be too weak when the transmission is lower than
0.3, we restrict t in the range [0.3, 0.95]. To reduce the uncertainty of variables in learning, A is simply
set to 1 in all five channels, i.e., A = [1, 1, 1, 1, 1]. Herein, a training pair is composed of the generated
PI and given t.
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Considering the difficulty of building a complete dataset containing various kinds of surface cover
types, clear samples are collected in a local clear region of a single scene of Landsat 8 OLI data (path
123, row 032, acquisition date 23 September 2015) in our experiments. In addition, if too many surface
types are selected for training, the dataset would become extremely large when ensuring sufficient
samples for each type, which requires a considerable amount of computer memory and training time.
In total, 60 clear blocks of size 240 × 240 are sampled from the test scene. Some examples are shown
in Figure 8. All original clear blocks are normalized using the max-min method to ensure identical
scale and that the atmospheric light equals 1. For each block, we uniformly generate 20 random
transmissions to generate hazy blocks, which are then tiled into patches with a size of 16 × 16. Thus,
270,000 simulated hazy patches are collected. To ensure the robustness, these patches are shuffled to
break potential correlation. Finally, all patches are sorted into a 90% training set and a 10% testing set,
whose numbers are 243,000 and 27,000, respectively. Hereafter, we refer to this dataset as D1. It is
important to note that the simulated patches are directly used as input of the training network without
additional normalization, which would change the real haze depth.
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The MRCNN is trained through mini-batch stochastic gradient descent (MSGD) and an
early-stopping mechanism. Gradient descent is a simple algorithm in which we repeatedly make small
steps downward on an error surface defined by a loss function of some parameters. MSGD estimates
the gradient from a mini-batch of examples to proceed more quickly. The batch size is set to 500 in our
training. As the predicted variable is continuous, we use the mean squared error as the loss function:

L =
1
N

N

∑
1
‖tr− tp‖

2

, (9)

where tr refers to the real transmission value, tp represents the predicted value, and N is the batch size.
Early-stopping combats overfitting by monitoring the network’s performance on a validation set.
This technique relinquishes on further optimization when the network’s performance ceases to improve
sufficiently on the validation set, or even degrades with further optimization. During training, we
randomly chose 80% of the training samples to learn the parameters and the remaining 20% of the
training samples were used as the validation set to identify if the network was overfitting. In our
experiments, if the validation score is not improved by 1.0 × 10−5 within 10 epochs, the training
process is terminated. The testing set is used to assess the final prediction performance of the trained
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network with the best validation score. The filter weights of each convolutional layer are initialized
through the Xavier initializer [45], which uniformly samples from a symmetric interval:[

−
√

6
fin + fout

,

√
6

fin + fout

]
, (10)

where fin is the number of input units, and fout is the number of output units. For the first convolutional
layer, fin equals 45 (5 × 3 × 3) and fout equals 576 (64 × 3 × 3). The biases are set to 0. The learning
rate is 0.01 and is decreased by 0.5 when reaching a learning plateau. We implement our model using
the keras [55] package with the theano backend [56]. Based on the parameters above, the best validation
score is 0.0289% obtained at epoch 198, with a test performance of 0.0288%. It takes 145.68 min to
finish training using an NVIDIA Quadro K620 GPU. Hereafter, we refer to this trained MRCNN
as MODEL-O.

3.4. Dehazing and Post-Processing

After finishing training, we can predict the haze transmission given a new hazy patch. It is
feasible to feed a small block into the network at one time for prediction. For each pixel in the block,
its 16 × 16 surrounding neighborhood is used for prediction of haze transmission. While for the
pixels belonging to the borders of the block, a 16 × 16 surrounding neighborhood cannot be defined.
We have implemented a simple algorithm to replicate borders that allows us to handle all the border
pixels as any other pixel in the block, i.e., mirroring eight pixels, half of the patch size, of the border
outwards, to create the corresponding patches of the original border pixels. When handling a full-size
image that occupies considerable physical memory, it is necessary to slice the original image and
mosaic the output tiles to avoid running out of computer memory. The adjacent tiles overlap each
other with pixels whose number equals the size of training patch, i.e., 16 pixels in our test, to prevent
visual disruption. Furthermore, the original hazy image should multiply a scale factor depending on
the pixel depth of the original data to ensure that the input values are in [0, 1]. In this way, we can
predict the complete haze transmission map of the input block or full-size image. Finally, the clear
image can be recovered according to Equations (4) and (5). The lowest decile of predicted transmission
map is used as the threshold t0 in Equation (4).

Generally, the radiances of directed dehazing results are lower than that of the clear scenes,
as both haze contribution and clear scene aerosol are removed entirely. Meanwhile, the inaccurate
estimation of the atmospheric light might lead to potential residual of radiances. Herein, we utilize
clear regions, least influenced by haze, as a reference for the compensation of scene aerosol or correction
of the residual. We slice the predicted transmission map into tiles of size 200 × 200. The tile with the
maximum mean is considered as the clear region. The aim of compensating is to ensure mean radiance
of the dehazed block corresponding to the clear region equals to that of the original block in all bands.
The process of compensation can be expressed as:

R′ i = Ri + (MO
i −MR

i ), (11)

where i is the band number, R′ is the final radiance, R is the directed recovered value, MO represents
the mean value of the original clear image block, and MR represents the mean value of the directed
recovered image block corresponding to the clear region.

3.5. Transferring Application

To reduce the demand for computer memory and time consumption, MODEL-O is trained on a
limited dataset. It is feasible to apply MODEL-O for haze removal of surrounding areas that covers the
similar surface types. When handling images in another region, a new trained network is required.
Learning from the beginning usually costs too much and is unnecessary. Transfer learning is an
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effective approach to apply stored knowledge gained while solving one problem to a different but
related problem. The core of haze removal in different areas is essentially the same, but the surface
types are dissimilar. Thus, the new MRCNN can be retrained on the basis of MODEL-O.

We choose another scene (path 119, row 038; acquisition date 14 April 2013) to collect new
training samples. In total, 40 blocks of size 240 × 240 are sampled and then 180,000 simulated hazy
patches are generated for training. Hereafter, we refer to this dataset as D2. The filter weights and
biases are initialized using the learned parameters of MODEL-O, and other settings remain unchanged.
The best validation score is 0.0128% obtained at epoch 43, with a test performance of 0.0168%. It takes
31.32 min to complete the optimization. Herein, the retrained MRCNN is named MODEL-T.

After fine-tuning, MODEL-T gains the ability to handle images covering this new type of surface
coverage and theoretically still owns the ability of the previous network. The trained network can
extend its applicability constantly through transferring learning. The more new types of samples are
used for fine-tuning, the stronger the network will be. We expect that the network will finally be
capable of addressing various complex situations after several cycles.

4. Experimental Results

4.1. Dehazing Results on Simulated Images

We first test the effectiveness of the trained networks using simulated hazy images. To better
simulate the spatially varying haze, randomly generated haze transmissions are uniformly sampled in
a small in range, such as [0.5, 0.6], [0.6, 0.8], etc., and smoothed with a Gaussian filter. The original clear
images are used as references to assess the dehazed results quantitatively. MRCNN is compared with
traditional haze removal methods (HOT [5], DCP [15], HTM [11]) and other networks (DehazeNet [30],
VGGNet [57]). Herein, we use the trained networks with the best validation errors after 200-epoch
training on D1 and 50-epoch fine-tuning on D2. Figure 9 shows an example of the dehazing results
on simulated images using different methods. Serious color distortion appears in the HOT results.
There still exists slight haze in DCP’s result. The colors in the HTM results are oversaturated. The
recovered image of DehazeNet looks dim and has poor local contrast. In contrast, the results of
VGGNet and MRCNN are better visually.
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Furthermore, we collect 20 clear image block of size 1000 × 1000 and generate 400 hazy images in
total for our test. To quantitatively assess different methods, we utilize a series of indices, including the
mean square error (MSE), peak signal-to-noise ratio (PSNR), visual image fidelity (VIF) [58], universal
quality index (UQI) [59] and structural similarity (SSIM) [60], for image quality assessment (IQA) of
dehazed results. Table 2 reports the average IQA results on simulated images. All indices indicate
that the trained networks obtain dehazing results superior to the traditional methods using priors and
MRCNN is state-of-the-art. Although MRCNN is optimized by the MSE loss function, it also achieves
the best performance on the other types of evaluation indices. The average VIF is−0.0306, very close to
zero, implying the image distortion is minimal or acceptable. The IQA result of UQI, which measures
the loss of correlation, luminance distortion and contrast distortion of images, supports the same
conclusion. Meanwhile, MRCNN gains relatively high values of SSIM, reflecting its powerful ability to
preserve structural information.

Table 2. Image quality assessment results of dehazed results.

IQA Hazy HOT HTM DCP DehazeNet VGGNet MRCNN

MSE 0.1206 0.0334 0.0146 0.0045 0.000810 0.000641 0.000579
PSNR 57.3178 62.8991 66.4915 71.5961 79.0475 80.0592 80.5033

VIF −6.2915 −4.3330 −1.3643 −0.1087 −0.0417 −0.0337 −0.0306
UQI 0.4647 0.0001 0.6599 0.8787 0.9155 0.9345 0.9363
SSIM 0.9820 0.9025 0.9991 0.9996 0.9999 0.9999 0.9999

4.2. Dehazing Results on Hazy RS Images

In this section, we validate the effectiveness of different MRCNN models on hazy RS images.
Figure 10 shows the dehazing results of MODEL-O on three sub-scenes cut out from a full scene
(path 123, row 033, acquisition date 23 September 2015). The surface of this area is mainly covered by
bare soil, with sparse vegetation. The visibility of dehazed images is significantly improved and the
color of the recovered surface is basically consistent with the actual surface. More details are visible,
such as urban buildings in the central part of Figure 10d, the shape of rural villages in Figure 10e,
and the transverse road in the middle of Figure 10f. Haze and thin clouds are entirely removed while
thick cumulus clouds remain unchanged especially in Figure 10b. It is proven that the trained model
is suitable for haze removal of surrounding areas covering the similar surface types with training
samples in D1.
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Remote Sens. 2018, 10, 945 14 of 24

Figure 11 shows the dehazing results using MODEL-T. The three hazy images are from different
scenes near the training samples in D2. Figure 11a,b covers rich vegetation while the surface in
Figure 11c is much barer. The effect of the haze has been eliminated completely, and all surface covers,
including bare soil, building areas, vegetation, water body etc., exhibit the proper color. As the training
dataset contains samples for the water body, MODEL-T removes haze over the river properly, as shown
in Figure 11e,f. MODEL-T handles these situations properly, implying that MRCNN gets the ability to
solve new problems through transferring learning.
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Figure 12. Dehazing results of full-size Landsat 8 OLI data using MODEL-T. (a–d) original hazy images
with spatially varying haze or clouds; (a) path 123, row 032, acquisition date 3 October 2013; (b) path
123, row 033, acquisition date 7 May 2015; (c) path 119, row 038, (d) acquisition date 22 July 2017; path
119, row 038, acquisition date 29 December 2014); (e–h) dehazed images.
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Figure 12 shows the results of four full-size images affected by haze or transparent clouds
using MODEL-T. Visually, hazy regions are recovered successfully, and clear regions remain unchanged.
Although Figure 12a,b are far away from the training area and show different characteristics, MODEL-T
succeeds in removing the haze over them, proving that MODEL-T inherits the learned knowledge of
MODEL-O. Since MRCNN extracts abstract features of input images for prediction, MODEL-T does
well in removing the haze over apparently different water bodies in Figure 11b,c and Figure 12c,d,
even though training samples only contain one kind of water body, similar to Figure 11b.

Figure 13 shows the dehazing results in the coastal/aerosol band and near-infrared band of
Landsat 8 OLI data. Obviously, the effect of haze has been eliminated, and the visibility of the results
has been significantly enhanced.

Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 24 

Figure 13 shows the dehazing results in the coastal/aerosol band and near-infrared band of 
Landsat 8 OLI data. Obviously, the effect of haze has been eliminated, and the visibility of the results 
has been significantly enhanced. 

 
Figure 13. Dehazing results in other bands: (a) coastal/aerosol band (0.43–0.45 μm) of Figure 10c; (b) 
near-infrared band (0.85–0.88 μm) of Figure 10c; (c) coastal/aerosol band of Figure 11c; (d) near-
infrared band of Figure 11c; (e–h) dehazed results of (a–d) respectively. 

5. Discussion 

5.1. Model Performance 

The estimation of the haze transmission map is of the greatest importance for haze removal. Its 
accuracy is directly related to the quality of dehazed images. To validate the accuracy of the proposed 
MRCNN for the prediction of haze transmission of RS images, the novel network is compared with 
DehazeNet [30] and VGGNet [57]. DehazeNet was originally designed for natural images and has 
five weight layers. We use the same network architecture except for replacing the BReLU [61] 
activation function with the Sigmoid [62] function, based on the experimental fact that the network 
is difficult to converge when using BReLU. VGGNet is designed for the image classification task. 
Herein, we adopt a network that has 16 weight layers and remove the softmax classifier to fit the 
regression problem. The proposed MRCNN has 13 weight layers, which achieves a balance between 
the network depth and trainable parameters. Three models are initialized in the same way and 
trained using the same datasets and method. 

The qualities of the trained networks can be reflected by learning curves. As shown in Figure 
14a, the training errors of the three networks reduce quickly and finally reach a relatively stable state. 
The speed of convergence for MRCNN is faster than that for DehazeNet and VGGNet. Compared 
with DehazeNet and VGGNet, the validation error of MRCNN declines more quickly and achieves a 
more stable state. With further training, the validation error for VGGNet and MRCNN varies between 
increasing and decreasing but can reduce to a lower value, indicating that the networks are trying to 
search for better solutions, while it decreases the original level for DehazeNet, implying that the 
network converges to a local minimum in the end, and the learning process is apparently slowed 
down. The smaller amplitude of oscillation in the validation error indicates that MRCNN is much 
easier to adjust. When applying the trained networks for a new dataset, MRCNN can achieve the best 
result as shown in Figure 14c,d, originally with 0.0294% training error and 0.1455% validation error. 
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(b) near-infrared band (0.85–0.88 µm) of Figure 10c; (c) coastal/aerosol band of Figure 11c;
(d) near-infrared band of Figure 11c; (e–h) dehazed results of (a–d) respectively.

5. Discussion

5.1. Model Performance

The estimation of the haze transmission map is of the greatest importance for haze removal.
Its accuracy is directly related to the quality of dehazed images. To validate the accuracy of the
proposed MRCNN for the prediction of haze transmission of RS images, the novel network is compared
with DehazeNet [30] and VGGNet [57]. DehazeNet was originally designed for natural images and
has five weight layers. We use the same network architecture except for replacing the BReLU [61]
activation function with the Sigmoid [62] function, based on the experimental fact that the network
is difficult to converge when using BReLU. VGGNet is designed for the image classification task.
Herein, we adopt a network that has 16 weight layers and remove the softmax classifier to fit the
regression problem. The proposed MRCNN has 13 weight layers, which achieves a balance between
the network depth and trainable parameters. Three models are initialized in the same way and trained
using the same datasets and method.
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The qualities of the trained networks can be reflected by learning curves. As shown in Figure 14a,
the training errors of the three networks reduce quickly and finally reach a relatively stable state.
The speed of convergence for MRCNN is faster than that for DehazeNet and VGGNet. Compared
with DehazeNet and VGGNet, the validation error of MRCNN declines more quickly and achieves a
more stable state. With further training, the validation error for VGGNet and MRCNN varies between
increasing and decreasing but can reduce to a lower value, indicating that the networks are trying
to search for better solutions, while it decreases the original level for DehazeNet, implying that the
network converges to a local minimum in the end, and the learning process is apparently slowed down.
The smaller amplitude of oscillation in the validation error indicates that MRCNN is much easier
to adjust. When applying the trained networks for a new dataset, MRCNN can achieve the best
result as shown in Figure 14c,d, originally with 0.0294% training error and 0.1455% validation error.
Fine-tuning can improve the performance of the networks. Finally, DehazeNet, VGGNet, and MRCNN
can obtain the best validation error of 0.0317%, 0.0310%, and 0.0168%, respectively. The validation error
of VGGNet remains approximately unchanged after 20 epochs, indicating that the network might have
encountered a bottleneck. We further validate the feasibility of the transferring application using a
small number of training samples. We divide the dataset D2 into a 30% training set and a 70% testing set.
It takes approximately about 13.76 min to fine-tune MRCNN. The best validation score is 0.0179%
obtained at epoch 45, with a test performance of 0.0193%. The accuracy is close to that of MODEL-T,
but the training time is reduced greatly. The similar experiments are performed for DehazeNet
and VGGNet. Their training errors closely approaches 0.035% after 100-epoch of fine-tuning, while the
validation and testing errors remain stable at over 0.04% without further improvement.
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Figure 14. Learning curves for DehazeNet, VGGNet, and the proposed MRCNN. (a,b) training error
and validation error on D1 during the original training process; (c,d) training error and validation error
on D2 during the transferring application.

Figure 15 plots the predicted value versus the true transmission on the testing set. The first
row corresponds to the results of the trained networks using D1, and the second row shows the
results of the fine-tuned networks using D2. The testing errors of different networks are labeled
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at the upper left of each sub-plot. The predicted values of DehazeNet are lower than the truth
values when the real transmissions are close to 1. The center line of VGGNet is discrete, meaning
that some transmissions are missed in the prediction result. For MRCNN, the predicted values are
centered on the 45-degree line, and the testing errors are lower than that of other networks. In fact,
DehazeNet is inherently a shallow network and the extracted features are still low-level. The network
generally suffers from different surface types so that the trained network is unable to handle other
images in most cases. VGGNet, a deep learning architecture, is capable of extracting high-level,
hierarchical, and abstract features to avoid the influence from the surface coverage. However, the
high-level features tend to lose weak information and local details, resulting in difficulties for achieving
accurate haze transmission estimation. In contrast, MRCNN takes advantage of the multi-scale context
aggregation and residual learning to balance between deepening the depth of network and preventing
information loss. The trained or fine-tuned MRCNN can achieve higher prediction accuracy than
other networks. Although the three networks can obtain a similar final training error, MRCNN
converges faster and achieves better validation errors and testing errors during the original training
and transferring application.
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Figure 15. The density plots between the predicted and truth transmission for DehazeNet, VGGNet,
and the proposed MRCNN. (a–c) the results using the testing set of D1 during the original training
process; (d–f) the results using the testing set of D2 during transferring learning.

5.2. Analysis of Spectral Consistency

It is difficult to evaluate a single-image based haze removal method quantitatively as the ground
information corresponding to the hazy image is usually unknown. Therefore, we choose a pair of
hazy and haze-free images that have minimal time difference and a minimal difference of sun/sensor
geometry for our evaluation. The spectra of images are compared in two aspects: (1) the difference
between the hazy image and the dehazed result in clear regions must be minimal; and (2) the spectra
of the dehazed result and the haze-free image are highly similar. Figure 16 illustrates the dehazing
result (Figure 16b) of a hazy image (Figure 16a) and the selected haze-free image (Figure 16c). The hazy
and haze-free data were acquired with a time difference of 16 days. The dehazed image exhibits good
recovery of the surface except slight residual under heavy hazy regions.
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Figure 17 illustrates the spectra of pixels collected in hazy (asterisk), dehazed (plus), and haze-free
(diamond) image. Figure 17a,b are spectral profiles of pixels (cross 1 and 2 in Figure 17a) located in
clear regions. The spectra of different images have the same shape and similar DN value, proving that
dehazing does not modify the spectral properties in clear regions. Figure 17c,d show spectral profiles
of pixels (cross 3 and 4 in Figure 17a) located in hazy regions. The spectra of different images have
a similar shape. The DN values of the dehazed and haze-free image are in close agreement but are
different from the hazy image. This suggests that dehazing adjusts the radiances of hazy pixels to a
certain degree and produces a spectrally consistent result.
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Figure 17. Spectral profiles of pixels in hazy (asterisk), dehazed (plus) and haze-free (diamond) images.
The location of sampled pixels is marked by cross 1–4 in Figure 8a. (a–d) spectra corresponding to
cross 1 to 4, respectively. The X-axis is band index and Y-axis is DN (digital numbers) value.
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Figure 18 presents the blue and red band profiles of hazy (red line), dehazed (green line), and
haze-free (blue line) images. Along the vertical line, the hazy image is relatively clear on both sides
while affected by haze in the middle. Correspondingly, the left and right parts of Figure 18a,c have
similar shapes and DN values, while the middle parts are different. Along the horizontal line, the
image is entirely covered by haze. In Figure 18b,d, the curves of the hazy image are remarkably
different from the others. In contrast, the spectra of the dehazed and haze-free image are highly
overlapping. This indicates that dehazing maintains the similarity in clear regions properly and reveals
a noticeable enhancement in hazy regions. The remaining differences can be attributed to residual
haze, different atmospheric conditions, or a change of surface.
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(b) horizontal profile of blue band; (c) vertical profile of red band (0.655 µm); (d) horizontal profile of
red band.

5.3. Influence on Vegetation Index

Spectral consistency of dehazing results ensures that haze removal would not affect the algorithms
that rely on the spectral information of remote sensing images. The dehazed images are expected
to be used as data sources of land cover classification and mapping, surface change detection and
other applications involving ground information extraction. Herein, we implement a test of extracting
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vegetation using the normalized difference vegetation index (NDVI) from the original hazy image,
dehazed image, and haze-free reference image respectively. The expression of NDVI is written as:

NDVI =
ρnir − ρr

ρnir + ρr
(12)

where ρ is the reflectivity for the indicated band, nir and r stands for band NIR and red, respectively.
An example is given in Figure 19. The original hazy image, covering the urban and suburban areas

of Beijing, was acquired on 19 August 2014 and processed with MODEL-T. The haze-free reference
image is on 4 September 2014, having a minimal time difference with the hazy image. Both the original
hazy or clear image and the dehazing result are run for atmospheric correction in FLAASH [63] module
in ENVI software. Figure 19a–c shows the corrected results for the hazy image, dehazing result, and
reference image respectively. Figure 19d–f are classification results using an NDVI threshold of 0.5.
In this period, the vegetation in the north finishes growing and begins withering, while a comparison
of Figure 19d,f displays a rapid growth of vegetation, which defies the common sense. Due to the
influence of haze, NDVI of the hazy image is smaller than that of the usual, leading to neglection of
some vegetation with a usual threshold. In contrast, the comparison of Figure 19e,f is much closer to the
truth, which reflects a reduction of vegetation with the arrival of autumn. In fact, when adjusting the
threshold of Figure 19d to 0.35, we reach the same conclusion as Figure 19e, with 66.74% of vegetation.
It indicates that NDVI is strongly influenced by severe haze conditions, and haze removal can corrected
the bias to some degree.
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Figure 19. Atmospheric correction of dehazing results: (a) hazy image (path: 123, row: 032, acquisition
date: 19 August 2014); (b) dehazed image using MODEL-T; (c) haze-free image (path: 123, row: 032,
acquisition date: 4 September 2014); (d–f) classification results of a-c respectively; the green represents
pixels whose NDVI are equal to or larger than 0.5; the brown represents pixels whose NDVI are smaller
than 0.5; the numbers at the bottom indicate the percentage of vegetation.
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6. Conclusions

We present a multi-scale residual convolutional neural network (MRCNN), which takes advantage
of both spatial and spectral information for haze removal of remote sensing images. The overall
architecture mainly contains four sequential modules: (1) spectral–spatial feature extraction, which
utilizes 3D convolutional kernels to extract spatial–spectral correlation information; (2) multi-scale
context aggregation, which uses dilated convolution is used to capture abstract features in different
receptive fields and aggregate multi-scale contextual information without losing resolution; (3) residual
learning, which avoids the loss of weak information while deepening the network for high-level
features; and (4) fully connected layers, which take advantage of dropout to improve the generalization
ability and prevent overfitting. The network takes hazy patches as input and outputs haze transmission.
The training datasets are generated from clear image blocks by simulating the haze degradation process.
Considering the difficulty of building a complete dataset containing various kinds of surface cover
types, clear samples are collected in a local clear region of a single scene in our experiments. MRCNN is
trained through mini-batch stochastic gradient descent (MSGD) and an early-stopping mechanism
to minimize the mean squared error between the predicted values and truth haze transmissions.
After finishing training, the network is capable of predicting the haze transmission of hazy images
in surrounding areas. Post-processing is necessary for the correction of the latent residual of
dehazed images. The trained network can be reinforced and fine-tuned by means of further learning
from new samples collected in other areas during the transferring application. The optimization costs
little time since the initialized parameters have learned sufficient knowledge in the previous stage.
The fine-tuned network not only gains the ability to solve new problems but also inherits the
ability of the previous network. The trained network can extend its applicability constantly through
transferring learning.

Experiments show that the trained network can achieve a validation score of 0.0289% and
testing performance of 0.0288% during the original training, and 0.1455% validation error during
transferring application, which can reach 0.0168% with further fine-tuning. Taking advantage of the
multi-scale context aggregation and residual learning, MRCNN converges faster and can achieve a
higher prediction accuracy compared with DehazeNet [30] and VGGNet [57]. We selected several
scenes of Landsat 8 OLI data for haze removal. The result of image quality assessment indicates
that the trained MRCNN is state-of-the-art to obtain dehazed images, whose color is consistent with
the actual scene. Compared with the traditional methods based on different priors, the proposed
MRCNN owns more powerful generalization ability. Since MRCNN extracts high-level, hierarchical,
and abstract features for haze transmission estimation, it hardly suffers from different surface types
and various haze or thin clouds. Meanwhile, MRCNN is able to preserve structural information, and
prevent the loss of correlation, luminance distortion and contrast distortion of images.

A comparison to haze-free reference data reveals that the dehazing process maintains the proper
similarity in clear regions and produces a noticeable enhancement in hazy regions. In addition, the
spectral consistency of dehazing results ensures that haze removal would not affect algorithms that
rely on the spectral information of remote sensing images.
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