
Information 2015, 6, 592-612; doi:10.3390/info6040592
OPEN ACCESS

information
ISSN 2078-2489

www.mdpi.com/journal/information

Article

Duplication Detection When Evolving Feature Models of
Software Product Lines
Amal Khtira *, Anissa Benlarabi † and Bouchra El Asri †

IMS Team, SIME Laboratory, ENSIAS, Mohammed V University, Rabat 10000, Morocco;
E-Mails: a.benlarabi@gmail.com (A.B.); elasri_b@yahoo.fr (B.E.A.)

† These authors contributed equally to this work.

* Author to whom correspondence should be addressed; E-Mail: amalkhtira@gmail.com;
Tel.: +212-67-1107452.

Academic Editor: Ahmed El Oualkadi

Received: 23 June 2015 / Accepted: 24 September 2015 / Published: 7 October 2015

Abstract: After the derivation of specific applications from a software product line, the
applications keep evolving with respect to new customer’s requirements. In general,
evolutions in most industrial projects are expressed using natural language, because it is the
easiest and the most flexible way for customers to express their needs. However, the use of
this means of communication has shown its limits in detecting defects, such as inconsistency
and duplication, when evolving the existing models of the software product line. The aim of
this paper is to transform the natural language specifications of new evolutions into a more
formal representation using natural language processing. Then, an algorithm is proposed
to automatically detect duplication between these specifications and the existing product
line feature models. In order to instantiate the proposed solution, a tool is developed to
automatize the two operations.

Keywords: software product line; natural language specifications; feature models;
evolution; duplication; natural language processing

1. Introduction

Due to the insistent demand for software customization and the aim of reducing the cost of
development, reducing the time-to-market and improving the quality of products, a switch from



Information 2015, 6 593

developing individual software to developing a family of software began, resulting in software product
line engineering (SPLE) [1]. This approach consists of deriving specific software from a core platform.

Many SPL-related paradigms have been proposed, among which feature-oriented software
development (FOSD) [2] is an approach that structures the design and code of a software system using
the concept of a feature. The goal of FOSD is to decompose a software system in terms of the features it
provides and to create many different software products that share common features and differ in other
features. The commonalities and variabilities of a product line can be expressed using feature-oriented
domain analysis (FODA) feature model. FODA [3] is a domain analysis method that provides a complete
description of the features of the domain, giving less attention to design and code.

A product line is a long-living system that must continuously evolve to satisfy the new needs of
customers. The evolution of an SPL impacts both the domain model of the product line and the
application models of derived products. These changes can be the source of several defects addressed
in many papers in the literature [4,5]. Since the requirements related to SPL evolutions are most of the
time expressed in the form of natural language specifications, the verification of the model becomes
more complex. To solve this problem, it is necessary to transform the natural language specifications
into a more formal representation in order to simplify the detection of defects. In this paper, we focus
on a specific model defect, i.e., feature duplication [6]. We consider duplication the fact of adding to
the domain or the application model features with the same semantics, which means that they satisfy the
same functionality.

Thus, the aim of this paper is two-fold. First, we transform natural language specifications into a
formal representation using a natural language processing approach. Second, we propose algorithms to
detect duplication when introducing features from the specifications of new evolutions into the existing
SPL feature models. To automatize the two operations, we provide an automated tool that enables
avoiding the complexity of manual verification.

The remainder of the paper is organized as follows. Section 2 gives an overview of the background
of our study by presenting some issues related to software product lines’ evolution. In Section 3,
we describe the methods to model and document software product lines and its evolutions, and we
explain our approach to verify the evolved SPL models. In Section 4, we propose a framework to detect
feature duplication when evolving software product lines and we present the automated tool developed to
automatize the framework processes. In Section 5, we illustrate our approach through a case study, and
we discuss the results achieved to date. Section 6 positions our approach with related works. The paper
is concluded in Section 7.

2. Software Product Line Evolution

In this section, we introduce the background of our study. First, we present the SPLE approach and
the evolution challenges related to SPLs. Then, we discuss model defects caused by SPL evolution, and
we justify our focus on feature duplication.



Information 2015, 6 594

2.1. Software Product Lines

Originally, software have been developed individually to solve a specific problem or to satisfy the
needs of a particular customer. However, in the past few years, companies started shifting to a new
approach called software product line engineering.

In [1], Clements and Northop define an SPL as “a set of intensive-software systems sharing a common,
managed set of features that satisfy the specific needs of a particular market segment or mission and that
are developed from a common set of core assets in a prescribed way”. The SPLE approach [7] promotes
systematic reuse throughout the software development process and allows the generation of a set of
software products with a considerable gain in terms of time, cost and quality.

The domain engineering phase of the SPLE framework is responsible for capturing the common
features of all of the applications, which increases the reusability of the system, and for determining
the variant features, which enables the production of a multitude of specific applications that respond
to different customers’ requirements. During this phase, all of the shared assets of the product line are
produced, starting by defining the model and then by generating the design and code of the product line.

The goal of the second process, the application engineering, is to build customized products based on
the SPL. This operation is referred to as product derivation or product instantiation. Product derivation
consists of selecting the features that are meaningful to a specific customer in order to create a specific
software product. This process is also responsible for instantiating all of the artifacts of the product line,
i.e., model, design, components, etc.

2.2. SPL Evolution Challenges

Software product lines are long-living systems and, thus, require inevitably continuous changes to
product line models. Changes can be introduced by new technologies, new customer requirements,
or new business strategies. Since the quality of a product line depends on the importance attached to
its evolution process, many studies in the literature have dealt with different challenges related to the
evolution of software product lines.

Some examples of evolution challenges are: the use of traceability links and dependencies between
the software product line artifacts in order to analyze the change impacts [8], the proposition of
evolution models to manage the evolution process rigorously [9], the co-evolution of domain and
application models [10], the co-evolution of different artifacts of an evolving software product line [11]
and the assessment of evolution before its implementation to anticipate the defects and unexpected
behaviors [12]. In our study, we focus on a specific challenge, which is the verification of SPL models
during evolution and the detection and correction of the resulting model defects.

2.3. Model Defects Caused by SPL Evolution

As a consequence of software product line evolution, many problems occur in the different assets of
the product line, especially model defects. This issue was the main input of our state of the art. Indeed,
in the beginning of our work, we carried out a literature review whose objective was to list the different
model defects caused by SPL evolution, to identify the approaches that propose solutions to these defects



Information 2015, 6 595

and to determine the limitations of these approaches. As a result of the review, we list the model defects,
as presented in Table 1.

Table 1. The SPL model defects.

Model Defect Definition

Inconsistency
A contradiction between two or more features, requirements or functionalities [13].
The breaking of a rule between two partial specifications [14].

Incompleteness The lack of necessary information related to a feature or requirement [15].

Incorrectness This describes the non-correspondence of a feature with the requirements imposed in the
specification [5].

Ambiguity When a feature has more than one interpretation [15].

Redundancy The presence of reusable elements and variability constraints among them that can be
omitted from the product line model (PLM) without loss of semantics on the PLM [16].

Duplication To have the same thing expressed in two or more places; duplication can happen in
specifications, processes and programs [17].

Unsafety This happens when the behavior of existing products is affected by a new evolution [18].

2.4. Duplication of Features When Evolving SPLs

A review of the literature has shown that, in comparison to other defects, feature duplication is so
far the one that has received little attention. According to [17], this defect occurs for many reasons,
such as the non-synchronization between the different people working on the project and the rapid
implementation of requirements without a verification of the existing models. Moreover, duplication
addressed in the literature most of the time concerns the code level or what is called code cloning, which
is a late stage of the implementation process.

Several motivations have led us to focus on the problem of feature duplication. First, the introduction
of duplication prevents one from meeting the main objectives of a software product line (e.g., the
reduction of time-to-market, the reduction of cost, the improvement of product quality). On the contrary,
this defect causes a waste of time, money and effort by implementing the same functionalities many
times. In addition, duplicate features can evolve independently from each other, which may cause
inconsistencies in the model. For instance, a feature can be deleted or modified while its copy in another
place of the model remains the same, which leads to a contradiction. Moreover, duplication in the feature
level negatively impacts the quality of the final product by causing code clones and consequently results
in the recurring bug problem and increases the maintenance effort [19]. A solution is thus necessary to
detect duplicate features in an early stage of evolution, which helps avoid their inclusion in the existing
models from the very beginning.

3. Modeling and Verifying SPL Features

In this section, we describe the methods to model and document software product lines and their
evolutions. Then, we explain our approach to verify the evolved SPL models.



Information 2015, 6 596

3.1. Variability Modeling

During the domain engineering of a software product line, the common and variant features of
all of the specific applications are captured. To document and model variability, many approaches
have been proposed. For instance, [7] introduced the orthogonal variability model, which defines
variability in a separate way. Salinesi et al. [20] used a constraint-based product line language. Other
approaches are proposed to model variability using UML models (Unified Modeling Language models)
or feature models (FODA [3]). In our study, we opt for the FODA method. The FODA method was
introduced in 1990 as a means of representing the commonalities and variabilities of software product
lines using feature models (FMs). A feature, as described by [21,22], is the abstraction of functional
or non-functional requirements that help characterize the system and that must be implemented, tested,
delivered and maintained. A feature model is the description of all of the possible features of a software
product line and the relationships between them. It is depicted as a tree-like structure where a feature is
represented by a node and sub-features by children nodes [1].

Feature-oriented software development (FOSD) [2] is a development paradigm that has his roots in the
FODA method. This paradigm aims at automatically generating software products based on the feature
models. Hence, tools, such as FeatureIDE [23], have been proposed to formalize the representation of
feature models and to enable the automatic selection of features of derived products. This tool will be
used in our approach to formalize the SPL feature models.

3.2. Evolution Documentation

Similarly to other software systems, the evolutions of a product line and its derived products are
most of the time expressed in the form of natural language specifications. Indeed, natural language is the
preferable way for customers to express what they expect from the system and to explain their perception
of the problem easily. However, expressing requirements in a natural language frequently makes them
prone to many defects. In [24], Meyer details seven problems with natural language specifications:
noise, silence, over-specification, contradictions, ambiguity, forward references and wishful thinking.
Lami [15] dealt with other defects, namely the ambiguity, the inconsistency and the incompleteness.
In order to be able to detect defects introduced by specifications, many studies have proposed methods
to transform natural language specifications to formal or semi-formal specifications [25–27].

3.3. SPL Model Verification

On the one hand, the domain model of a product line is the representation of all of the different and
common features of a family of related products. On the other hand, the application model is the model
corresponding to an individual application and is generated by binding the variability of the domain
model in a way that satisfies the needs of a specific customer [7]. These two models can be expressed
using feature models, while the specifications of a new evolution concerning a derived product can be
expressed using natural language. To enable a verification of the specifications against the product line
models, we need to unify the presentation of these two inputs. Hence, the objective of our study is to
transform the natural language requirements of an evolution and the feature models of the product line



Information 2015, 6 597

into a unified representation. The final representation has to be formal to allow the automatic model
verification and the detection of model defects, especially duplication.

4. A Framework for Detecting Feature Duplication When Evolving SPLs

The aim of our approach is to detect duplication when implementing an evolution of a derived product.
To achieve this goal, we propose a framework with two main processes [28]. The first process consists of
unifying the form of the evolution specifications and the feature models related to the SPL. The second
process involves the detection of duplicated features in the new evolution. Figure 1 represents the
overview of the proposed framework. In the following sub-sections, we explain each process in detail.
Then, we propose a support tool whose objective is to automatize the framework processes.

Specfications of a 
new evolution

SPL Feature 
Model

Duplicated 
features

Customer

Process 2 : Duplication Detection

Transformation

- Modify the new feature
- Delete the new/old feature
- Replace the old feature

Formal 
representation

Transformation
Formal 

representation

Decisions

Repository

Algorithm 1

Algorithm 2

Algorithm 3

Process 1 : Inputs Transformation

Figure 1. The overview of the framework.

4.1. Process 1: Feature Model and Specification Transformation

During this process, the existing feature models of the SPL and the specifications of the new
evolutions are transformed into the same formal representation to simplify the search of duplication
between the two inputs.

4.1.1. Transforming Feature Models

In our approach, both the domain and the application models are expressed using the FODA
feature model. In order to provide a formal representation of these models, we use the FeatureIDE
tool [23], which is an open source framework for software product line engineering based on FOSD.
This framework supports the entire life-cycle of a product line, especially domain analysis and feature
modeling. Indeed, the framework provides the possibility of presenting graphically the feature model



Information 2015, 6 598

tree, allows the derivation of application models from a domain model and automatically generates the
XML source of feature models.

Figure 2 depicts an example of the XML source generated by FeatureIDE from a feature model. In our
approach, we suppose that the tags “and”, “or” and “alt” correspond to variation points, while the tags
“feature” correspond to variants.

Figure 2. The XML source of a feature model.

As a reminder, variation points are places in a design or implementation that identify the locations at
which variation occurs. A variant is a single option of a variation point. As stated by Pohl et al. [7],
a variation point must be associated with at least one variant and can offer more than one variant.

4.1.2. Transforming Natural Language Specifications

In this section, we explain the process of the transformation of natural language requirements into
an XML document. To perform this operation, we will use the OpenNLP library [29], which is a machine
learning-based toolkit for the processing of natural language text. Figure 3 illustrates the different steps
of this process.

Textual 
Specifications

Syntax Parser
Parsed 

Specifications Semantic Parser

Machine 
Learning

Specification 
XML

Figure 3. Transforming natural language specifications to XML.



Information 2015, 6 599

(1) Textual Specification
The main input of this process is the specification of a new evolution related to a derived product.

This specification contains the new requirements that have to be implemented in this specific product.
In our approach, we suppose that specifications are written in a natural language; the input of this
operation can thus be a doc or a txt document.

(2) Syntactic Parser
In a previous work [30], we detailed the different actions related to the syntactic parsing of a natural

language text using OpenNLP. These actions are as follows.

• Sentences detection: The first operation consists of detecting separate sentences in the
specifications and writing each one in a different line.
• Tokenization: This action segments sentences into tokens. A token can be a word, punctuation, a

number, etc. As an output of this action, all of the tokens of the specification are separated using
whitespace characters, such as a space or line break, or by punctuation characters.
• Parsing: This step consists of analyzing each sentence of the specification in order to extract

the words it contains and to determine their parts-of-speech based on the rules of the language
grammar (e.g., noun, verb, adjective, adverb). A parser marks all of the words of a sentence
using a POS tagger (part-of-speech tagger) and converts the sentence into a tree that represents the
syntactic structure of the sentence. This action allows us to confirm whether the action of a verb
is affirmative or negative and whether a requirement is mandatory or optional, etc.

(3) Repository
The repository contains two kinds of information:

• The glossary: This contains the different features used in the domain model, classified by different
categories, especially “variant”.
• The dictionary: This corresponds to the definition of all of the features of the product line, their

synonyms and the relationships between them. This dictionary is manually built and updated
during system evolutions. In our test, we do not use an existing dictionary; we have created a new
one based on the domain model of the SPL. It has to be noted that the current version is not final;
we are still working on it. Moreover, we intend to import existing thesauri to enrich our dictionary.
Based on this dictionary, we compare the key synonyms of the new and existing variants to
automatically detect duplications. Thus, a dictionary is necessary in our approach, because it
is based on a semantic comparison, so we necessarily need synonyms to detect the duplications.

The content of the repository is initiated based on the domain model of the product line. So that
the repository follows the evolution of the product line and its derived products, we must increment its
content based on the new added features.



Information 2015, 6 600

(4) Semantic Parser
This level involves the extraction of meaning from a sentence. For this, we feed the machine

learning of OpenNLP with tagged variants from the domain model. The variants are not necessarily
named entities; they can also be a part of a sentence. In order to parse the specification, we use the
OpenNLP entity detector that uses a probabilistic approach to detect the potential variants that exist in
the specification. This operation is automatically performed. Figure 4 presents an example of entity
recognition. Once all of the variants are tagged, the corresponding tree is generated. The machine
learning is updated continuously to improve the operation of variants detection and to make the initial
model always up-to-date. The more the model is full with tagged variants, the more the recognition of
variants from the specification is accurate. In order to measure the precision of entity recognition, we
use the evaluation tool of OpenNLP, which provides information about the accuracy of the used model.

Figure 4. A tagged sentence.

(5) Output
After all of the sentences of the specification are tagged, we use the different detected entities and the

relationships between them to construct a graph whose structure is similar to the domain and application
feature models. This graph can thus be represented in the form of an XML document and will serve as
an input of the algorithm to detect duplication.

4.2. Process 2: Duplication Detection

As we stated in [31], to detect duplication introduced by new specifications into the existing feature
models, we first need to be sure that the specifications and the feature models are duplication free. Thus,
the detection of duplication must be performed in three main steps:

• Detecting duplication in the new specifications
• Detecting duplication in the existing feature models
• Detecting duplication between the specifications and the feature models

For each step, we propose one or several algorithms to carry out the required operation. In the
remainder of this section, we present some essential predicates related to our solution. Then, we explain
the different algorithms proposed to deal with duplication detection.



Information 2015, 6 601

4.2.1. Formalizing the Basic Concepts

Before presenting the different algorithms, we need to formalize the basic concepts used
in our solution.

• Formalizing the domain model

We denote by D the domain feature model of the product line. PD is the set of nodes related to the
tags “and”, “or” and “alt” of D (i.e., variation points), and V D is the set of nodes related to the tags
“feature” of D (i.e., variants).

PD = {pd1, pd2, . . . , pdm}

∀pdi ∈ PD ∃V Di where V Di = {vdij | j ∈ N}

Thus:

V D =

m⋃
i=1

V Di

This definition involves two assumptions:

• A variation point pdi from the set PD is associated with a set of variants V Di that contains the
elements vdij .
• V D is the union of all of the sets of variants V Di associated with the variation points. It represents

the set of all of the variants of the domain model.

The verification of duplication is carried out for all of the variants related to variation points, which
means the set of pairs (pdi, vdij).

• Formalizing the application model

We denote by A the application feature model of a derived application. PA is the set of variation
points of A, and V A is the set of variants of A.

PA = {pa1, pa2, . . . , pam}

∀pai ∈ PA ∃V Ai where V Ai = {vaij | j ∈ N}

Thus:

V A =
m⋃
i=1

V Ai

• Formalizing the specification

Similarly, we denote by S the specification of a new evolution. P is the set of variation points of S,
and V is the set of variants of S.

P = {p1, p2, . . . , pn}

∀pi ∈ P ∃Vi where Vi = {vij | j ∈ N}

Thus:

V =

n⋃
i=1

Vi

It has to be noted that a variation point must be associated with at least one variant. This assumption
is required by Pohl et al. [7] when defining the variability of an SPL.



Information 2015, 6 602

4.2.2. The Algorithms of Duplication Detection

The verification of duplication is carried out through a set of algorithms detailed in what follows.

• Detecting Duplication in Specifications

The algorithm responsible for detecting duplication in specifications was presented in [30].
The algorithm contains the four steps depicted in Table 2.

Table 2. The algorithm of duplication detection in specifications.

Step Actions

Step 1

Definition of a key synonym for each set of synonyms, based on the dictionary. For example:
The synonyms for “on-line sales” could be “e-sales”, “Internet sales” or “web sales”. The
key synonym for these alternatives is “on-line sales”.
Generation of an equivalent XML, by replacing the name of every node (variation point or
variant) with its associated key synonym in the dictionary.

Step 2 This step consists of putting in alphabetical order the variation points and the variants of
each variation point.

Step 3 For each variation point, the duplicated variants are detected and removed from the XML.

Step 4 Comparison between the variants of all of the variation points, in order to detect duplication
in the whole XML.

• Detecting Duplication in Feature Models

Since the representation of feature models and specifications is unified during the first process of
the framework, the algorithm to detect duplication in feature models is the same as the one used with
specifications. It has to be noted that this algorithm must be applied both to domain and application
models of the product line.

• Detecting Duplication between Specifications and Feature Models

The domain and application models of a software product line generally co-evolve independently
of each other [10]. Thus, the verification of duplication is carried out through two algorithms.
The first algorithm involves the comparison between the domain model and the specification, while
the second algorithm concerns the comparison between the application model and the specification.
The two algorithms are similar, but we chose to do the two verifications because the decision will change.
Indeed, if a duplication is detected between the specification and the application model, no actions are
required. However, if a duplication exists between the specification and the domain model, the feature
must be derived in the specific evolving product.

Algorithm 1 is the algorithm that corresponds to the second verification. The algorithm consists of
comparing each variation point of the specification with the variation points of the application feature
model. When an equivalent is found in the latter, the algorithm starts another comparison between the
variants corresponding to the variation point of the specification and the variants related to the equivalent



Information 2015, 6 603

variation point of the application model. If a variant is detected, this means that the feature corresponding
to the pair (variation point, variant) is duplicated. In the case that the new variants related to a variation
point do not have equivalents in the application model, no duplication is detected, and the variants can
be safely added to the existing model.

Algorithm 1 Detecting duplication between the specification and the application model.

Principal Lookup :
for each pi ∈ P do

for each pak ∈ PA do
if Equiv(pi, pak) then

Secondary Lookup :
for each vij ∈ Vi do

for each vakl ∈ V Ak do
if Equiv(vij , vkl) then

NoticeDuplication(pi, vij , pak, vkl)

Continue Secondary Lookup
end if

end for
end for
Continue Principal Lookup

end if
end for

end for

4.2.3. The Framework Outputs

For each algorithm, the duplicated features are stored in a log file that will be sent to the user in order
to inform him of the duplication and its location and to invite him to make his decisions regarding the
features (e.g., modify the new feature, delete the new/old feature, replace the old feature).

4.3. Automated Tool

For the aim of implementing the proposed framework, we have started developing a support tool that
automatizes the framework processes. The technologies used in the development process are:

• Development environment: Eclipse
• Development language: Java
• Human-computer interface: SWT
• Database: PostGre SQL
• Feature models creation: FeatureIDE
• Natural language processing: OpenNLP
• Graph generation: Prefuse



Information 2015, 6 604

The functionalities that the automated tool must provide are:

• The processing of natural language specifications (a txt document) and their transformation to
an XML document.
• The creation and modification of the repository.
• The detection of duplication in specifications.
• The detection of duplication in the XML source of a feature model.
• The detection of duplication between a feature model and a specification.

5. Results and Discussion

To illustrate our solution, we use a CRM (customer relationship management) product line with the
feature model depicted in Figure 5.

Figure 5. The domain feature model of the CRM.

For our test, we consider a derived application of the CRM. It is a web application that enables
the management of on-line and off-line sales. The kind of stores managed by the application are the
exclusive network stores only. The sector header collects information about customers by telephone and
contacts customers by telephone or by making an appointment. In Figure 5, the features related to this
specific application are presented in orange.

It has to be noted that the features of this CRM are initially used to populate the repository. The main
interface of the developed tool is depicted in Figure 6. It contains a menu with two entries. The first
entry enables the user to upload the feature model or the specification, while the second enables the
visualization of the repository content.



Information 2015, 6 605

Figure 6. The main interface of the support tool.

To load the domain and application models in the repository, we use the button “Open Feature Model”
of the “File” entry. Figure 7 presents an uploaded feature model.

Figure 7. The feature model loading.

This interface gives the possibility to load the model content into the repository. In addition, it enables
the detection of duplications inside this feature model.

The second input of our test is the specification of a new evolution of the derived application.
We added intentionally two duplicate features in the specification in order to verify whether our tool
will detect them or not. The specification is illustrated in Figure 8.



Information 2015, 6 606

Figure 8. The specification of the new evolution.

When we press the button “Process”, the specification is processed, transformed to an XML
document, and the algorithm of duplication detection is applied. Figure 9 presents the graphic form of the
generated XML. This presentation facilitates the visualization of the different new features introduced
by the specification and enables the distinction of duplicate features by presenting them in a different
color. For our test, the program detected two duplications as displayed in the top left corner of the
interface. Moreover, the graph also distinguishes the new variants added by the specification by relating
them to the node “unbound variants”. The user will be able to bind these variants with a variation point
from the repository.

Figure 9. The graph corresponding to the specification.

This interface provides other functionalities, such as the display of the generated XML, the re-parsing
of the specification after a modification of the repository, the comparison between the specification and
the feature model to detect duplication between them, the refreshment of the repository after the binding
of new features and the generation of the log. The log related to our test is presented in Figure 10.



Information 2015, 6 607

Figure 10. The log of duplication detection in specifications.

This document contains the number of variants in the specification, the number of potential
duplications. It also provides the sentences of the specification that contain duplication.

To search duplications between the specification and the feature models, we use the button “Compare
to feature models”. The result of this operation is illustrated in Figure 11. Three duplications are detected
in the domain model, and two were detected in the application model. The feature that is not duplicated
in the application model can be derived from the domain model. The percentages calculated in this
interface will enable us to estimate the gain in the development cost.

Figure 11. The results of the comparison between the specification and feature models.

Based on the results, we deduce that our solution is capable of detecting duplication in a specification
and between a feature model and a specification. However, the test was performed on a product line
with a limited number of features. In our future work, we intend to carry out further evaluation through
large-scale and real-life product lines to ensure the efficacy of our solution. Moreover, we will also
measure the impact of duplication detection on the evolution of software product lines, by calculating
the effort of the implementation of the automated tool and comparing it to the effort of implementation
of new evolutions of a product line. This evaluation will enable us to estimate after how many evolutions
our solution becomes cost-effective.

6. Related Work

In this section, we provide an overview of the studies most relevant to our work by classifying them
into three categories.



Information 2015, 6 608

6.1. Detecting Defects in Specifications

For the aim of automatically validating and correcting textual requirements, Holtmann et al. [25]
proposed an approach that uses an extended CNL (controlled natural language) that is already used
in the automotive industry. The CNL requirements are first translated into an ASG (abstract syntax
graph) typed by a requirement metamodel. Then, structural patterns are specified based on this
metamodel. The use of patterns allows an automated correction of some requirement errors and the
validation of requirements due to change requests. While this approach considers the correction of
textual specifications using a CNL, our approach aims at detecting duplication in these specifications by
transforming them into tree-like documents. Specifically, we chose XML because it is the format most
used in FOSD projects to represent feature models. Lami et al. [15] present a methodology and a tool
called QuARS (Quality Analyzer for Requirement Specifications), which performs an initial parsing
of the specifications in order to detect specific linguistic defects automatically, namely inconsistency,
incompleteness and ambiguity. Although this study converges with our paper in the fact that it is
based on parsing of natural language requirements to detect defects, QuARS is limited to syntax-related
issues of a natural language document, while our approach focuses on a semantic problem, which is
feature duplication. Ambriola and Gervasi [32] introduced a system called CIRCE that uses natural
language processing to extract information from natural language requirements, allows one to check
and measure the consistency of requirements and produces functional metric reports. Our approach is
different because, on the one hand, it focuses on semantic duplication in SPLs and not on inconsistency in
general, and on the other hand, because our goal is not only to detect duplication in textual requirements,
but between the specifications and the existing feature models of an evolving SPL.

6.2. Detecting Defects in Feature Models

Several papers in the literature have addressed model defects caused by SPL evolution. For example,
Guo and Wang [33] proposes to limit the consistency maintenance to the part of the feature model that is
affected by the requested change instead of the whole feature model. In order to locate inconsistency in
the domain feature model of an SPL, Yu [34] provides a new method to construct traceability between
requirements and features. It consists of creating individual application feature tree models (AFTMs)
and establishing traceability between each AFTM and its corresponding requirements. It finally merges
all of the AFTMs to extract the domain feature tree model (DFTM), which enables one to figure out
the traceability between domain requirements and DFTM. Using this method helps with automatically
constructing the domain feature model from requirements. It also helps locate affected requirements
while features change or vice versa, which makes it easier to detect inconsistencies. However, this
approach is different from our own, because we suppose that the domain and application models exist;
our objective is hence to construct a more formal presentation of them to facilitate the search of the
new features in these models. In [16], Mazo provides a classification of different verification criteria
of the product line model that he categorizes into four families: expressiveness criteria, consistency
criteria, error-prone criteria and redundancy-free criteria. Redundancy can easily be confused with
duplication, but it is completely different, because Mazo focuses on redundancy of dependencies and
not redundancy of features. The same study defines also different conformance checking criteria, among



Information 2015, 6 609

which two features should not have the same name in the same model. This is also different from our
approach, which is based on semantic equivalence and not only on the equality of features.

6.3. Detecting Duplication in SPLs

Software cloning or duplication has been actively addressed recently, especially in software product
lines. For example, Schulze [35] conducted an empirical study that emphasizes the existence of clones in
SPLs and identifies the different causes behind them. Then, he proposes variant-preserving refactoring
to remove code clones from compositional software product lines. Similarly, Dubinsky et al. [36]
conducted an empirical study to investigate the cloning culture in six industrial software product lines.
Based on the results of this study, the authors aim at developing better methodologies and tools that
promote efficient software reuse. Mende et al. [37] provide a tool support for the grow-and-prune model
in the evolution of software product lines by detecting pairs of functions sharing code, then by measuring
the textual similarity among these functions. The common denominator between all of these approaches
is that they focus on duplication at the code level, while our approach proposes a solution to duplication
at the feature level, which enables one to avoid duplication-related problems from the very beginning.

7. Conclusions and Future Work

Many papers in literature have addressed the detection and correction of model defects caused by
SPL evolution, but the majority of them focused on inconsistency in general, while duplication of
features has not been thoroughly discussed. The aim of this paper was to present a novel approach for
identifying duplicate features when evolving a derived product of an SPL. Since specifications received
from customers are most of the time expressed in natural language, we based our approach on natural
language processing techniques. We thus proposed a two-process framework. The first process consists
of transforming the model domain, the application domain and the specifications into a unified form,
XML trees. The second process contains a set of algorithms that detect duplication in specifications, in
feature models and between specifications and feature models. In order to automatize the two processes,
a support tool was proposed. So far, we applied the algorithm of duplication detection to a simple CRM
tool to verify its efficacy. In a future work, we intend to apply our solution to a large-scale product
line. In addition, we will carry out a quantitative evaluation to estimate the effort gained by using
the proposed method.

Author Contributions

The article was written by Amal Khtira. The research and state of the art were done by Amal Khtira
and Anissa Benlarabi. The design and implementation of the solution were done by Amal Khtira and
Bouchra El Asri. All authors have read and approved the final manuscript.

Conflicts of Interest

The authors declare no conflict of interest.



Information 2015, 6 610

References

1. Clements, P.; Northop, L. Software Product Lines—Practices and Patterns; Addison-Wesley:
Boston, MA, USA, 2002.

2. Apel, S.; Kästner, C. An overview of feature-oriented software development. J. Object Technol.
2009, 8, 49–84.

3. Kang, K.; Cohen, S.; Hess, J.; Novak, W.; Peterson, S. Feature-Oriented Domain Analysis
(FODA) Feasibility Study; Technical Report CMU/SEI-90-TR-21; Software Engineering Institute:
Pittsburgh, PA, USA, 1990.

4. Romero, D.; Urli, S.; Quinton, C.; Blay-Fornarino, M.; Collet, P.; Duchien, L.;
Mosser, S. SPLEMMA: A generic framework for controlled-evolution of software product lines.
In Proceedings of the 17th International Software Product Line Conference Co-located Workshops,
Tokyo, Japan, 26–30 August 2013; pp. 59–66.

5. Zowghi, D.; Gervasi, V. On the interplay between consistency, completeness, and correctness in
requirements evolution. Inf. Softw. Technol. 2004, 46, 763–779.

6. Khtira, A.; Benlarabi, A.; El Asri, B. Towards duplication-free feature models when evolving
software product lines. In Proceedings of the 9th International Conference on Software Engineering
Advances, Nice, France, 12–16 October 2014; pp. 107–113.

7. Pohl, K.; Böckle, G.; van der Linden, F. Software Product Line Engineering Foundations,
Principles, and Techniques; Springer: Berlin, Germany, 2005.

8. Anquetil, N.; Kulesza, U.; Mitschke, R.; Moreira, A.; Royer, J.C.; Rummler, A.; Sousa, A.
A model-driven traceability framework for software product lines. Softw. Syst. Model. 2010,
9, 427–451.

9. Pleuss, A.; Botterweck, G.; Dhungana, D.; Polzer, A.; Kowalewski, S. Model-driven support for
product line evolution on feature level. J. Syst. Softw. 2010, 85, 2261–2274.

10. Benlarabi, A.; El Asri, B.; Khtira, A. A co-evolution model for software product lines: An approach
based on evolutionary trees. In Proceedins of the IEEE Second World Conference on Complex
Systems, Agadir, Morocco, 10–12 November 2014; pp. 140–145.

11. Seidl, C.; Heidenreich, F.; Assmann, U. Co-evolution of models and feature mapping in software
product lines. In Proceedings of the 16th International Software Product Line Conference,
Salvador, Brazil, 2–7 September 2012; Volume 1, pp. 76–85.

12. Tizzei, L.P.; Dias, M.; Rubira; C.M.; Garcia, A.; Lee, J. Components meet aspects: Assessing
design stability of a software product line. Inf. Softw. Technol. 2011, 53, 121–136.

13. Nuseibeh, B. To be and not to be: On managing inconsistency in software development.
In Proceedings of the 8th International Workshop on Software Specification and Design,
Schloss Velen, Germany, 22–23 March 1996; pp. 164–169.

14. Easterbrook, S.; Nuseibeh, B. Managing inconsistencies in an evolving specification.
In Proceedings of the IEEE Second IEEE International Symposium on Requirements Engineering,
York, UK, 27–29 March 1995; pp. 48–55.

15. Lami, G.; Gnesi, S.; Fabbrini, F.; Fusani, M.; Trentanni, G. An automatic tool for the analysis of
natural language requirements. Comput. Syst. Eng. 2005, 20, 53–62.



Information 2015, 6 611

16. Mazo, R. A Generic Approach for Automated Verification of Product Line Models. Ph.D. Thesis,
Pantheon-Sorbonne University, Paris, France, 2011.

17. Hunt, A.; Thomas, D. The Pragmatic Programmer: From Journeyman to Master; Addison-Wesley:
Boston, MA, USA, 2000.

18. Neves, L.; Teixeira, L.; Sena, D.; Alves, V.; Kulezsa, U.; Borba, P. Investigating the safe evolution
of software product lines. ACM SIGPLAN Not. 2012, 47, 33–42.

19. Aversano, L.; Cerulo, L.; Di Penta, M. How clones are maintained: An empirical
study. In Proceedings of the IEEE 11th European Conference on Software Maintenance and
Reengineering, Amsterdam, The Netherlands, 21–23 March 2007; pp. 81–90.

20. Salinesi, C.; Mazo, R.; Djebbi, O.; Diaz, D.; Lora-Michiels, A. Constraints: The core of product
line engineering. In Proceedings of the IEEE 5th International Conference on Research Challenges
in Information Science, Gosier, France, 19–21 May 2011; pp. 1–10.

21. Kang, K.C.; Kim, S.; Lee, J.; Kim, K.; Shin, E.; Huh, M. FORM: A feature-oriented reuse method
with domain-specific reference architectures. Ann. Softw. Eng. 1998, 5, 143–168.

22. Bosch, J. Design and Use of Software Architectures: Adopting and Evolving a Product-Line
Approach; ACM Press: New York, NY, USA; Addison-Wesley: New York, NY, USA, 2000.

23. Kästner, C.; Thüm, T.; Saake, G.; Feigenspan, J.; Leich, T.; Wielgorz, F.; Apel, S. FeatureIDE:
A tool framework for feature-oriented software development. In Proceedings of the IEEE 31st
International Conference on Software Engineering, Vancouver, BC, Canada, 16–27 May 2009;
pp. 611–614.

24. Meyer, B. On formalism in specifications. IEEE softw. 1985, 2, 6–26.
25. Holtmann, J.; Meyer, J.; von Detten, M. Automatic validation and correction of formalized, textual

requirements. In Proceedings of the IEEE 4th International Conference on Software Testing,
Verification and Validation Workshops, Berlin, Germany, 21–25 March 2011; pp. 486–495.

26. Fatwanto, A. Software requirements specification analysis using natural language processing
technique. In Proceedings of the IEEE International Conference on QiR (Quality in Research),
Yogyakarta, Indonesia, 25–28 June 2013; pp. 105–110.

27. Ilieva, M.G.; Ormandjieva, O. Automatic transition of natural language software requirements
specification into formal presentation. In Natural Language Processing and Information Systems;
Springer: Berlin, Germany, 2005; pp. 392–397.

28. Khtira, A.; Benlarabi, A.; El Asri, B. An approach to detect duplication in software product lines
using natural language processing. In Proceedings of the Mediterranean Conference on Information
and Communication Technologies, Saidia, Morocco, 7–9 May 2015; in press.

29. The Apache Software Foundation. OpenNLP. Available online: http://opennlp.apache.org/
(accessed on 5 October 2015).

30. Khtira, A.; Benlarabi, A.; El Asri, B. Detecting feature duplication in natural language
specifications when evolving software product lines. In Proceedings of the 10th International
Conference on Evaluation of Novel Approaches to Software Engineering, Barcelona, Spain,
29–30 April 2015.



Information 2015, 6 612

31. Khtira, A. Towards a framework for feature deduplication during software product lines
evolution. In Proceedings of the 27th International Conference on Advanced Information Systems
Engineering, Stockholm, Sweden, 8–12 June 2015.

32. Ambriola, V.; Gervasi, V. Processing natural language requirements. In Proceedings of the 12th
IEEE International Conference on Automated Software Engineering, Incline Village, NV, USA,
1–5 November 1997; pp. 36–45.

33. Guo, J.; Wang, Y. Towards consistent evolution of feature models. In Software Product Lines:
Going Beyond; Springer: Berlin, Germany, 2010; pp. 451–455.

34. Yu, D.; Geng, P.; Wu, W. Constructing traceability between features and requirements for
software product line engineering. In Proceedings of the 19th Asia-Pacific Software Engineering
Conference, Hong Kong, China, 4–7 December 2012; Volume 2, pp. 27–34.

35. Schulze, S. Analysis and Removal of Code Clones in Software Product Lines. Ph.D. Thesis,
Magdeburg University, Magdeburg, Germany, 2012.

36. Dubinsky, Y.; Rubin, J.; Berger, T.; Duszynski, S.; Becker, M.; Czarnecki, K. An exploratory
study of cloning in industrial software product lines. In Proceedings of the IEEE 17th European
Conference on Software Maintenance and Reengineering, Genova, Switzerland, 5–8 March 2013;
pp. 25–34.

37. Mende, T.; Beckwermert, F.; Koschke, R.; Meier, G. Supporting the grow-and-prune model in
software product lines evolution using clone detection. In Proceedings of the IEEE 12th European
Conference on Software Maintenance and Reengineering, Athens, Greece, 1–4 April 2008;
pp. 163–172.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Software Product Line Evolution
	Software Product Lines
	SPL Evolution Challenges
	Model Defects Caused by SPL Evolution
	Duplication of Features When Evolving SPLs

	Modeling and Verifying SPL Features
	Variability Modeling
	Evolution Documentation
	SPL Model Verification

	A Framework for Detecting Feature Duplication When Evolving SPLs
	Process 1: Feature Model and Specification Transformation
	Transforming Feature Models
	Transforming Natural Language Specifications

	Process 2: Duplication Detection
	Formalizing the Basic Concepts
	The Algorithms of Duplication Detection
	The Framework Outputs

	Automated Tool

	Results and Discussion
	Related Work
	Detecting Defects in Specifications
	Detecting Defects in Feature Models
	Detecting Duplication in SPLs

	Conclusions and Future Work

