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Abstract: A fireworks algorithm (FWA) is a recent swarm intelligence algorithm that is inspired
by observing fireworks explosions. An adaptive fireworks algorithm (AFWA) proposes additional
adaptive amplitudes to improve the performance of the enhanced fireworks algorithm (EFWA).
The purpose of this paper is to add opposition-based learning (OBL) to AFWA with the goal of further
boosting performance and achieving global optimization. Twelve benchmark functions are tested in
use of an opposition-based adaptive fireworks algorithm (OAFWA). The final results conclude that
OAFWA significantly outperformed EFWA and AFWA in terms of solution accuracy. Additionally,
OAFWA was compared with a bat algorithm (BA), differential evolution (DE), self-adapting control
parameters in differential evolution (jDE), a firefly algorithm (FA), and a standard particle swarm
optimization 2011 (SPSO2011) algorithm. The research results indicate that OAFWA ranks the highest
of the six algorithms for both solution accuracy and runtime cost.
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1. Introduction

In the past twenty years several swarm intelligence algorithms, inspired by natural phenomena
or social behavior, have been proposed to solve various real-world and complex global optimization
problems. Observation of the behavior of ants searching for food lead to an ant colony optimization
(ACO) [1] algorithm, proposed in 1992. Particle swarm optimization (PSO) [2], announced in 1995,
is an algorithm that simulates the behavior of a flock of birds flying to their destination. PSO can be
employed in the economic statistical design of X control charts, a class of mixed discrete-continuous
nonlinear problems [3] and used in solving multidimensional knapsack problems [4,5], etc. Mimicking
the natural adaptations of the biological species, differential evolution (DE) [6] was published in
1997. Inspired by the behavior of the flashing characteristics of fireflies, a firefly algorithm (FA) [7]
was presented in 2009, and a bat algorithm (BA) [8] was proposed in 2010 which is based on the
echolocation of microbats.

The fireworks algorithm (FWA) [9] is considered a novel swarm intelligence algorithm. It was
introduced in 2010 and mimics the fireworks explosion process. The FWA provides an optimized
solution for searching a fireworks location. In the event of a firework randomly exploding, there
are explosive and Gaussian sparks produced in addition to the initial explosion. To determine the
firework’s local space, a calculation of explosive amplitude and number of explosive sparks is made
based on other fireworks and fitness functions. Fireworks and sparks are then filtered based on fitness
and diversity. Using repetition, FWA focuses on smaller areas for optimized solutions.

Various types of real-world optimization problems have been solved by applying FWA, such as
factorization of a non-negative matrix [10], the design of digital filters [11], parameter optimization
for the detection of spam [12], reconfiguration of networks [13], mass minimization of trusses [14],
parameter estimation of chaotic systems [15], and scheduling of multi-satellite control resources [16].
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However, there are disadvantages to the FWA approach. Although the original algorithm worked
well on functions in which the optimum is located at the origin of the search space, when the optimum
of origin is more distant it becomes more challenging to locate the correct solution. Thus, the quality of
the results of the original FWA deteriorates severely with the increasing distance between the function
optimum and the origin. Additionally, the computational cost per iteration is high for FWA compared
to other optimization algorithms. For these reasons, the enhanced fireworks algorithm (EFWA) [17]
was introduced to enhance FWA.

The explosion amplitude is a significant variable and affects the performance of both the FWA
and EFWA. In EFWA, the amplitude is near zero with the best fireworks, thus employing an amplitude
check with a minimum. An amplitude like this is calculated according to the maximum number
of evaluations, which leads to a local search without adaption around the best fireworks. Thus,
the adaptive fireworks algorithm (AFWA) introduced an adaptive amplitude [18] to improve the
performance of EFWA. In AFWA, the adaptive amplitude is calculated from a distance between filtered
sparks and the best fireworks.

AFWA improved the performance of EFWA on 25 of the 28 CEC13’s benchmark functions [18],
but our in-depth experiments indicate that the solution accuracy of AFWA is lower than that of EFWA.
To improve the performance of AFWA, opposition-based learning was added and used to accelerate
the convergence speed and increase the solution accuracy.

Opposition-based learning (OBL) was first proposed in 2005 [19]. OBL simultaneously considers
a solution and its opposite solution; the fitter one is then chosen as a candidate solution in order
to accelerate convergence and improve solution accuracy. It has been used to enhance various
optimization algorithms, such as differential evolution [20,21], particle swarm optimization [22],
the ant colony system [23], the firefly algorithm [24], the artificial bee colony [25], and the shuffled frog
leaping algorithm [26]. Inspired by these studies, OBL was added to AFWA and used to boost the
performance of AFWA.

The remainder of this paper is organized in the following manner. Both AFWA and OAFWA are
summarized in Section 2. In the third section, twelve benchmark functions and implementations are
listed. Section 4 covers simulations that have been conducted, while Section 5 presents our conclusion.

2. Opposition-Based Adaptive Fireworks Algorithm

2.1. Adaptive Fireworks Algorithm

Suppose that N denotes the quantity of fireworks, while d stands for the number of dimensions,
and xi stands for each firework in AFWA. The explosive amplitude Ai and the number of explosion
sparks Si can be defined according to the following expressions:

Ai “ Â¨
f pxiq ´ ymin ` ε

řN
i“1 p f pxiq ´ yminq ` ε

(1)

Si “ Me¨
ymax ´ f pxiq ` ε

řN
i“1 pymax ´ f pxiqq ` ε

(2)

where ymax = max( f pxiq), ymin = min( f pxiq), and Â and Me are two constants. ε denotes the machine
epsilon, i “ p1, 2, . . . , d).

In addition, the number of sparks Si is defined by:

Si “

$

’

&

’

%

Smin i f Si ă Smin

Smax i f Si ą Smax

Si otherwise
(3)

where Smin and Smax are the lower bound and upper bound of the Si.
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Based on the above Ai and Si, Algorithm 1 is performed by generating explosion sparks for xi
as follows:

Algorithm 1 Generating Explosion Sparks

1: for j = 1 to Si do
2: for each dimension k = 1, 2, . . . , d do
3: obtain r1 from U(0, 1)
4: if r1 < 0.5 then
5: obtain r from U(´1, 1)

6: spkqij Ð xpkqi ` r¨ Ai

7: if spkqij xLB _ spkqij yUB then
8: obtain r again from U(0, 1)

9: spkqij Ð LB` r¨ pUB´ LBq
10: end if
11: end if
12: end for
13: end for
14: return sij

where x P rLB, UBs. U(a, b) denotes a uniform distribution between a and b.
After generating explosion sparks, Algorithm 2 is performed for generating Gaussian sparks

as follows:

Algorithm 2 Generating Gaussian Sparks

1: for j = 1 to NG do
2: Randomly choose i from 1, 2, ..., m
3: obtain r from N(0, 1)
4: for each dimension k = 1, 2, . . . , d do

5: Gpkqj Ð xpkqi ` r¨
´

x˚pkq ´ xpkqi

¯

6: if Gpkqj xLB _ Gpkqj yUB then
7: obtain r from U(0, 1)

8: Gpkqj Ð LB` r¨ pUB´ LBq
9: end if
10: end for
11: end for
12: return Gj

where NG is the quantity of Gaussian sparks, m stands for the quantity of fireworks, x˚ denotes the
best firework, and N(0, 1) denotes normal distribution with an average of 0 and standard deviation of 1.

For the best sparks among the above explosion sparks and Gaussian sparks, the adaptive
amplitude of fireworks A˚ in generation g + 1 is defined as follows [18]:

A˚ pg` 1q “

#

UB´ LB, g “ 0 or f psiq ă f pxq
0.5¨ pλ¨ ||si ´ s˚||8 ` A˚ pgqq , otherwise

(4)

where s1...sn denotes all sparks generated in generation g, s˚ denotes the best spark and x stands for
fireworks in generation g.

The above parameter λ is suggested to be a fixed value of 1.3, empirically.
Algorithm 3 demonstrates the complete version of the AFWA.
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Algorithm 3 Pseudo-Code of AFWA

1: randomly choosing m fireworks
2: assess their fitness
3: repeat
4: obtain Ai (except for A*) based on Equation (1)
5: obtain Si based on Equations (2) and (3)
6: produce explosion sparks based on Algorithm 1
7: produce Gaussian sparks based on Algorithm 2
8: assess all sparks’ fitness
9: obtain A* based on Equation (4)
10: retain the best spark as a firework
11: randomly select other m ´ 1 fireworks
12: until termination condition is satisfied
13: return the best fitness and a firework location

2.2. Opposition-Based Learning

Definition 1. Assume P = (x1, x2, ..., xn) is a solution in n-dimensional space, where x1, x2, . . . ,
xn P R and xi P [ai, bi], @i P {1, 2, . . . , n}. The opposite solution OP = (x̆1, x̆2, . . . , x̆n) is defined as
follows [19]:

x̆i “ ai ` bi ´ xi (5)

In fact, according to probability theory, 50% of the time an opposite solution is better. Therefore,
based on a solution and an opposite solution, OBL has the potential to accelerate convergence and
improve solution accuracy.

Definition 2. The quasi-opposite solution QOP = (x̆q
1, x̆q

2, . . . , x̆q
n) is defined as follows [21]:

x̆q
i “ rand

ˆ

ai ` bi
2

, x̆i

˙

(6)

It is proved that the quasi-opposite solution QOP is more likely than the opposite solution OP to
be closer to the solution.

Figure 1 illustrates the quasi-opposite solution QOP in the one-dimensional case.
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2.3. Opposition-Based Adaptive Fireworks Algorithm

The OBL is added to AFWA in two stages: opposition-based population initialization and
opposition-based generation jumping [20].

2.3.1. Opposition-Based Population Initialization

In the initialization stage, both a random solution and a quasi-opposite solution QOP are
considered in order to obtain fitter starting candidate solutions.

Algorithm 4 is performed for opposition-based population initialization as follows:
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Algorithm 4 Opposition-Based Population Initialization

1: randomly initialize fireworks pop with a size of m
2: calculate a quasi opposite fireworks Qpop based on Equation (6)
3: assess 2 ˆ m fireworks’ fitness
4: return the fittest individuals from {pop Y Opop} as initial fireworks

2.3.2. Opposition-Based Generation Jumping

In the second stage, the current population of AFWA is forced to jump into some new candidate
solutions based on a jumping rate, Jr.

Algorithm 5 Opposition-Based Generation Jumping

1: if (rand(0, 1) < Jr)
2: dynamically calculate boundaries of current m fireworks
3: calculate a quasi opposite fireworks Qpop based on Equation (6)
4: assess 2 ˆ m fireworks’ fitness
5: end if
6: return the fittest individuals from {pop Y Opop} as current fireworks

2.3.3. Opposition-Based Adaptive Fireworks Algorithm

Algorithm 6 demonstrates the complete version of the OAFWA.

Algorithm 6 Pseudo-Code of OAFWA

1: opposition-based population initialization based on Algorithm 4
2: repeat
3: obtain Ai (except for A*) based on Equation (1)
4: obtain Si based on Equations (2) and (3)
5: produce explosion sparks based on Algorithm 1
6: produce Gaussian sparks based on Algorithm 2
7: assess all sparks’ fitness
8: obtain A* based on Equation (4)
9: retain the best spark as a firework
10: randomly select other m – 1 fireworks
11: opposition-based generation jumping based on Algorithm 5
12: until termination condition is satisfied
13: return the best fitness and a firework location

3. Benchmark Functions and Implementation

3.1. Benchmark Functions

In order to assess the performances of OAFWA, twelve standardized benchmark functions [27]
are employed. The functions are uni-modal and multi-modal. The global minimum is zero.

Table 1 presents a list of uni-modal (F1~F6) and multi-modal (F7~F12) functions and their features.
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Table 1. Twelve benchmark functions.

Function Dimension Range

F1 pxq “
řn

i“1 x2
i 40 [´10, 10]

F2 pxq “
řn

i“1 |xi| `
śn

i“1 |xi| 40 [´10, 10]

F3 pxq “
řn

i“1

´

ři
j“1 xj

¯2
40 [´10, 10]

F4 pxq “
řn

i“1 ix2
i 40 [´30, 30]

F5 pxq “ max t|xi| , 1 ď xi ď nu 40 [´100, 100]
F6 pxq “ 106x2

1 `
řn

i“2 x2
i 40 [´100, 100]

F7 pxq “
řn

i“1
`

x2
i ´ 10 cos p2πxiq ` 10

˘

40 [´1, 1]

F8 pxq “ 1
4000

řn
i“1 x2

i ´
śn

i“1 cos
´

xi?
i

¯

` 1 40 [´100, 100]

F9 pxq “ ´20exp
ˆ

´0.2
b

1
n
řn

i“1 x2
i

˙

´ exp
´

1
n
řn

i“1 cos p2πxiq
¯

` 20` e 40 [´10, 10]

F10 pxq “
řn{4

i“1

´

px4i´3 ` 10x4i´2q
2
` 5 px4i´1 ´ x4iq

2
` px4i´2 ´ 2x4i´1q

4
` 10 px4i´3 ´ x4iq

4
¯

40 [´10, 10]
F11 pxq “

řn
i“1 |xisin pxiq ` 0.1xi | 40 [´10, 10]

F12 pxq “ 1´ cos
´

2π
b

řn
i“1 x2

i

¯

` 0.1
b

řn
i“1 x2

i 40 [´10, 10]

3.2. Success Criterion

We utilize the success rates Sr to compare performances of different FWA based algorithms
including EFWA, AFWA, and OAFWA.

Sr can be defined as follows:

Sr “ 100¨
Nsuccessful

Nall
(7)

where Nsuccessful is the number of trials that were successful, and Nall stands for the total number of
trials. When an experiment locates a solution that is close in range to the global optimum, it is found
to be a success. A successful trial is defined by:

D
ÿ

i“1

´

Xgb
i ´ X˚i

¯

ď pUB´ LBq ˆ 10´4 (8)

where D denotes the dimensions of the test function, and Xgb
i denotes the dimension of the best result

by the algorithm.

3.3. Initialization

We tested the benchmark functions using 100 independent algorithms based on various FWA
based algorithms. In order to fully evaluate the performance of OAFWA, statistical measures were
used including the worst, best, median, and mean objective values. Standard deviations were
also determined.

In FWA based algorithms, m = 4, Â = 100, Me = 20, Smin = 8, Smax = 13, NG = 2 (population size is
equivalent to 40), and Jr = 0.4. Evaluation times from 65,000 to 200,000 were used for different functions.

Finally, we used Matlab 7.0 (The MathWorks Inc., Natick, MA, USA) software on a notebook PC
with a 2.3 GHZ CPU (Intel Core i3-2350, Intel Corporation, Santa Clara, CA, USA) and 4GB RAM, and
Windows 7 (64 bit, Microsoft Corporation, Redmond, WA, USA).

4. Simulation Studies and Discussions

4.1. Comparison with FWA-Based Algorithms

To assess the performance of OAFWA, OAFWA is compared with AFWA, and then with
FWA-based algorithms including EFWA and AFWA.

4.1.1. Comparison with AFWA

To compare the performances of OAFWA and AFWA, both algorithms were tested on twelve
benchmark functions.
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Table 2 shows the statistical results for OAFWA. Table 3 shows the statistical results for AFWA.
Table 4 shows the comparison of OAFWA and AFWA for solution accuracy from Tables 2 and 3.

Table 2. Statistical results for OAFWA.

Func. Best Mean Median Worst Std. Dev. Time (s)

F1 <1 ˆ 10´315 2.46 ˆ 10´34 1.91 ˆ 10´34 1.15 ˆ 10´33 2.14 ˆ 10´34 3.23
F2 <1 ˆ 10´315 8.21 ˆ 10´17 3.26 ˆ 10´23 5.31 ˆ 10´16 1.22 ˆ 10´16 5.91
F3 <1 ˆ 10´315 3.56 ˆ 10´38 1.95 ˆ 10´38 2.74 ˆ 10´37 5.32 ˆ 10´38 30.56
F4 <1 ˆ 10´315 3.28 ˆ 10´38 2.52 ˆ 10´42 1.94 ˆ 10´37 4.66 ˆ 10´38 7.63
F5 <1 ˆ 10´315 7.39 ˆ 10´17 8.07 ˆ 10´17 1.75 ˆ 10´16 4.24 ˆ 10´17 5.88
F6 <1 ˆ 10´315 7.17 ˆ 10´46 8.21 ˆ 10´47 3.18 ˆ 10´44 3.24 ˆ 10´45 5.54
F7 <1 ˆ 10´315 1.03 ˆ 10´12 <1 ˆ 10´315 1.02 ˆ 10´10 1.02 ˆ 10´11 4.62
F8 <1 ˆ 10´315 <1 ˆ 10´315 <1 ˆ 10´315 <1 ˆ 10´315 <1 ˆ 10´315 8.73
F9 8.88 ˆ 10´16 9.59 ˆ 10´16 8.88 ˆ 10´16 4.44 ˆ 10´15 5.00 ˆ 10´16 9.61
F10 <1 ˆ 10´315 2.00 ˆ 10´40 <1 ˆ 10´315 2.15 ˆ 10´39 4.11 ˆ 10´40 23.63
F11 <1 ˆ 10´315 5.27 ˆ 10´17 5.32 ˆ 10´17 1.06 ˆ 10´16 2.71 ˆ 10´17 5.84
F12 <1 ˆ 10´315 1.32 ˆ 10´33 1.15 ˆ 10´33 5.11 ˆ 10´33 1.00 ˆ 10´33 7.40

Table 3. Statistical results for AFWA.

Func. Best Mean Median Worst Std. Dev. Time (s)

F1 1.36 ˆ 10´7 64.4 63.4 1.57 ˆ 102 36.6 3.23
F2 1.25 ˆ 10´3 1.07 2.43 ˆ 10´1 38.9 3.95 5.59
F3 6.45 ˆ 10 2.45 ˆ 102 2.49 ˆ 102 4.11 ˆ 102 88.2 30.20
F4 4.42 ˆ 103 1.48 ˆ 104 1.42 ˆ 104 2.54 ˆ 104 4.84 ˆ 103 7.50
F5 31.0 43.7 44.2 52.2 4.86 5.69
F6 1.06 ˆ 104 2.19 ˆ 104 2.19 ˆ 104 3.18 ˆ 104 3.69 ˆ 103 5.38
F7 1.51 ˆ 10´5 7.66 5.32 31.8 7.37 4.54
F8 2.20 ˆ 10´10 3.88 ˆ 10´1 9.86 ˆ 10´3 4.68 7.42 ˆ 10´1 8.28
F9 5.51 ˆ 10´7 2.11 2.17 3.57 6.35 ˆ 10´1 9.39

F10 7.40 ˆ 102 6.75 ˆ 103 6.28 ˆ 103 2.29 ˆ 104 4.43 ˆ 103 23.35
F11 2.11 ˆ 10´1 2.39 1.98 6.69 1.56 5.64
F12 2.00 ˆ 10´1 5.58 ˆ 10´1 5.00 ˆ 10´1 1.10 1.85 ˆ 10´1 7.17

Table 4. Comparison of OAFWA and AFWA for solution accuracy.

Func.
Best Accuracy

Improved
Mean Accuracy

ImprovedAFWA OAFWA AFWA OAFWA

F1 1.36 ˆ 10´7 <1 ˆ 10´315 ´308 64.4 2.46 ˆ 10´34 ´35
F2 1.25 ˆ 10´3 <1 ˆ 10´315 ´312 1.07 8.21 ˆ 10´17 ´17
F3 64.5 <1 ˆ 10´315 ´316 2.45 ˆ 102 3.56 ˆ 10´38 ´40
F4 4.42 ˆ 103 <1 ˆ 10´315 ´318 1.48 ˆ 104 3.28 ˆ 10´38 ´42
F5 31.0 <1 ˆ 10´315 ´316 43.7 7.39 ˆ 10´17 ´18
F6 1.06 ˆ 104 <1 ˆ 10´315 ´319 2.19 ˆ 104 7.17 ˆ 10´46 ´50
F7 1.51 ˆ 10´5 <1 ˆ 10´315 ´310 7.66 1.03 ˆ 10´12 ´12
F8 2.20 ˆ 10´10 <1 ˆ 10´315 ´305 3.88 ˆ 10´1 <1 ˆ 10´315 ´314
F9 5.51 ˆ 10´7 8.88 ˆ 10´16 ´9 2.11 9.59 ˆ 10´16 ´16

F10 7.40 ˆ 102 <1 ˆ 10´315 ´317 6.75 ˆ 103 2.00 ˆ 10´40 ´43
F11 2.11 ˆ 10´1 <1 ˆ 10´315 ´314 2.39 5.27 ˆ 10´17 ´17
F12 2.00 ˆ 10´1 <1 ˆ 10´315 ´314 5.58 ˆ 10´1 1.32 ˆ 10´33 ´32

Average ´288 ´53

The statistical results from Tables 2–4 indicate that the accuracy of the best solution and the mean
solution for OAFWA were improved by average values of 10´288 and 10´53, respectively, as compared
to AFWA. Thus, OAFWA can increase the performance of AFWA and achieve a significantly more
accurate solution.
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To evaluate whether the OAFWA results were significantly different from those of the AFWA, the
OAFWA mean results during iteration for each benchmark function were compared with those of the
AFWA. The Wilcoxon signed-rank test, which is a safe and robust, non-parametric test for pairwise
statistical comparisons [28], was utilized at the 5% level to detect significant differences between these
pairwise samples for each benchmark function.

The signrank function in Matlab 7.0 was used to run the Wilcoxon signed-rank test, as shown
in Table 5.

Table 5. Wilcoxon signed-rank test results for OAFWA and AFWA.

F1 F2 F3 F4 F5 F6

H 1 1 1 1 1 1
P 4.14 ˆ 10´108 3.33 ˆ 10´165 <1 ˆ 10´315 2.01 ˆ 10´230 1.63 ˆ 10´181 1.63 ˆ 10´181

F7 F8 F9 F10 F11 F12

H 1 1 1 1 1 1
P 1.39 ˆ 10´132 8.13 ˆ 10´198 1.01 ˆ 10´246 <1 ˆ 10´315 3.33 ˆ 10´165 2.01 ˆ 10´230

Here P is the p-value under test and H is the result of the hypothesis test. A value of H = 1
indicates the rejection of the null hypothesis at the 5% significance level.

Table 5 indicates that OAFWA showed a large improvement over AFWA.

4.1.2. Comparison with FWA-Based Algorithms

To compare performances of OAFWA, AFWA, and EFWA, EFWA was tested for twelve benchmark
functions. Success rates and mean error ranks for three FWA based algorithms were obtained.

Table 6 shows the statistical results for EFWA.
The results from Tables 6 and 7 indicate that the mean error of AFWA is larger than that of EFWA.

The Sr of AFWA is lower that of EFWA. Thus, AFWA is not better than EFWA; The Sr of OAFWA is the
highest and OAFWA ranks the highest among three FWA algorithms. Thus, OAFWA greatly improved
the performance of AFWA.

For the runtimes of EFWA, AFWA and OAFWA, Tables 2 and 3 indicate that the time cost of
OAFWA is not much different from that of AFWA. But Tables 2 and 6 indicate the time cost of OAFWA
drops significantly as compared with that of EFWA.

Table 7 compares three FWA-based algorithms.
Figure 2 shows searching curves for EFWA, AFWA, and OAFWA.
Figure 2 shows that OAFWA results in a global optimum for all twelve functions and with fast

convergence. However, the alternative EFWA methods do not always locate the global optimum
solutions. These include EFWA for F9 and F11. AFWA is the worst among the three algorithms. It is
bad for a majority of functions. Thus, OAFWA is the best one in terms of solution accuracy.

Table 6. Statistical results for EFWA.

Func. Best Mean Median Worst Std. dev. Time (s)

F1 1.66 ˆ 10´3 2.63 ˆ 10´3 2.63 ˆ 10´3 3.44 ˆ 10´3 3.83 ˆ 10´4 4.34
F2 2.07 ˆ 10´1 5.67 ˆ 10´1 2.75 ˆ 10´1 2.84 5.89 ˆ 10´1 8.88
F3 7.52 ˆ 10´3 1.44 ˆ 10´2 1.40 ˆ 10´2 2.77 ˆ 10´2 3.67 ˆ 10´3 42.54
F4 3.31 ˆ 10´1 5.22 ˆ 10´1 4.92 ˆ 10´1 8.91 ˆ 10´1 1.23 ˆ 10´1 13.55
F5 1.62 ˆ 10´1 7.01 ˆ 10´1 2.18 ˆ 10´1 9.26 1.47 9.22
F6 2.01 ˆ 10´1 3.28 ˆ 10´1 3.12 ˆ 10´1 4.75 ˆ 10´1 6.67 ˆ 10´2 9.11
F7 3.22 ˆ 10´3 5.04 ˆ 10´3 5.07 ˆ 10´3 6.87 ˆ 10´3 6.73 ˆ 10´4 6.46
F8 6.01 ˆ 10´3 1.63 ˆ 10´2 1.48 ˆ 10´2 4.91 ˆ 10´2 8.80 ˆ 10´3 12.90
F9 2.39 5.05 5.08 8.51 1.20 16.82
F10 1.68 ˆ 10´1 2.69 ˆ 10´1 2.64 ˆ 10´1 4.57 ˆ 10´1 5.86 ˆ 10´2 37.31
F11 9.73 ˆ 10´1 4.14 3.80 13.6 2.16 8.98
F12 2.00 ˆ 10´1 3.15 ˆ 10´1 3.00 ˆ 10´1 4.00 ˆ 10´1 5.39 ˆ 10´2 13.46
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Table 7. Success rates and mean error ranks for three FWA-based algorithms.

Func.
EFWA AFWA OAFWA

Mean Error Sr Rank Mean Error Sr Rank Mean Error Sr Rank

F1 2.63 ˆ 10´3 2 2 64.4 1 3 2.46 ˆ 10´34 100 1
F2 5.67 ˆ 10´1 2 2 1.07 31 3 8.21 ˆ 10´17 100 1
F3 1.44 ˆ 10´2 0 2 2.45 ˆ 102 6 3 3.56 ˆ 10´38 100 1
F4 5.22 ˆ 10´1 0 2 1.48 ˆ 104 0 3 3.28 ˆ 10´38 100 1
F5 7.01 ˆ 10´1 0 2 43.7 0 3 7.39 ˆ 10´17 100 1
F6 3.28 ˆ 10´1 0 2 2.19 ˆ 104 0 3 7.17 ˆ 10´46 100 1
F7 5.04 ˆ 10´3 100 2 7.66 0 3 1.03 ˆ 10´12 100 1
F8 1.63 ˆ 10´2 0 2 3.88 ˆ 10´1 0 3 <1 ˆ 10´315 100 1
F9 5.05 0 3 2.11 0 2 9.59 ˆ 10´16 100 1

F10 2.69 ˆ 10´1 0 2 6.75 ˆ 103 0 3 2.00 ˆ 10´40 100 1
F11 4.14 0 3 2.39 0 2 5.27 ˆ 10´17 100 1
F12 3.15 ˆ 10´1 0 2 5.58 ˆ 10´1 0 3 1.32 ˆ 10´33 100 1

Average 8.7 2.17 3.2 2.83 100 1
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Figure 2. The EFWA, AFWA, and OAFWA searching curves. 
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4.2. Comparison with Other Swarm Intelligence Algorithms

Additionally, OAFWA was compared with alternative swarm intelligent algorithms, including
BA, DE, self-adapting control parameters in differential evolution (jDE) [29], FA, and SPSO2011 [30].
The resulting evaluation times (iteration) and population size are the same for each function. Two cases
of population size are tested, 20 and 40, respectively. The parameters are shown in Table 8.

Table 8. Parameters of the algorithms.

Algorithms Parameters

BA A = 0.95, r = 0.8, f min = 0, f = 1.0
DE F = 0.5, CR = 0.9
jDE τ1 “ τ2 = 0.1, F P [0.1, 1.0], CR P [0, 1]
FA α = 0.9, β = 0.25, γ = 1.0

SPSO2011 w = 0.7213, c1 = 1.1931, c2 = 1.1931

How to tune the parameters of the above algorithms is a challenging issue. These parameters are
obtained from the literature [31] for BA, [29] for DE and jDE, and [30] for SPSO2011. For FA, reducing
randomness increases the convergence. αt`1 “ p1´ δq at [32] is employed to gradually decrease α. δ is
a small constant related to iteration.

For OAFWA, m = 2, Â = 100, Me = 20, Smin = 3, Smax = 6, NG = 1 (population size is equivalent
to 20), and Jr = 0.4.

Tables 9 and 10 present the mean errors for the six algorithms when population sizes are 20 and
40, respectively.

Table 9. Mean errors for the six algorithms when popSize = 20.

Func. BA DE jDE FA SPSO2011 OAFWA Iteration

F1 3.27 ˆ 10´3 11.7 3.67 ˆ 10´35 6.45 ˆ 10´7 8.15 ˆ 10´23 6.75 ˆ 10´23 65,000
F2 30.4 3.37 3.49 ˆ 10´35 4.37 ˆ 10´2 6.27 2.02 ˆ 10´16 100,000
F3 2.10 ˆ 10´2 7.70 5.42 ˆ 10´4 34.8 3.70 ˆ 10´6 1.19 ˆ 10´38 190,000
F4 1.53 ˆ 10´1 2.27 ˆ 103 5.48 ˆ 10´76 1.19 ˆ 10´3 8.57 ˆ 10´4 2.26 ˆ 10´38 140,000
F5 32.3 40.5 27.1 2.28 ˆ 10´2 12.8 2.22 ˆ 10´17 110,000
F6 1.23 ˆ 105 3.80 ˆ 103 2.54 ˆ 10´58 7.37 ˆ 10´5 9.85 ˆ 103 3.56 ˆ 10´42 110,000
F7 18.9 34.3 12.8 19.8 48.5 <1 ˆ 10´315 80,000
F8 1.22 1.07 9.30 ˆ 10´3 1.78 ˆ 10´3 8.13 ˆ 10´3 2.41 ˆ 10´16 120,000
F9 6.64 4.48 5.29 ˆ 10´2 3.82 ˆ 10´4 2.71 3.40 ˆ 10´12 150,000
F10 4.82 ˆ 10´1 5.21 ˆ 103 2.06 ˆ 10´45 1.69 ˆ 10´2 3.23 ˆ 10´3 1.17 ˆ 10´40 200,000
F11 4.85 6.58 ˆ 10´1 5.66 ˆ 10´16 8.21 ˆ 10´1 3.45 3.03 ˆ 10´17 100,000
F12 16.7 2.41 1.92 ˆ 10´1 2.58 ˆ 10´1 1.92 ˆ 10´1 6.38 ˆ 10´34 140,000

Table 10. Mean errors for the six algorithms when popSize = 40.

Func. BA DE jDE FA SPSO2011 OAFWA Iteration

F1 3.22 ˆ 10´3 7.77 ˆ 10´10 3.27 ˆ 10´17 2.02 ˆ 10´5 4.16 ˆ 10´31 2.46 ˆ 10´34 65,000
F2 7.15 1.28 ˆ 10´15 1.60 ˆ 10´15 1.51 ˆ 10´1 3.06 8.21 ˆ 10´17 100,000
F3 2.03 ˆ 10´2 3.83 ˆ 10´5 7.91 ˆ 10´2 40.2 3.25 ˆ 10´8 3.56 ˆ 10´38 190,000
F4 1.23 ˆ 10´1 5.12 ˆ 10´22 1.38 ˆ 10´37 1.29 ˆ 10´1 5.77 ˆ 10´6 3.28 ˆ 10´38 140,000
F5 25.1 23.9 7.27 9.04 ˆ 10´2 5.99 7.39E ˆ 10´17 110,000
F6 8.05 ˆ 104 2.21 ˆ 10´6 2.07 ˆ 10´28 2.26 ˆ 10´3 3.56 ˆ 103 7.17E ˆ 10´46 110,000
F7 19.2 26.9 8.08 18.4 49.1 1.03 ˆ 10´12 80,000
F8 5.25 ˆ 10´1 8.39 ˆ 10´3 2.46 ˆ 10´4 1.52 ˆ 10´3 5.22 ˆ 10´3 <1 ˆ 10´315 120,000
F9 5.53 5.39 ˆ 10´1 7.99 ˆ 10´15 3.16 ˆ 10´2 1.54 9.59 ˆ 10´16 150,000

F10 4.62 ˆ 10´1 2.85 ˆ 10´6 1.20 ˆ 10´30 8.71 ˆ 10´2 1.41 ˆ 10´3 2.00 ˆ 10´40 200,000
F11 3.78 2.56 ˆ 10´15 1.01 ˆ 10´3 9.77 ˆ 10´1 2.17 ˆ 10´1 5.27 ˆ 10´17 100,000
F12 11.1 1.59 ˆ 10´1 9.99 ˆ 10´2 2.28 ˆ 10´1 1.11 ˆ 10´1 1.32 ˆ 10´33 140,000

Tables 9 and 10 indicate that certain algorithms perform well for some functions, but less well for
others. Overall, OAFWA performance was shown to have more stability than the other algorithms.
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Figures 3 and 4 present the runtime cost of the six algorithms for twelve functions when population
sizes are 20 and 40, respectively.

Algorithms 2016, 9, 43 11 of 14 

F5 32.3 40.5 27.1 2.28 × 10−2 12.8 2.22 × 10−17 110,000 
F6 1.23 × 105 3.80 × 103 2.54 × 10−58 7.37 × 10−5 9.85 × 103 3.56 × 10−42 110,000 
F7 18.9 34.3 12.8 19.8 48.5 <1 × 10−315 80,000 
F8 1.22 1.07 9.30 × 10−3 1.78 × 10−3 8.13 × 10−3 2.41 × 10−16 120,000 
F9 6.64 4.48 5.29 × 10−2 3.82 × 10−4 2.71 3.40 × 10−12 150,000 

F10 4.82 × 10−1 5.21 × 103 2.06 × 10−45 1.69 × 10−2 3.23 × 10−3 1.17 × 10−40 200,000 
F11 4.85 6.58 × 10−1 5.66 × 10−16 8.21 × 10−1 3.45 3.03 × 10−17 100,000 
F12 16.7 2.41 1.92 × 10−1 2.58 × 10−1 1.92 × 10−1 6.38 × 10−34 140,000 

Table 10. Mean errors for the six algorithms when popSize = 40. 

Func. BA DE jDE FA SPSO2011 OAFWA Iteration 
F1 3.22 × 10−3 7.77 × 10−10 3.27 × 10−17 2.02 × 10−5 4.16 × 10−31 2.46 × 10−34 65,000 
F2 7.15 1.28 × 10−15 1.60 × 10−15 1.51 × 10−1 3.06 8.21 × 10−17 100,000 
F3 2.03 × 10−2 3.83 × 10−5 7.91 × 10−2 40.2 3.25 × 10−8 3.56 × 10−38 190,000 
F4 1.23 × 10−1 5.12 × 10−22 1.38 × 10−37 1.29 × 10−1 5.77 × 10−6 3.28 × 10−38 140,000 
F5 25.1 23.9 7.27 9.04 × 10−2 5.99 7.39E × 10−17 110,000 
F6 8.05 × 104 2.21 × 10−6 2.07 × 10−28 2.26 × 10−3 3.56 × 103 7.17E × 10−46 110,000 
F7 19.2 26.9 8.08 18.4 49.1 1.03 × 10−12 80,000 
F8 5.25 × 10−1 8.39 × 10−3 2.46 × 10−4 1.52 × 10−3 5.22 × 10−3 <1 × 10−315 120,000 
F9 5.53 5.39 × 10−1 7.99 × 10−15 3.16 × 10−2 1.54 9.59 × 10−16 150,000 

F10 4.62 × 10−1 2.85 × 10−6 1.20 × 10−30 8.71 × 10−2 1.41 × 10−3 2.00 × 10−40 200,000 
F11 3.78 2.56 × 10−15 1.01 × 10−3 9.77 × 10−1 2.17 × 10−1 5.27 × 10−17 100,000 
F12 11.1 1.59 × 10−1 9.99 × 10−2 2.28 × 10−1 1.11 × 10−1 1.32 × 10−33 140,000 

Tables 9 and 10 indicate that certain algorithms perform well for some functions, but less well 
for others. Overall, OAFWA performance was shown to have more stability than the other 
algorithms. 

Figures 3 and 4 present the runtime cost of the six algorithms for twelve functions when 
population sizes are 20 and 40, respectively. 

 
Figure 3. Runtime cost of the six algorithms for twelve functions when popSize = 20. 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12
0

50

100

150

200

250

300

Function name

T
im

e(
s)

BA
DE
jDE
FA
SPSO2011
OAFWA

Figure 3. Runtime cost of the six algorithms for twelve functions when popSize = 20.Algorithms 2016, 9, 43 12 of 14 

 
Figure 4. Runtime cost of the six algorithms for twelve functions when popSize = 40. 

Figure 3 shows that the runtime cost of DE is the most expensive among the six algorithms, 
except for F7, F8, F10, and F12. Figure 4 shows that the runtime cost of SPSO2011 is the most 
expensive among the six algorithms. The time cost of OAFWA is the least. 

Tables 11 and 12 present the ranks of the six algorithms for twelve benchmark functions when 
population sizes are 20 and 40, respectively. 

Table 11. Ranks for the six algorithms when popSize = 20. 

Func. F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Rank 
BA 5 6 4 5 5 6 3 6 6 5 6 5 5.17 
DE 6 4 5 6 6 4 5 5 5 6 3 4 4.92 
jDE 1 1 3 1 4 1 2 4 3 1 2 2 2.08 
FA 4 3 6 4 2 3 4 2 2 4 4 3 3.41 

SPSO2011 3 5 2 3 3 5 6 3 4 3 5 2 3.67 
OAFWA 2 2 1 2 1 2 1 1 1 2 1 1 1.42 

Table 12. Ranks for the six algorithms when popSize = 40. 

Func. F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Rank 
BA 6 6 4 5 5 6 4 6 6 6 6 6 5.50 
DE 4 2 3 3 6 3 5 5 4 3 2 4 3.67 
jDE 3 3 5 2 4 2 2 2 2 2 3 2 2.67 
FA 5 4 6 6 2 4 3 3 3 5 5 5 4.25 

SPSO2011 2 5 2 4 3 5 6 4 5 4 4 3 3.91 
OAFWA 1 1 1 1 1 1 1 1 1 1 1 1 1.00 

Tables 11 and 12 indicate that the OAFWA ranks the best (1.42 and 1.00) out of the six 
algorithms. 

5. Conclusions 

OAFWA was developed by applying OBL to AFWA. Twelve benchmark functions were 
investigated for OAFWA. Results indicated a large boost in performance in OAFWA over AFWA 
when using OBL. The accuracy of the best solution and the mean solution for OAFWA were 
improved significantly when compared to AFWA. 

The experiments clearly indicate that OAFWA can perform significantly better than EFWA and 
AFWA in terms of solution accuracy. Additionally, OAFWA is compared with BA, DE, jDE, FA and 
SPSO2011. Overall, the research demonstrates that OAFWA performed the best for both solution 
accuracy and runtime cost. 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12
0

50

100

150

200

250

300

Function name

T
im

e(
s)

BA
DE
jDE
FA
SPSO2011
OAFWA

Figure 4. Runtime cost of the six algorithms for twelve functions when popSize = 40.

Figure 3 shows that the runtime cost of DE is the most expensive among the six algorithms, except
for F7, F8, F10, and F12. Figure 4 shows that the runtime cost of SPSO2011 is the most expensive
among the six algorithms. The time cost of OAFWA is the least.

Tables 11 and 12 present the ranks of the six algorithms for twelve benchmark functions when
population sizes are 20 and 40, respectively.

Tables 11 and 12 indicate that the OAFWA ranks the best (1.42 and 1.00) out of the six algorithms.

Table 11. Ranks for the six algorithms when popSize = 20.

Func. F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Rank

BA 5 6 4 5 5 6 3 6 6 5 6 5 5.17
DE 6 4 5 6 6 4 5 5 5 6 3 4 4.92
jDE 1 1 3 1 4 1 2 4 3 1 2 2 2.08
FA 4 3 6 4 2 3 4 2 2 4 4 3 3.41

SPSO2011 3 5 2 3 3 5 6 3 4 3 5 2 3.67
OAFWA 2 2 1 2 1 2 1 1 1 2 1 1 1.42
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Table 12. Ranks for the six algorithms when popSize = 40.

Func. F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Rank

BA 6 6 4 5 5 6 4 6 6 6 6 6 5.50
DE 4 2 3 3 6 3 5 5 4 3 2 4 3.67
jDE 3 3 5 2 4 2 2 2 2 2 3 2 2.67
FA 5 4 6 6 2 4 3 3 3 5 5 5 4.25

SPSO2011 2 5 2 4 3 5 6 4 5 4 4 3 3.91
OAFWA 1 1 1 1 1 1 1 1 1 1 1 1 1.00

5. Conclusions

OAFWA was developed by applying OBL to AFWA. Twelve benchmark functions were
investigated for OAFWA. Results indicated a large boost in performance in OAFWA over AFWA
when using OBL. The accuracy of the best solution and the mean solution for OAFWA were improved
significantly when compared to AFWA.

The experiments clearly indicate that OAFWA can perform significantly better than EFWA and
AFWA in terms of solution accuracy. Additionally, OAFWA is compared with BA, DE, jDE, FA and
SPSO2011. Overall, the research demonstrates that OAFWA performed the best for both solution
accuracy and runtime cost.

Acknowledgments: The author is thankful to the anonymous reviewers for their valuable comments to improve
the technical content and the presentation of the paper.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Dorigo, M. Learning and Natural Algorithms. Ph.D. Thesis, Politecnico di Milano, Milan, Italy, 1992.
2. Kennedy, J.; Eberhart, R.C. Particles warm optimization. In Proceedings of the IEEE International Conference

on Neural Networks, Piscataway, NJ, USA, 27 November–1 December 1995; pp. 1942–1948.
3. Chih, M.C.; Yeh, L.L.; Li, F.C. Particle swarm optimization for the economic and economic statistical designs

of the X control chart. Appl. Soft Comput. 2011, 11, 5053–5067. [CrossRef]
4. Chih, M.C.; Lin, C.J.; Chern, M.S.; Ou, T.Y. Particle swarm optimization with time-varying acceleration

coefficients for the multidimensional knapsack problem. Appl. Math. Model. 2014, 38, 1338–1350. [CrossRef]
5. Chih, M.C. Self-adaptive check and repair operator-based particle swarm optimization for the

multidimensional knapsack problem. Appl. Soft Comput. 2015, 26, 378–389. [CrossRef]
6. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over

continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [CrossRef]
7. Yang, X.S. Firefly algorithms for multimodal optimization. In Proceedings of the 5th International Conference

on Stochastic Algorithms: Foundation and Applications, Sapporo, Japan, 26–28 October 2009; Volume 5792,
pp. 169–178.

8. Yang, X.S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for
Optimization (NISCO 2010); Gonzalez, J.R., Ed.; Springer: Berlin, Germany, 2010; pp. 65–74.

9. Tan, Y.; Zhu, Y.C. Fireworks algorithm for optimization. In Advances in Swarm Intelligence; Springer: Berlin,
Germany, 2010; pp. 355–364.

10. Andreas, J.; Tan, Y. Using population based algorithms for initializing nonnegative matrix factorization.
In Advances in Swarm Intelligence; Springer: Berlin, Germany, 2011; pp. 307–316.

11. Gao, H.Y.; Diao, M. Cultural firework algorithm and its application for digital filters design. Int. J. Model.
Identif. Control 2011, 4, 324–331. [CrossRef]

12. Wen, R.; Mi, G.Y.; Tan, Y. Parameter optimization of local-concentration model for spam detection by using
fireworks algorithm. In Proceedings of the 4th International Conference on Swarm Intelligence, Harbin,
China, 12–15 June 2013; pp. 439–450.

http://dx.doi.org/10.1016/j.asoc.2011.05.053
http://dx.doi.org/10.1016/j.apm.2013.08.009
http://dx.doi.org/10.1016/j.asoc.2014.10.030
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1504/IJMIC.2011.043157


Algorithms 2016, 9, 43 13 of 13

13. Imran, A.M.; Kowsalya, M.; Kothari, D.P. A novel integration technique for optimal network reconfiguration
and distributed generation placement in power distribution networks. Int. J. Electr. Power 2014, 63, 461–472.
[CrossRef]

14. Nantiwat, P.; Bureerat, S. Comparative performance of meta-heuristic algorithms for mass minimisation of
trusses with dynamic constraints. Adv. Eng. Softw. 2014, 75, 1–13. [CrossRef]

15. Li, H.; Bai, P.; Xue, J.; Zhu, J.; Zhang, H. Parameter estimation of chaotic systems using fireworks algorithm.
In Advances in Swarm Intelligence; Springer: Berlin, Germany, 2015; pp. 457–467.

16. Liu, Z.B.; Feng, Z.R.; Ke, L.J. Fireworks algorithm for the multi-satellite control. In Proceedings of the 2015
IEEE Congress on Evolutionary Computation, Sendai, Japan, 25–28 May 2015; pp. 1280–1286.

17. Zheng, S.Q.; Janecek, A.; Tan, Y. Enhanced fireworks algorithm. In Proceedings of the 2013 IEEE Congress
on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 2069–2077.

18. Li, J.Z.; Zheng, S.Q.; Tan, Y. Adaptive fireworks algorithm. In Proceedings of the 2014 IEEE Congress on
Evolutionary Computation, Beijing, China, 6–11 July 2014; pp. 3214–3221.

19. Tizhoosh, H.R. Opposition-Based Learning: A New Scheme for Machine Intelligence. In Proceedings of
the 2005 International Conference on Computational Intelligence for Modeling, Control and Automation,
Vienna, Austria, 28–30 November 2005; pp. 695–701.

20. Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M. Opposition-based differential evolution algorithms.
In Proceedings of the 2006 IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, 16–21 July
2006; pp. 7363–7370.

21. Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M. Quasi-oppositional differential evolution. In Proceedings of
the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 2229–2236.

22. Wang, H.; Liu, Y.; Zeng, S.Y.; Li, H.; Li, C.H. Opposition-based particle swarm algorithm with Cauchy
mutation. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28
September 2007; pp. 4750–4756.

23. Malisia, A.R.; Tizhoosh, H.R. Applying opposition-based ideas to the ant colony system. In Proceedings of
the 2007 IEEE Swarm Intelligence Symposium, Honolulu, HI, USA, 1–5 April 2007; pp. 182–189.

24. Yu, S.H.; Zhu, S.L.; Ma, Y. Enhancing firefly algorithm using generalized opposition-based learning.
Computing 2015, 97, 741–754. [CrossRef]

25. Zhao, J.; Lv, L.; Sun, H. Artificial bee colony using opposition-based learning. In Advances in Intelligent
Systems and Computing; Springer: Cham, Switzerland, 2015; Volume 329, pp. 3–10.

26. Morteza, A.A.; Hosein, A.R. Opposition-based learning in shuffled frog leaping: An application for parameter
identification. Inf. Sci. 2015, 291, 19–42.

27. Mitic, M.; Miljkovic, Z. Chaotic fruit fly optimization algorithm. Knowl. Based Syst. 2015, 89, 446–458.
28. Derrac, J.; Garcia, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests

as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput.
2011, 1, 3–18. [CrossRef]

29. Brest, J.; Greiner, S.; Boskovic, B.; Mernik, M.; Zumer, V. Self-adapting control parameters in differential
evolution: A comparative study on numerical benchmark problems. IEEE Trans. Evolut. Comput. 2006, 6,
646–657.

30. Zambrano, M.; Bigiarini, M.; Rojas, R. Standard particle swarm optimization 2011 at CEC-2013: A baseline
for future PSO improvements. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation
(CEC), Cancun, Mexico, 20–23 June 2013; pp. 2337–2344.

31. Selim, Y.; Ecir, U.K. A new modification approach on bat algorithm for solving optimization problems.
Appl. Soft Comput. 2015, 28, 259–275.

32. Yang, X.S. Nature-Inspired Metaheuristic Algorithms, 2nd ed.; Luniver Press: Frome, UK, 2010; pp. 81–96.

© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ijepes.2014.06.011
http://dx.doi.org/10.1016/j.advengsoft.2014.04.005
http://dx.doi.org/10.1007/s00607-015-0456-7
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Opposition-Based Adaptive Fireworks Algorithm 
	Adaptive Fireworks Algorithm 
	Opposition-Based Learning 
	Opposition-Based Adaptive Fireworks Algorithm 
	Opposition-Based Population Initialization 
	Opposition-Based Generation Jumping 
	Opposition-Based Adaptive Fireworks Algorithm 


	Benchmark Functions and Implementation 
	Benchmark Functions 
	Success Criterion 
	Initialization 

	Simulation Studies and Discussions 
	Comparison with FWA-Based Algorithms 
	Comparison with AFWA 
	Comparison with FWA-Based Algorithms 

	Comparison with Other Swarm Intelligence Algorithms 

	Conclusions 

