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Abstract: Human-activity recognition (HAR) and energy-expenditure (EE) estimation are major
functions in the mobile healthcare system. Both functions have been investigated for a long time;
however, several challenges remain unsolved, such as the confusion between activities and the
recognition of energy-consuming activities involving little or no movement. To solve these problems,
we propose a novel approach using an accelerometer and electrocardiogram (ECG). First, we collected
a database of six activities (sitting, standing, walking, ascending, resting and running) of 13 voluntary
participants. We compared the HAR performances of three models with respect to the input data
type (with none, all, or some of the heart-rate variability (HRV) parameters). The best recognition
performance was 96.35%, which was obtained with some selected HRV parameters. EE was also
estimated for different choices of the input data type (with or without HRV parameters) and the
model type (single and activity-specific). The best estimation performance was found in the case
of the activity-specific model with HRV parameters. Our findings indicate that the use of human
physiological data, obtained by wearable sensors, has a significant impact on both HAR and EE
estimation, which are crucial functions in the mobile healthcare system.

Keywords: HRV parameters; activity recognition; energy expenditure estimation; wearable sensors;
mobile healthcare system

1. Introduction

As mobile healthcare systems have become widely used, users have begun to expect increasingly
accurate performance with better appearance. The appearance of the mobile healthcare system relies
highly on the development of sensing devices, either external or wearable. Due to many limitations of
external sensing devices, wearable sensors have increasingly attracted the interest of both users
and researchers. Recently, many wearable sensors have been developed for many applications,
such as medical, sports, and commercial fields (see a recent review in [1]). For researchers investigating
the mobile healthcare system, it is also challenging to utilize multi-dimensional information collected
from existing wearable sensors for more accurate performance.

To guarantee the performance of the mobile healthcare system, two crucial functions are required:
human-activity recognition (HAR) and energy-expenditure (EE) estimation. The former, which is also
called the HAR problem, has attracted many researchers since the late ‘90s (see recent reviews in [2,3]).
With the development of computing technologies, it becomes possible to recognize human activities,
especially ambulatory activities, with significantly high accuracy. Researchers have recently reported
very high recognition performance, from 97 to 99%, under different approaches [4,5]. The latter function
is also broadly implemented in the mobile healthcare service and is represented as calorie consumption.
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These two issues are closely related to each other in that the EE estimation is accurate assuming that
the activities of the monitored person are properly recognized [6].

The most frequently used sensor in the mobile healthcare system is the tri-axial accelerometer.
Single or multiple accelerometers are broadly used for the HAR problem and EE estimation. However,
as mentioned in a recent review by Lara and Labrador [3], physiological signals such as heart rate,
respiration rate, and electrocardiogram (ECG) have attracted little interest. The specific reason we pay
attention to physiological signals is that the information provided by the accelerometer is insufficient
for recognition of some confusing activities in terms of acceleration. Furthermore, an accelerometer
has a critical drawback in cases of little or no movement but with obvious energy consumption,
for example, sedentary work. One previous study has proven that heart-rate variabilities reflect
qualitative differences in static and dynamic activities [7].

Biomedical sensors for physiological signals have continuously developed. On the other hand,
as reviewed by Liu and Liu, recent biomedical sensors have become wireless, portable, and wearable
on the platform of mobile phone. Yet, the method of analyzing the collected physiological signals is
still a challenge [8].

Based on these considerations, we expect that such physiological signals may provide us with
additional information for better recognition of human activities and prediction of EE, even for
such cases. To the best of our knowledge, no study has been performed yet to solve these drawbacks
for both issues (HAR and EE estimation) with an approach that exploits human physiological signals.

In this study, we aim to recognize human ambulatory activities and estimate EE using our database
composed of accelerometer and physiological signals, collected from 13 voluntarily participating
subjects in a laboratory environment. To investigate the role of physiological signals in both issues,
we compare the recognition and estimation performances with and without ECG data.

The organization of the paper is as follows. We first give a brief review of some of the existing
approaches for HAR and EE estimation using wearable sensors. Then, we introduce our database and
the wearable sensors used in this study. Next, we describe our approaches and experimental results of
HAR and EE estimation. Finally, we conclude this paper with a discussion.

2. Related Work

2.1. Activity Recognition

The HAR problem, especially for ambulatory activities, has been widely investigated with tri-axial
accelerometers. The use of an accelerometer is accompanied by several issues, such as the number of
sensors, attachment locations, and classification methods.

First, in terms of sensor quantity and locations, Bao and Intille used five locations of accelerometers
(wrist, ankle, thigh, elbow, and hip) with 84% recognition accuracy but reported high obtrusiveness [9].
Khan et al. used only one accelerometer on the chest with high recognition accuracy of 97.9%, but
the attachment location caused moderate obtrusiveness [4]. He and Jin reported 97.51% recognition
accuracy with a single tri-axial accelerometer inside a trouser pocket, where it is relatively less
obtrusive [10]. The use of a multi-position system can be advantageous in terms of information
quantity, but too many sensors can cause discomfort for the user. For these reasons, several studies
for HAR using wrist-worn accelerometer is starting to emerge [11–13]. A wrist-worn device is more
convenient to wear than body-fixed-sensor at the hip or torso and it can be worn continuously during
free-living. Moreover, as also mentioned above, it is possible for a single sensor to achieve high
accuracy on ambulatory-activity recognition. Thus, we use a single accelerometer on the wrist of the
individual’s dominant arm, where it does not obstruct ambulatory activities, and an additional sensor
for a physiological signal.

Second, classification methods are diverse but almost always operate in a supervised fashion.
For example, decision trees [14], support vector machine (SVM) [10], artificial neural network [4],
and ensemble of classifiers [15,16] are used. For the selection of a proper classification method for
the mobile system, we need to use a simple method with a small computational load. Otherwise,
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classification may cause additional discomfort to users due to its computational delay. We will compare
the performances of several simple classical classifiers.

In this study, we aim to investigate the effect of a human physiological signal, specifically ECG
signal, on HAR and EE estimation and propose a novel paradigm for the mobile healthcare system
using wearable sensors. Only a few studies were found on the use of a physiological signal for
an additional sensor. Tapia et al. [17] reported that they used a heart-rate monitor with five tri-axial
accelerometers, but they could not find any improvement in recognizing ambulatory activities due
to the usage of a heart-rate monitor. On the other hand, Centinela, a system proposed by Lara et al.,
reported that vital signs are useful to discriminate certain activities [15]. Li et al. also proposed
a multi-modal approach utilizing ECG and accelerometer as well as a fusion of multimodal and
multi-domain subsystems in nine-category physical activity database [18]. Except one study by
Tapia et al., activity recognition with the combination of physiological and accelerometer signals
outperformed the classification by single modal approach.

2.2. Energy Expenditure Estimation

There are several existing methods to measure human physical activities: self-reporting, indirect
calorimetry, double-labeled water (DLW), and portable monitors (such as ECG and accelerometers) [19].
Among them, an accelerometer is most widely used, especially for estimation of EE, due to its small size,
portability, low power consumption, and low cost [20]. Moreover, Plasqui and Westerterp reviewed
several commercialized accelerometers by comparison with the DLW technique, which is known as
the gold standard in EE estimation, and found one accelerometer having reasonable correlation with
DLW-derived EE [21].

Bouten et al. used a tri-axial accelerometer to estimate EE for both sedentary (sitting, writing, and
arm work) and walking (intensity varies from 3 to 7 km/h) activities with correlation coefficients of 0.82
and 0.96, respectively [22]. Puyau et al. validated two commercialized accelerometer-based activity
monitors in various activities of children in terms of EE estimation [23]. Wang et al. also used a tri-axial
wrist-worn accelerometer for estimation of EE in a large dataset of several activity categories [24].

However, as reported in [21], accelerometer-based EE estimation is not yet a perfect replacement
for DLW-based techniques. To improve the performance of EE estimation using an accelerometer,
some studies suggested activity-specific models [6,25]. This approach may provide better performance,
but users must submit their data for every activity to develop each model. Instead, we will compare
single and activity-specific models with an additional ECG sensor capturing physical changes in
the human body. Considering the differences in physiological changes during static and dynamic
activities [7], we assume two separate models for static and dynamic activities (we call this approach
activity-specific), which may help to achieve better estimation.

Some researchers have already used additional physiological signals such as heart rate
(HR) for more accurate estimation. Crouter et al. predicted EE using a heart-rate monitor with
an accelerometer [26]. Altini et al. presented activity-specific oxygen-uptake (VO2) estimation models
combining an accelerometer and HR monitor [27]. Brage et al. also reported that indirect calorimetry
modelled by the combination of HR and movement was more accurately than either model [28].
Their results showed that the combined model outperformed the single models, such as models with
accelerometer only or HR only.

Based on these findings, we hypothesized that features extracted from ECG and accelerometer
signals can be commonly used for both HAR and EE estimation, which enables to develop the
integrated healthcare monitoring system with both functions. Therefore, we suggest a novel approach
simultaneously taking HAR and EE estimation into considerations based on both accelerometer and
ECG. Figure 1 describes the proposed system. Features extracted from ECG and accelerometer signals
respectively are concatenated and then input to each module of HAR and EE estimation. The sensor
locations in Figure 1 correspond to the database collected in this study and is not limited to these
locations in the proposed system.
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unit (IMU) sensor called Shimmer3 (Shimmer Research, Dublin, Ireland) and an ECG sensor called 
T-Rex TR100A (Taewoong Medical, Gimpo, Korea). Additionally, to obtain the ground-truth energy 
expenditure, a metabolic gas analysis system with a face mask (Quark CPET, COSMED, Rome, Italy) 
is also used. Calibration was performed before each test in order to acquire reliable reference energy 
expenditure data. The calibration procedure consists of gas analyzer and flow/volume calibration. 
The gas analyzer calibration adjusts the baseline of the CO2 sensor and the gain of the O2 sensor to 
ensure the accuracy of the measurement. The flow/volume calibrations are performed by moving the 
piston in and out for 10 inspiratory and expiratory strokes using a 3-L calibration syringe. After the 
calibration procedures are complete, the software displays whether the results are within the 
acceptable range. If one or more values are outside of the acceptable range the calibration must be 
repeated. Shimmer3 is an accurate high-performance IMU that integrates 10-degree-of-freedom 
inertial sensing via accelerometer, gyroscope, magnetometer, and altimeter. The sampling rate is set 
to 128 Hz, which is high enough to capture the details of human daily movements. This sensor offers 
a strap and a snap clip, providing full mobility, unrestricted movement and comfort for a participant, 
even during dynamic activities such as running. T-Rex TR100A is a wearable ECG sensor with a 
disposable patch-type electrode. The sampling rate is set to 256 Hz. This sensor is light and provides 
comfort for a participant and a patch-type electrode offers good adhesion without the feeling of 
irritation. Moreover, it maintains stable mounting state when performing dynamic activities. In this 
study, we use heart-rate variabilities (HRV) calculated from raw signals obtained by the ECG sensor. 
We acquire 31 HRV parameters from raw ECG signals using Kubios HRV software [29], which is a 
widely used software for HRV analysis (see Table 1). 

(a) 

 
(b) 

Figure 2. Sensors used in this study: (a) Shimmer3. This picture was obtained from its official website 
(http://www.shimmersensing.com/); (b) T-REX TR100A attached on a patch-type electrode. This 
picture was obtained from its official manual. 

Figure 1. Overall system flow. A cross symbol in a circle indicates the concatenation of two feature vectors.

3. Sensors and Database

3.1. Wearable Sensors

The wearable sensors used in this study are shown in Figure 2. We use an inertial measurement
unit (IMU) sensor called Shimmer3 (Shimmer Research, Dublin, Ireland) and an ECG sensor called
T-Rex TR100A (Taewoong Medical, Gimpo, Korea). Additionally, to obtain the ground-truth energy
expenditure, a metabolic gas analysis system with a face mask (Quark CPET, COSMED, Rome, Italy)
is also used. Calibration was performed before each test in order to acquire reliable reference energy
expenditure data. The calibration procedure consists of gas analyzer and flow/volume calibration.
The gas analyzer calibration adjusts the baseline of the CO2 sensor and the gain of the O2 sensor to
ensure the accuracy of the measurement. The flow/volume calibrations are performed by moving the
piston in and out for 10 inspiratory and expiratory strokes using a 3-L calibration syringe. After the
calibration procedures are complete, the software displays whether the results are within the acceptable
range. If one or more values are outside of the acceptable range the calibration must be repeated.
Shimmer3 is an accurate high-performance IMU that integrates 10-degree-of-freedom inertial sensing
via accelerometer, gyroscope, magnetometer, and altimeter. The sampling rate is set to 128 Hz, which is
high enough to capture the details of human daily movements. This sensor offers a strap and a snap clip,
providing full mobility, unrestricted movement and comfort for a participant, even during dynamic
activities such as running. T-Rex TR100A is a wearable ECG sensor with a disposable patch-type
electrode. The sampling rate is set to 256 Hz. This sensor is light and provides comfort for a participant
and a patch-type electrode offers good adhesion without the feeling of irritation. Moreover, it maintains
stable mounting state when performing dynamic activities. In this study, we use heart-rate variabilities
(HRV) calculated from raw signals obtained by the ECG sensor. We acquire 31 HRV parameters from
raw ECG signals using Kubios HRV software [29], which is a widely used software for HRV analysis
(see Table 1).
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Table 1. Summary of heart-rate variability (HRV) parameters [29].

Parameters Units Description

Time-
Domain

1 mRR ms The average of RR intervals
2 SDRR ms Standard deviation of RR intervals
3 mHR 1/min The average heart rate
4 SDHR 1/min Standard deviation of instantaneous heart rate values
5 RMSSD ms Square root of the mean squared differences between successive RR intervals
6 NN50 count Number of successive RR interval pairs that differ more than 50 ms
7 pNN50 % NN50 divided by the total number of RR intervals

Frequency-
Domain

8 VLF Hz Peak in very low frequency range (0 to 0.04 Hz)
9 LF Hz Peak in low frequency range (0.04 to 0.15 Hz)
10 HF Hz Peak in high frequency range (0.15 to 0.4Hz)
11 pVLF ms2 Absoulte powers of VLF bands
12 pLF ms2 Absoulte powers of LF bands
13 pHF ms2 Absoulte powers of HF bands
14 prcVLF % Relative powers of VLF bands = VLF(ms2)/total power(ms2) × 100%
15 prcLF % Relative powers of LF bands = LF(ms2)/total power(ms2) × 100%
16 powHF % Relative powers of HF bands = HF(ms2)/total power(ms2) × 100%
17 nLF n.u. Powers of LF bands in normalized units = LF(ms2)/(LF + HF)(ms2)
18 nHF n.u. Powers of HF bands in normalized units = HF(ms2)/(LF + HF)(ms2)
19 LF/HF - Ratio between LF and HF band powers

Nonlinear-
Domain

20 SD1 ms Standard deviations of the Poincaré plot (short-term variability)
21 SD2 ms Standard deviations of the Poincaré plot (long-term variability)
22 ApEn - Approximate entropy
23 SampEn - Sample entropy
24 D2 - Correlation dimension
25 Alpha1 - Short-term fluctuations of detrended fluctuation analysis (DFA)
26 Alpha2 - Long-term fluctuations of detrended fluctuation analysis (DFA)
27 Lmean beats Mean line length of diagonal lines in recurrence plot (RP)
28 Lmax beats Maximum line length of diagonal lines in RP
29 REC % Recurrence rate (percentage of recurrence points in RP)
30 DET % Determinism (percentage of recurrence points which form diagonal lines in RP)
31 ShanEn - Shannon entropy of diagonal line lengths’ probability distribution

3.2. Database

Thirteen subjects (9 males and 4 females, mean ± standard deviation age, 25.7 ± 3.1 years)
were recruited for this study. Subjects were asked to fast and avoid caffeine-containing beverages
and nicotine for 4 h prior to the experimental tasks. They were also asked to abstain from alcohol
and vigorous exercise 24 h prior to each experiment [30]. Each participant was required to perform
five basic ambulatory activities—sitting (abbreviated as SI), standing (ST), walking (WK), running (RU),
ascending (AS)—and rest (REST). During SI and ST activities, no specific hand movements or position
guidelines were proposed, and in the case of dynamic activities, the subjects’ natural arm motion
was induced. All activities were performed on the treadmill in the experimental room, as shown in
Figure 3. Static activities were performed during 5 min, and dynamic activities were performed during
10 min. As also shown in the Figure, a participant was asked to wear IMU sensors on both his/her
arms, attach an ECG sensor to his/her chest, and wear a face mask to measure metabolism during
a task. Activity recognition was evaluated for these five activities, and energy expenditure estimation
is performed for all activities, including rest, i.e., six activities. Activity during rest looks the same
as that during SI but needs to be separately considered. Because rest is sitting right after performing
a dynamic activity, the physiological states of these two activities are obviously different.

The experimental task was approved by the institutional review board at the Korea Institute of
Science and Technology (2016-009).
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3.3. Preprocessing

During the tasks, participants wore two IMU sensors on both of their arms, but only the data
from each individual’s dominant arm were used for further analysis. Raw data from the dominant
arm were segmented with a time window of 2 s without overlap. Then, four widely used time- and
frequency-domain features were extracted for every time window: RMS, standard deviation, dominant
frequency, and energy [31]. The typical window length of accelerometer signal varied from 1 s to
30 s according to the activities to be recognized and the measured attributes. However, the ECG
signal usually requires a longer time window, from 30 s to 1 min, to obtain HRV parameters. To align
IMU features with ECG features, we selected 1 min as a window length. To do so, we averaged
a four-by-30 IMU feature matrix into a four-by-one representative feature vector. HRV parameters
were computed using 1 min ECG signal. Therefore, our classification system provided the results of
activity recognition and energy-expenditure estimation every minute. To address scale differences
among features and subjects, each feature dimension of individual input data was normalized to zero
mean and unit variance.

4. Activity Recognition

As our first experiment, we examined the activity-recognition performance with respect to
the input data compositions using support vector machines with a linear kernel (Linear SVM) and
a radial basis function kernel (RBF SVM), k-nearest neighbors (kNN) and linear discriminant analysis
(LDA). We set up three recognition scenarios to evaluate performance as follows and applied the four
aforementioned classification methods to these scenarios: (1) IMU only: input data are composed of
four time- and frequency-domain features extracted from the accelerometer data acquired from IMU
sensors. (2) IMU + ECG: input data are composed of four features from IMU sensors (same as (1)) and
31 HRV parameters extracted from the ECG data. (3) IMU + selected ECG: input data are composed
of four features from IMU sensors (same as (1)) and selected HRV parameters extracted from the
ECG data. The selection criterion is based on the statistical significance (p-value) of the training data.
We used the Mann-Whitney U test, which is a nonparametric method for data whose probability
distribution is not normal, frequently used to assess the differences in HRV parameters.

To evaluate the validity of the recognition performance, we used a leave-one-subject-out
cross-validation strategy. We divided the data from 13 subjects into three groups: training, validation,
and testing. For each cross-validation fold, there are training data from 11 subjects, validation data
from one subject, and testing data from one subject. There is no overlap of data/subject between
groups. Validation data were used to select the optimal parameters for some classifiers, such as SVM
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(box constraint for both kernels, and gamma for the RBF kernel) and kNN (k, the number of nearest
neighbors) for every scenario. Additionally, validation data were also used to find the optimal number
of ECG features in the Scenario III. We used the LIBSVM toolbox for the classification [32] and Matlab
Statistics Toolbox (The MathWorks, Inc., Natick, MA, USA) for the other classification methods.

4.1. Scenario I: IMU Only

In this recognition scenario, we used four-dimensional input data, and features were extracted from
IMU data only. Figure 4 shows average feature values for each subject in time- and frequency-domains,
respectively. As shown in the figure, static (SI and ST) and dynamic activities (WK, AS, and RU)
are clearly distinguished. However, SI and ST of static activity, WK and AS of dynamic activity are
somewhat overlapping, suggesting the difficulty of classification.
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Table 2 shows the confusion table for SVM, and the overall recognition accuracy is 83.08%. On the
other hand, RBF SVM achieved an accuracy of 76.92%. For kNN, the recognition accuracy is 81.15%
with an optimal k of 3, as determined by the validation data. LDA obtained 72.12%. As shown in
the confusion table, SI and ST are frequently confused with each other, and WK is confused with AS.
This trend has also been observed in the confusion table published in [31]. We can conclude that the
information obtained from IMU sensors is insufficient to classify static activities in detail because there
is not a big difference between SI and ST in the feature domain. It also shows that there is not a big
difference between WK and AS in terms of acceleration.

Table 2. Confusion table for Linear SVM in scenario I.

Predicted Label
Total RC

SI ST WK RU AS

Ground Truth

SI 33 31 1 0 0 65 50.77
ST 21 44 0 0 0 65 67.69

WK 1 0 98 0 31 130 75.38
RU 0 0 0 130 0 130 100
AS 0 0 3 0 127 130 97.69

Total 55 75 102 130 158 520
PR 60.00 58.67 96.08 100 80.38

The abbreviations are: SI = sitting, ST = standing, WK = walking, RU = running, AS = ascending, RC = Recall,
PR = Precision.

4.2. Scenario II: IMU + ECG

In this recognition scenario, we used four-dimensional input data from IMU data and additional
31-dimensional HRV parameters from ECG data. In other words, the input-data dimension in this
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scenario is 35. As a result, the recognition accuracy of linear SVM improves to 91.73%, while RBF
SVM outperforms it with an accuracy of 92.31%. LDA has the largest improvement with the highest
accuracy of 94.81%. kNN improves to 87.50% with an optimal k as 1. The result shows that all methods
experience improvement, large or small, due to the additional data. Compared to the previous scenario,
the confusion table shows that WK is no longer confused with AS with ECG data, but SI and ST are
still confused with each other, although this is slightly improved (see Table 3).

Table 3. Confusion table for Linear support vector machine (SVM) in scenario II.

Predicted Label
Total RC

SI ST WK RU AS

Ground Truth

SI 49 13 3 0 0 65 75.38
ST 9 56 0 0 0 65 86.15

WK 0 2 128 0 0 130 98.46
RU 0 0 0 130 0 130 100
AS 0 0 0 0 130 130 100

Total 58 71 131 130 130 520
PR 84.48 78.87 97.71 100 100

4.3. Scenario III: IMU + Selected ECG

We used a statistical test to select better ECG features to solve the drawbacks observed by
previous scenarios. The Mann-Whitney U test was used for the evaluation of all univariate differences
in HRV parameters between the SI and ST classes, and between the WK and AS classes. To observe
the effect of feature selection, we drew two scatter plots before and after feature selection using
training samples with their known labels. Samples before feature selection have 31 dimensions
and thus cannot be drawn in 2-D or 3-D, so we apply principal component analysis to reduce their
dimensions only for the purpose of drawing the plots. Samples after feature selection are represented
by two-dimensional vectors because the highest validation accuracy is obtained when two ECG
features are used. Specifically, selected features are exactly the same for every 13 folds, mean R-R
interval (mRRI) and mean heart rate (mHR). Figure 5 shows the effect of feature selection, separately
drawn for two class-pairs, i.e., SI/ST and WK/AS. For samples before selection, the first and second
principal components were used for a scatter plot. As shown in the Figure, samples before selection
overlap one another, which implies difficulty in classification. However, samples with selected features
show better distinctiveness compared to the samples before selection. Moreover, sample distributions
before selection in classes SI and ST are more overlapped compared to those in classes WK and AS
(see Figure 5a,c). This trend indicates that classification of SI and ST is more difficult than that of WK
and AS, which is in line with the confusion table given in Table 3. As shown in the confusion table
in Table 4, there are significant improvements in classes SI, ST, and WK, compared to the confusion
table in Table 3.

Table 4. Confusion table for Linear SVM in scenario III.

Predicted Label
Total RC

SI ST WK RU AS

Ground Truth

SI 53 7 5 0 0 65 81.54
ST 6 59 0 0 0 65 90.77

WK 0 0 130 0 0 130 100
RU 0 0 0 130 0 130 100
AS 0 0 1 0 129 130 99.23

Total 59 66 136 130 129 520
PR 89.83 89.39 95.59 100 100
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The classification accuracies for all three scenarios are summarized in Table 5. All four methods
achieved their highest performances in scenario III, and LDA obtained the highest performance
overall, 96.35%.

Table 5. Performances in recognition scenarios I, II, and III.

Classification Methods Scenario I Scenario II Scenario III

Linear SVM 83.08 (7.51) 91.73 (7.03) 95.77 (3.73)
RBF SVM 76.92 (6.05) 92.31 (5.63) 95.96 (3.15)

kNN 81.15 (12.44) 87.50 (3.82) 94.04 (5.16)
LDA 72.12 (11.08) 94.81 (5.15) 96.35 (4.16)

Numbers in parentheses indicate standard deviations.

5. Energy-Expenditure Estimation

In the second experiment, we proposed a novel approach to estimate EE during six activities
(SI, ST, WK, AS, RU, and REST). As mentioned in Section 3.1., we aim to estimate EE using data
obtained from wearable sensors as closely as possible to the EE measured by the metabolic gas analysis
system. To estimate the energy consumed during activities, we developed several linear-regression
models using multi-sensory input features as independent variables. Generally, a linear-regression
model takes the form shown in Equation (1). Assuming a total number of samples n, the estimated
energy (kcal/min) of the i-th sample, Yi, is calculated as follows:

Yi = β0 + β1Xi1 + β2Xi2 + . . . + βkXik + εi, i = 1, 2, . . . , n, k = 1, 2, . . . , K (1)

where βk is a k-th regression coefficient, Xik represents the k-th input feature of the i-th sample,
and εi is the error term. The elements of a K-dimensional vector β can be simply estimated using
an ordinary least-squares method by minimizing the sum of squared error ε. The estimate of the
regression-coefficient vector β̂ can be obtained using following closed-form expression (Equation (2)).
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β̂ =
(
X′X

)−1X′Y (2)

where ’ denotes transpose.
Using this method, we set up four models to compare estimation performances from two

perspectives: data and model types. Hereafter, we refer to them as (1) the single model with IMU data
only (Model I), (2) the single model with both IMU and ECG data (Model II), (3) the activity-specific
model with IMU data only (Model III), and (4) the activity-specific model with both IMU and ECG
data (Model IV). For all models, anthropometric features (weight and height) and accelerometer
features from IMU data (RMS, standard deviation, dominant frequency, and energy) are commonly
used for the initial regression variables. Model II and IV additionally use physiological features
(31 HRV parameters).

By comparison of the four models, we expected effects due to (1) the addition of physiological
features in EE (data type) and (2) the methods of model construction (single or activity-specific; model
type). The effect of (1) can be seen by comparing Models I and II and comparing Models III and IV.
The effect of (2) can be seen by comparing Models I and III and comparing Models II and IV.

Among multi-sensory features, the selection criterion of regression variables is based on the
statistical significance (p-value < 0.05) in the regression model generated by training data. To evaluate
each model’s estimation performance, we used the root-mean-square error (RMSE) between the
EE values (kcal/min) predicted by a model and the values actually observed by the metabolic gas
analysis system.

To validate the generated regression model, we also used a leave-one-subject-out cross-validation
strategy. Data from 12 subjects were used to select the optimal regression variables and compute their
coefficients. Data from the remaining subject were used to test the generated model. The performance
reported afterwards is the average EE or the average RMSE after 13-fold cross-validation. The average
RMSE values for each activity are reported in Table 6.

Table 6. Root-mean-square errors (RMSEs) of four energy-expenditure (EE) estimation models for each
experimental task.

EE Estimation Models
Static Activities Dynamic Activities Average

SI ST REST WK AS RU

(1) Single (IMU) 1.11 (0.54) 0.94 (0.37) 1.74 (0.33) 1.48 (0.72) 2.37 (0.81) 2.63 (0.91) 1.71 (0.68)

(2) Single (IMU + ECG) 0.98 (0.55) 0.90 (0.52) 1.18 (0.56) 0.98 (0.39) 1.22 (0.70) 1.74 (1.22) 1.17 (0.31)

(3) Activity-specific (IMU) 0.62 (0.40) 0.48 (0.29) 1.75 (0.44) 1.78 (0.41) 1.92 (0.63) 2.22 (0.93) 1.46 (0.73)

(4) Activity-specific
(IMU + ECG) 0.44 (0.18) 0.46 (0.19) 0.76 (0.26) 1.05 (0.29) 1.10 (0.54) 1.54 (1.16) 0.89 (0.42)

Numbers in parentheses indicate standard deviations.

To investigate each effect on estimation performance, a two-way ANOVA was conducted to
compare the main effects of types of data and model and the interaction effect between type of data
and model on the EE estimation performance. Data type included two levels (IMU and IMU + ECG)
and model type consisted of two levels (single and activity-specific).

5.1. Effect of Data Type

First, we investigated the effect of data type on EE performance. The models without physiological
features are Models I and III, while the models with additional physiological features are Models II and
IV. As mentioned above, the initial features of Models I and III are two anthropometric features and four
accelerometer features, and they are used to construct least-squares fits of their models to the training
data. Models II and IV used additional physiological features from ECG data, i.e., a 37-dimensional
feature vector in total, to construct a least-squares fit. The EE estimation performances of Models III
and IV are described in Figure 6.
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Figure 6. The effect of data type on EE estimation performance, in the case of the activity-specific
model (subject 10). Gray-shaded regions indicate dynamic activities (WK, AS, and RU).

The main effect of data type yielded an F ratio of F(1, 308) = 38.69, p < 0.001, indicating a significant
difference in RMSEs between the models with IMU only (Models I and III; µ = 1.59, σ = 0.68) and
models with IMU + ECG (Models II and IV; µ = 1.03, σ = 0.38). This result shows that the models with
additional physiological features could significantly improve the estimation performance, relative to
the models without physiological features.

5.2. Effect of Model Type

Next, we compared two types of models in EE estimation. In Models I and III, one single model
is generated by the training data for all six activities. In Models II and IV, unlike in the single model,
we generated two regression models for each activity type: static and dynamic. Static activities include
SI, ST and REST, while dynamic activities are WA, AS and RU.

The main effect of model type yielded an F ratio of F(1, 308) = 8.58, p < 0.005, indicating
a significant difference in RMSEs between the single models (Models I and II; µ = 1.44, σ = 0.58)
and the activity-specific models (Models III and IV; µ = 1.18, σ = 0.64). This result shows that the
activity-specific model could improve the estimation performance significantly, relative to the single
model. The EE estimation performance of Models II and IV are described in Figure 7.Sensors 2017, 17, x FOR PEER REVIEW  12 of 15 
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We confirmed that both effects are statistically significant on the EE estimation performance.
In other words, the addition of physiological features and the use of an activity-specific model have
significant impacts on the performance improvement. By comparing these two effects, we can see
that data type has a greater impact on the EE estimation performance than the effect of model type.
However, there was no significant interaction effect between data and model types (p-value = 0.90).

Consequently, Model IV generates 26 regression models computed from each cross validation
fold (13-fold) and each activity (static and dynamic). Representatively, Table 7 shows final regression
models computed from 1st cross-validation fold.

Table 7. Final activity-specific regression models in the 1st fold.

EE Estimation Model (IMU + ECG; cal/min) R2

(1) Static activity:

3.32 − 0.020 × Height + 0.061 ×Weight + 0.052 × power + 1.68 ×mHR + 0.025 × LF +
1.01 × Lmean − 0.48 × REC

0.93(2) Dynamic activity:

−1.38 − 0.030 × Height + 0.14 ×Weight − 0.45 × f_dominant + 0.00068 × power − 0.52 × σ

+ 0.49 × RMS + 2.98 × SDRR + 1.87 ×mHR + 108.80 × SDHR + 0.87 × pNN50 + 0.36 × pLF
− 110 × SD1 − 3.24 × SD2 − 0.23 × D2 − 0.17 × Alpha1

mHR = average heart rate; LF = peak in low frequency range; Lmean = Mean line length of diagonal lines in
recurrence plot; REC = Recurrence rate; f_dominant = dominant frequency; σ = standard deviation of acceleration;
RMS = root mean square of acceleration; SDRR = standard deviation of R-R interval; SDHR = standard deviation of
heart rate; pNN50 = NN50 divided by the total number of RR intervals (NN50 = Number of successive RR interval
pairs that differ more than 50 ms); pLF = Absolute powers in low frequency range; SD1 = Standard deviations of
the Poincaré plot (short-term variability); SD2 = Standard deviations of the Poincaré plot (long-term variability);
D2 = Correlation dimension; Alpha1 = Short-term fluctuations of detrended fluctuation analysis.

6. Discussion

As mentioned earlier, HAR and EE estimation are important information provided by the
mobile healthcare system. The HAR problem has been investigated for a long time by many
researchers, and the reported performances of existing approaches seem to be sufficiently high,
even for commercialization. The reason we tried to propose a novel approach for this widely known
problem is that it is crucial to understand different characteristics of static and dynamic activities for
accurate HAR and EE estimation in our daily lives. The accelerometer, as is also well known, has been
a good tool for HAR and EE estimation, but we found significant drawbacks, such as the confusion of
some activities (SI/ST and WK/AS) and in estimating energy expenditures for activities involving
little or no movement (but obviously consuming energy). In this study, we found a significant role of
human physiological signals (specifically, HRV parameters) for both problems and an impact of the
activity-specific model on EE estimation.

6.1. Activity Recognition

Our findings show that selected ECG features indeed improved classification performance
dramatically, especially for some labels that were confused when we used IMU features only. Moreover,
the selected ECG features are the same for all 13 folds. In other words, the power of the selected ECG
features is verified with different training data. Therefore, it is necessary to further consider the details
of these two selected features: mRRI and mHR.

By definition, mRRI is the average interval of two successive R peaks. Differences between the
mRRI values for the SI and ST classes are shown to be statistically significant by the Mann-Whitney U
test (for the SI class, µ = 0.86, σ = 0.12; for the ST class, µ = 0.77, σ = 0.10, and p-value = 5.51 × 10−6).
This means that the interval between R-R peaks is longer for a sitting activity than for a standing
activity, and the longer RR interval indicates slower heartbeat due to that activity. We can observe
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a statistically significant difference in mRRI values between the WK and AS classes (for the WK
class, µ = 0.61, σ = 0.08; for the AS class, µ = 0.47, σ = 0.07, p-value = 3.15 × 10−6). In the same way,
the ascending activity makes the heart beat faster than walking.

Moreover, we can clearly interpret these trends with mHR, the mean heart rate. The mHR values
also show such differences for both pairs of activity classes (for the SI class, µ = 71.23, σ = 9.11; for the
ST class, µ = 79.89, σ = 10.29, p-value = 0; for the WK class, µ = 100.82, σ = 12.58; for the AS class,
µ = 130.64, σ = 18.32, p-value = 0).

Then, the question is whether ECG features alone can classify activity classes. We additionally
developed new scenarios with ECG-only features: (4) ECG-only, and (5) selected ECG-only, and tested
these scenarios with LDA which yielded the highest performance in previous scenarios. As a result,
we obtained 68.65% (σ = 6.74) with scenario IV, and 69.04% (σ = 7.11). Specifically, predicted labels in
scenario V showed that there is no misclassification at all between the SI and ST classes, and between the
WK and AS classes, as we statistically investigated above. However, low classification performance of
these new scenarios was due to the confusion between static activity classes (SI and ST) and WK classes.

According to these findings, our physiological signals, especially some of HRV parameters
associated with the information of the heartbeat, can help to recognize more accurately some activities
for which movements are not easily recognizable with accelerometer signals only. In conclusion,
the characteristics of the ECG and the IMU are complementary in terms of HAR, so that using these
features together can improve performance than using each of them.

6.2. Energy Expenditure Estimation

In EE estimation, we generated four models with respect to the data and model types. The effects
of data and model types on EE estimation performance were statistically significant in terms of RMSE
with reference data from the metabolic gas analysis system. Moreover, the effect of data type was greater
than the effect of model type. However, the effect of model type was a dramatic improvement, in static
activities specifically. Comparing the RMSEs for static and dynamic activities separately, the difference
between Models II and IV was statistically significant for static activities only (p-value = 9.71 × 10−7,
t(1, 38) = 5.83, for Model II; µ = 1.02, σ = 0.54, for Model IV; µ = 0.55, σ = 0.26). This result indicates
that the proposed model has made a significant improvement in EE estimation for activities involving
little or no physical movement, as expected.

We found that the generated regression models have common variables. Common variables in
Models II and IV indicate significant contributions of some features, among all 37 features we used
(two anthropometric, four accelerometer, and 31 HRV features). Surprisingly, mHR, which had a great
impact on activity recognition as well, was selected by all 13 folds. In other words, the additional
information about heart rate is also useful in EE estimation. The crucial role of mHR in both problems
means a lot in terms of system construction. By simply computing the average heart rate, we can
improve EE estimation performance for static and dynamic activities that reflect daily life.

6.3. Limitations and Future Work

We proposed a novel approach to recognize human ambulatory activities and estimate EE using
our database composed of IMU and ECG signals, collected from 13 subjects. We have successfully
demonstrated that using additional ECG signals, especially adding specific HRV parameters,
has resulted in performance improvements for both issues. However, there is obvious limitation
that our database has been collected under controlled laboratory environment with subject at specific
ages. For broader application of the proposed system, it should be verified with different subject
groups such as age, gender, race etc. Because the characteristic of physiological signals providing
useful information on heart is highly dependent on these effects. Therefore, system performance may
also be enhanced with more sample numbers of the same group with the testing subject.

Considering daily life monitoring using our approach, our database may be limited to a few
activities classes. However, we set up the models not for every single activity class but for each
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activity category (static or dynamic), even though there are other activities beyond six activity classes
that we used, our system is expected to yield reasonable performance by applying either static or
dynamic model. Moreover, to adapt continuously collected daily life data, system should be updated
regularly with new training data. In other words, how to effectively process the vast amount of data
and incorporate them into the system will be a new challenge. Future work can be done to address
these issues with active learning or selective sampling to regularly update individual models.
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