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Abstract: The rapid and accurate assessment of above ground biomass (AGB) of woody vegetation is
a critical component of climate mitigation strategies, land management practices and process-based
models of ecosystem function. This is especially true of semi-arid ecosystems, where the high
variability in precipitation and disturbance regimes can have dramatic impacts on the global carbon
budget by rapidly transitioning AGB between live and dead pools. Measuring regional AGB
requires scaling ground-based measurements using remote sensing, an inherently challenging task
in the sparsely-vegetated, spatially-heterogeneous landscapes characteristic of semi-arid regions.
Here, we test the ability of canopy segmentation and statistic generation based on aerial LiDAR (light
detection and ranging)-derived 3D point clouds to derive AGB in clumps of vegetation in a juniper
savanna in central New Mexico. We show that single crown segmentation, often an error-prone and
challenging task, is not required to produce accurate estimates of AGB. We leveraged the relationship
between the volume of the segmented vegetation clumps and the equivalent stem diameter of the
corresponding trees (R2 = 0.83, p < 0.001) to drive the allometry for J. monosperma on a per segment
basis. Further, we showed that making use of the full 3D point cloud from LiDAR for the generation
of canopy object statistics improved that relationship by including canopy segment point density
as a covariate (R2 = 0.91). This work suggests the potential for LiDAR-derived estimates of AGB in
spatially-heterogeneous and highly-clumped ecosystems.
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1. Introduction

Semi-arid regions are characterized by lower above ground biomass (AGB) and low fractional
cover of vegetation compared to temperate and tropical regions [1–3]. Coupled with high intra- and
inter-annual variability in rainfall, carbon dynamics in semi-arid biomes are highly variable at both
short and long timescales. In spite of water limitations, these ecosystems have been shown to contribute
significantly to the global carbon sink when precipitation is high [4]. Given the widely distributed
nature of these biomes, quantifying the total carbon stored in them is a critical step towards further
describing the relationship between structural properties and functional processes; a relationship that
ultimately governs regional and landscape-scale carbon dynamics. Thus, the ability to accurately
assess structural properties, such as AGB, at ecosystem and landscape scales is an essential precursor
to monitoring carbon dynamics in semi-arid biomes and extends a critical component to global
and national-scale climate change mitigation strategies, such as REDD+ (Reduced Emissions from
Deforestation and Forest Degradation; [5]).
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The majority of process-based terrestrial carbon flux modeling approaches require AGB as an input
variable; thus, the accurate estimation of AGB constrains model error in carbon balance prediction.
Conventionally, this process employs allometric relationships relating individual tree canopy shape
and stem diameter to biomass, developed from destructive harvests, to generate predictive models
of tree biomass across a wide range of species (e.g., [6,7]). Using ground-based measurements to
quantify individual tree canopy shape and stem diameter works well to estimate stand biomass at
the plot and local extents; however, at large spatial extents, this is extremely cost prohibitive and
logistically challenging [8], making sampling across large extents or over ecologically appropriate time
scales impossible.

Remote sensing of terrestrial vegetation has reduced many of the challenges associated with
scaling the estimation of carbon stocks in woody ecosystems. Passive optical approaches based on
MODIS and Landsat remote sensing data typically involve regressing vegetation indices against field
measurements of biomass, stratified using broad vegetation classes, to grid the spatial density of
carbon across several forest types globally [9,10]. In semi-arid ecosystems, sparse vegetation cover
and heterogeneous landscape composition create a host of challenges for the use of remote sensing
vegetation indices [11]. These complications often result in large uncertainties in biomass estimation,
especially when the scale of interest approaches finer spatial resolutions (e.g., [12]). However, the
use of higher spatial resolution remote sensing data from passive sensors, such as QuickBird and
WorldView enable the delineation of individual crowns, with measurable properties, such as crown
area, used to drive existing ground-based allometries, again via regression [13]. These approaches
generally use tree size metrics limited to area or perimeter along with the spectral signal afforded by
the aforementioned passive sensors (e.g., [14]) or time series of archived aerial imagery (e.g., [15]).
However, in semi-arid ecosystems, the degree of vegetation clumping often results in segments or
patches either containing a single stem or clumps of individuals. Validation data in such studies are
normally comprised of stand-alone trees or clumps of trees that often do not match each segment or
patch precisely, often requiring a minimum vegetation separation distance to be used in the definition
of what constitutes a crown or canopy segment (e.g., [16]). In clumped and structurally-complex
ecosystems characteristic of semi-arid biomes, the variability in vegetation growth morphology and
clumping therefore presents a challenging scene in which to quantify AGB using passive sensors
alone. Specifically, passive optical data do not directly measure the variation in surface height or
below canopy vegetation and structural density, which vary across these heterogeneous landscapes.
Logically, these spatial patterns in vegetation density and height are associated with variations in AGB
and, therefore, could be important drivers of AGB estimation across these semi-arid landscapes.

Conversely, the information afforded by active sensors, such as airborne LiDAR (light detection
and ranging), can directly measure the structural characteristics of individual tree crowns, permitting
the regression of structural parameters with existing ground-based allometrics to estimate AGB
(e.g., [17–20]), with a growing application in rangelands (e.g., [21,22]). These LiDAR-based approaches
generally rely on strong relationships between structural parameters of the canopy (i.e., foliage and
leaf density) relating to the overall biomass of vegetation and predominately produce rasters of canopy
height (canopy height model, CHM), which drive the estimations of biomass [8,23]. Further, researchers
have gone the route of segmenting canopy objects from a rasterized CHM in order to associate various
structural parameters measured via LiDAR with individual trees (e.g., [24]) to good effect.

Here, we tested the ability of airborne LiDAR data, combined with a new crown segmentation
technique, to estimate biomass for Juniperus monosperma, one seed juniper, in a savanna in central
New Mexico. Juniperus spp. are found primarily in juniper savanna and piñon (Pinus edulis) and
juniper co-dominated biomes (PJ woodlands) that together occupy 18 million ha in New Mexico,
Colorado, Arizona and Utah. Historically, the range of J. monosperma has extended into lower elevations
during periods of available moisture [25,26]. At the upper end of their elevation range, Juniperus spp.
have become an increasingly important component of the biome, as multi-year droughts in the
1950s and turn of the century (1999–2002) have triggered substantial mortality of piñon across the
landscape [27–30].
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Most Juniperus spp. have a complicated growth morphology, which resembles a large shrub,
rather than a tree, with multiple woody stems that branch either just below or just above the ground.
The degree of multiple tree clumping typical of Juniperus spp. further complicates the delineation of
the individuals, thereby increasing the aforementioned challenges associated with individual crown
delineation. One potential solution to this problem is to simply segment clumps of vegetation instead
and to assess the resulting accuracy of the remotely-predicted AGB estimates for the vegetation clumps
relative to ground measurements of individuals. If vegetation segmentation were carried out on the
full point cloud data from LiDAR rather than from a CHM, the resulting segmentation clumps can
preserve information about the density of vegetation within each clump, consequently constraining
the uncertainty in the resulting AGB estimates.

We formed two hypotheses related to the prediction of AGB in J. monosperma from LiDAR
point clouds. First, the complex clumping patterns characteristic of juniper-dominated systems and
the associated complications in crown delineation can be circumvented by segmenting multiple
crowns into single clumps. Secondly, by computing statistics from the full 3D LiDAR point cloud,
structural metrics will have a stronger statistical relationship with field-measured canopy properties
and, subsequently, AGB than a CHM alone. Here, we test our first hypothesis by assessing the accuracy
of single crown vs. clumped crown allometric estimates of AGB and determine if those relationships
hold when scaled up using LiDAR data. We test our second hypothesis by comparing the fit of multiple
linear models that predict ground-measured AGB with remotely-driven data from either a simple
CHM or covariates derived from the full 3D point cloud data.

2. Materials and Methods

2.1. Site Description

Our study site is located in a juniper savanna woodland, 24 km southeast of Willard, NM
(34.425489–105.861545; Figure 1). The 4-ha study region exists within a managed rangeland ecosystem,
juniper (J. monosperma) as the only woody species present. The dominant soil type is classified as
Penistaja fine sandy loam, and the mean annual temperature and mean annual precipitation are 11.0 ˝C
and 340.6 mm, respectively (PRISM Climate Group, Oregon State University). This site exists as part of
a larger gradient of ecological research sites referred to as the New Mexico Elevation Gradient (see [31]
for a description of the gradient).

Remote Sens. 2016, 8, 453 3 of 15 

Most Juniperus spp. have a complicated growth morphology, which resembles a large shrub, 
rather than a tree, with multiple woody stems that branch either just below or just above the ground. 
The degree of multiple tree clumping typical of Juniperus spp. further complicates the delineation of the 
individuals, thereby increasing the aforementioned challenges associated with individual crown 
delineation. One potential solution to this problem is to simply segment clumps of vegetation instead 
and to assess the resulting accuracy of the remotely-predicted AGB estimates for the vegetation 
clumps relative to ground measurements of individuals. If vegetation segmentation were carried out 
on the full point cloud data from LiDAR rather than from a CHM, the resulting segmentation clumps can 
preserve information about the density of vegetation within each clump, consequently constraining 
the uncertainty in the resulting AGB estimates. 

We formed two hypotheses related to the prediction of AGB in J. monosperma from LiDAR point 
clouds. First, the complex clumping patterns characteristic of juniper-dominated systems and the 
associated complications in crown delineation can be circumvented by segmenting multiple crowns 
into single clumps. Secondly, by computing statistics from the full 3D LiDAR point cloud, structural 
metrics will have a stronger statistical relationship with field-measured canopy properties and, 
subsequently, AGB than a CHM alone. Here, we test our first hypothesis by assessing the accuracy 
of single crown vs. clumped crown allometric estimates of AGB and determine if those relationships 
hold when scaled up using LiDAR data. We test our second hypothesis by comparing the fit of 
multiple linear models that predict ground-measured AGB with remotely-driven data from either a 
simple CHM or covariates derived from the full 3D point cloud data. 

2. Materials and Methods 

2.1. Site Description 

Our study site is located in a juniper savanna woodland, 24 km southeast of Willard, NM 
(34.425489–105.861545; Figure 1). The 4-ha study region exists within a managed rangeland ecosystem, 
juniper (J. monosperma) as the only woody species present. The dominant soil type is classified as 
Penistaja fine sandy loam, and the mean annual temperature and mean annual precipitation are  
11.0 °C and 340.6 mm, respectively (PRISM Climate Group, Oregon State University). This site exists 
as part of a larger gradient of ecological research sites referred to as the New Mexico Elevation 
Gradient (see [31] for a description of the gradient). 
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locations bounded by the four 17.5-m radius circle plots. 

Figure 1. Extent of piñon juniper woodlands (PJ, dark green) and juniper savanna (JSAV, light green)
ecosystems across the four corner states. (Right) Location and layout of the field site, with tree crown
locations bounded by the four 17.5-m radius circle plots.
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2.2. Field Measurements

The canopy dimensions of all J. monosperma over 1 m in height in four 17.5-m radius circle plots
were measured annually at this site from 2007–2014. We mapped the location of 52 individuals in
these circle plots (see Figure 1) using a Trimble GPS (following differential correction, RMSE = 40 cm).
Canopy height, canopy area and canopy volume, as well as the diameter of the root crown of each
tree were measured. Canopy height was measured using a collapsible height stick. Crown area was
calculated by measuring the widest diameter and corresponding orthogonal dimension. The entire
projected crown volume then was calculated given the height and subsequent projected area of the
ellipsoid. The stem diameter of J. monosperma is challenging to measure given the complex growth
morphology of individuals. The bole of the tree can either branch above (Figure 2A) or below
(Figure 2B) the ground, making measurements of the root collar diameter (RCD, stem basal area at
the base of the plant) inconsistent if conducted at the ground level. The diameter at breast height
(DBH) is often impractical to estimate on this species given that height results in increasingly complex
branching patterns. However, the allometry from [32] specifies that the equivalent stem diameter be
recorded at the root collar (Equation (1)), where ESD is equivalent stem diameter computed as the sum
of the square of each root collar diameter (RCDi, present for an individual). Therefore, we chose to
measure the stem diameter of individuals roughly 30 cm radially up and out from the bole (Figure 2B).
In this manner, the woody mass often found at the base of those junipers that branch above ground
would not bias the ESD measurements.
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Figure 2. Typical branching patterns of Juniperus monosperma across the study area. Some individuals
branch below the ground (A), while others branch above (B). Due to the woody mass that sometimes
forms at the base of these trees, we measured equivalent stem diameters (ESD; Equation (1)) as
illustrated in (B), using an ~30-cm radius from the woody mass to each stem diameter measurement.

2.3. Airborne LiDAR Data

On 8 September 2011, high resolution airborne LiDAR was collected across a 6.5-km2 area situated
along a 5-km north-south extent that included the 4-ha study area. Using an Optech Gemini with
a laser pulse repetition rate of 125 kHz, 50% flight-line overlap, scan angle of ˘16˝ and flying at
an average altitude of 400 m above ground, LiDAR data were collected over the juniper savanna site.
The LiDAR point cloud data had an average horizontal point spacing of 20 cm and a point density of
10 points¨m´2. The mean horizontal relative accuracy was 25 cm RMSE, and vertical accuracy was
approximately 10 cm RMSE or better for open surfaces. Figure 3A shows the full analysis extent.
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2.4. Canopy Segmentation and Statistics

A digital terrain model (DTM) was extracted using the Terrain Extraction and Segmentation
(TEXAS) software developed by the University of Texas’ Applied Research Laboratories [33].
The utilization of an accurate terrain model is critical for estimating the height of vegetation above the
ground surface. Once a DTM was generated and the point height above the ground was calculated,
the individual points within the LiDAR point cloud were analyzed and labeled into general land cover
categories, such as vegetation, terrain or man-made surfaces (Figure 4A) using the TEXAS Point cloud
Exploitation Research Toolbox (TEXPERT, [33]).
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Figure 4. (A) The automatic delineation of ground and vegetation from the TEXAS model, resulting in
(B) clumped crown segmentation, which was then (C) vectorized and overlaid on ground-measured
stem maps within our study area for segment statistic generation.

LiDAR points classified as vegetation were then grouped into segments based on their Euclidean
distance to matching adjacent points. The DTM provided a reference point for segmenting vegetation,
allowing for all points with some height above the DTM to be grouped as vegetation. This process
results in a highly accurate vegetation/bare earth segmentation when working in simple systems,
like savannas. The resulting segmentation was visually assessed for accuracy within the study area
using high resolution satellite imagery (user’s and producer’s accuracies of >98% for classification
of vegetation taller than 1 m). For this project, vegetation points were grouped as a segment if
a neighboring vegetation point was within 1 m (e.g., Figure 4B), an empirically-derived threshold that
was based on the acquisition point density and vegetation density across the plot. Height statistics
computed on the LiDAR points within each segment include the standard metrics (i.e., mean, max,
median and standard deviation of height (m)). Other segment statistics included projected canopy
area (m2), perimeter (m), canopy volume (m3), canopy density (points¨m´3), canopy closure (unitless)
and eccentricity (unitless). Canopy volume is defined as the projected canopy area multiplied by the
maximum canopy height. Here, we define canopy closure as the ratio of canopy returns to ground
returns within the projected area of each segment. If a segment has a well-defined major and minor
axis, the eccentricity is computed for each segment. Trees and clumps with a near circular shape
should have an eccentricity near zero, whereas more elliptically-shaped trees and clumps will have
eccentricities near 0.5. The strength of these metrics is that they are computed on all of the points within
the segmented point cloud rather than only the first reflective surface, as in a canopy height model.

A vectorized version of the segmentation (i.e., the perimeter of each clump) was then produced
and overlaid with the ground-based tree location data (Figure 4C).The maximum height from each
tree crown within the field-measured circle plots was manually retrieved and regressed against
the corresponding field heights to assess the uncertainty in the ground-LiDAR height relationship.
To further test how spatially representative our field measurement area was, we assessed the
LiDAR-derived max canopy heights by running a 7 m ˆ 7 m kernel local maximum filter across
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the analysis extent and comparing the resulting distribution of heights against the field-collected
height data.

2.5. Validation of Clump Level Allometries

Estimates of stem diameter were scaled to the remote sensing data (i.e., the LiDAR-derived
segmentation) using an empirical regression between ESD and single tree crown volume derived
from the ground measurements. Given that the LiDAR segmentation approach delineated either
individual or small clumps of trees, the ability of the regressions to predict the cumulative stem
diameters of our ground validation trees needed to be determined. GPS-collected tree locations were
visually inspected to associate segmented canopy objects with corresponding ground validation data.
In some cases, LiDAR-derived canopy segments included trees that were not sampled within the four
17.5-m radius circle plots, reducing our effective sample size. In these cases, the entire LiDAR-derived
segment was removed from the validation set to avoid biasing the regression. For the remaining
trees, the cumulative crown volumes and stem diameters were calculated and regressed against the
LiDAR-derived segmented approximations. LiDAR-derived segment volumes were estimated from
the projected segment area and the maximum height within each segment. We also included canopy
closure and canopy density computed on a per segment basis as additional covariates to the linear
regression. Regression goodness of fits were compared using both the adjusted R2 (R2

ADJ) and root
mean squared error (RMSE).

2.6. Uncertainty Estimation

We chose a simplified Monte Carlo approach to propagate error, adapted from [34]. We used the
regression standard error from the segment volume to segment ESD linear fit (RMS), as well as the
published standard error of prediction from the allometry for J. monosperma from [32] as our sources
of error. For each crown segment, we then computed 1000 realizations of segment ESD with random
perturbations in the error term. This was done by randomly drawing from a normal distribution (mean
of 0, scale of 1) and multiplying that random number by the RMS for either the appropriate model
regression. Each of these randomly-generated uncertainties was then added to the original source of
error for the propagation workflow. Each of the 1000 realizations was then used to generate estimates
of biomass, using the previously-published allometric uncertainty [32], which we randomly perturbed
in the same manner. We then calculated the biomass of each segment from a mean of 1000 model runs,
and the associated standard deviation of each segment was carried through to compute the uncertainty
in biomass prediction using confidence intervals.

3. Results

3.1. Field Measurements

The mean canopy height, area, volume and ESD were 3.7 m, 26.2 m2, 70.6 m3 and 32.5 cm,
respectively (Figure 5), with an estimated stem density within our four-hectare analysis region of
135.1 stems¨ha´1. The representativeness of the trees used to parametrize the LiDAR-based regressions
of biomass was assessed by comparing field-measured canopy height with the mean local maximum
canopy height within the LiDAR analysis extent, and the distribution of heights measured by our
field plots was representative of the analysis extent (Figure 6). The mean estimated field biomass
using the allometry from Grier et al. [32] was 15.6 megagrams per hectare (Mg¨ha´1). The three
ground-measured crown properties (height, area and volume) all performed well as predictors of
single tree ESD, with adjusted R2

ADJ values of 0.60, 0.77 and 0.80, respectively (p < 0.001). We chose
to use canopy volume to drive our remote allometry (Figure 7), as it was the best predictor of ESD
(R2

ADJ = 0.79, RMSE = 1.23 cm2, p < 0.001). The resulting regression equation was:

log pESDq “ 0.43ˆ log pVolumeq ` 1.72 (2)
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3.2. LiDAR Segmentation

The TEXPERT-derived segmentation identified a total of 3655 objects, each representing one
or several crowns within the analysis extent (see Table 1 for summary statistics for the entire
region). The TEXPERT segmentation tended to clump multiple individuals into a single segment
(under-segmentation), with multiple segments per individual (over-segmentation) occurring in very
few cases. In the rare case of over-segmentation within the ground control plots, we clumped the
segments that corresponded to ground-measured individuals in order to drive the segment volume to
ESD relationship. Large segments had a higher likelihood of containing multiple individuals, but in
the case of the 4-ha region used for ground validation, the number of individuals per segment was
not significantly explained by segment volume, perimeter or area. Contiguous swaths of vegetation
tended to segment together, given that the segmentation was driven by the similarity of canopy
height. Within our ground validation region, the arrangement of ground-mapped individuals within
segmented clumps corresponded well with the segmentation, where standalone individuals were
properly segmented, and overlapping crowns were grouped accordingly (e.g., Figure 4C). The four
17.5-m radius circle plots contained a total of 19 segmented crown objects, composed of 52 individuals.
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Table 1. Summary of the clumped segmentation statistics generated from the full 3D point cloud
for all of the canopy objects within the analysis extent. Abbreviations: Standard Deviation (Std),
Average (Avg).

Segment Statistic Min Max Mean Std

Max Elevation (m) 1.55 8.31 4.14 0.76
Min Elevation (m) 0 3.44 0.3 0.09
Avg Elevation (m) 0.57 5.67 2.12 0.37
Med Elevation (m) 0.22 7.36 2.28 1.06
Std Elevation (m) 0.28 2.38 1.02 0.23

RMS Elevation (m) 0.64 5.77 2.36 0.4
Perimeter (m) 10.97 290.45 42.08 24.43

Projected Area (m2) 12.67 2158.13 94.35 117.73
Volume (m3) 41.33 5302.16 399.52 611.66

Density (unitless) 0.08 0.99 0.44 0.21
Closure (unitless) 0.17 1 0.75 0.15

3.3. Segmentation-Derived Biomass and Uncertainty

We clumped the field measurement data according to the corresponding segments in which the
field-measured crowns were located, permitting the calculation of a ‘whole clump’, cumulative ESD.
We used the cumulative ESD as validation data for five separate linear regressions (Table 2). The first
two models were driven by maximum segment height only, with HCHM and HTEX corresponding
to maximum segment height derived via the surface height raster (2D) and the full point cloud
(3D), respectively. The final three models were driven by TEXPERT-derived 3D point cloud statistics
(Vol = volume only, VolD = volume and point density, VolC = volume and segment closure). Neither
HCHM nor HTEX predictions of ESD showed relationships with ground-measured clumped ESD,
which were commensurate with the ground-driven individual regressions (Figure 7A compared
to Figure 8A,B), suggesting that the linearity imposed by log transforming the ground data is lost
when scaling to multiple individuals. The 3D point cloud-derived height estimates from HTEX did
show an improved fit relative to the raster-derived estimates from HCHM (R2

ADJ = 0.22 vs. 0.24,
p < 0.05), yet neither model showed correlations that were significantly improved relative to the
volume-based models.

Table 2. Predictive model structures tested in the study. Models driven by height or volume alone
contain only a slope (α) and intercept (b) as parameters, whereas models with two inputs (VolD and
VolC) contain an additional primary and interaction term (β and γ). ESD, equivalent stem diameter.

ESD = b + α (x1) + β (x2) + γ (x1 ˆ x2)

Model x1 x2 b α β γ R2
ADJ p

HCHM CHM Height - ´3.05 14.04 - - 0.22 0.046
HTEX TEX Height - ´10.07 15.73 - - 0.24 0.038
Vol Volume - 31.43 0.08 - - 0.89 <0.0001

VolD Volume Density 6.41 0.16 42.17 ´0.15 0.91 <0.0001
VolC Volume Closure 11.21 11.21 26.65 ´0.18 0.89 <0.0001

All of the models driven by segment volume performed well (Figure 8). Volume alone was
a strong predictor of ESD in juniper clumps (Vol R2

ADJ = 0.89, p < 0.001), yet when segment point
density was included as a covariate in the regression, the correlation between predicted and measured
ESD increased and the RMSE decreased, in spite of the increasing model complexity (VolD R2

ADJ = 0.91,
p < 0.001; Figure 8C). Canopy closure did not show a significant improvement over the volume-only
model (Table 2). Using the VolD model structure, the resulting 95th percentile confidence interval for
the estimated total biomass over the field measurement extent was calculated as 14.7 ˘ 0.13 Mg¨ha´1

compared to the field-measured mean of 15.6 Mg¨ha´1, where uncertainty is expressed as the mean
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standard deviation from each segment’s AGB estimate output from the Monte Carlo approach
described in Section 2.6. On a per-segment basis, the AGB estimates and corresponding segment
standard deviations from the VolD model were well distributed and reasonable given our knowledge
of the site (Figure 9).
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highlighted by the red extent marker (A); the individual segment calculations of kg AGB driven by the
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Given that the propagation of error throughout the analysis incorporated both the remote
prediction of ESD, as well as the allometric uncertainty in AGB prediction, the relationship between
segment AGB standard deviation followed an exponential relationship with mean segment AGB.
Across the analysis extent, the distribution of biomass and consequently uncertainty is strongly
a function of segment size, influenced primarily by continuity in the structural features of the canopy,
such as stem density and variability in canopy height. The resulting mapped biomass illustrates both
the results of AGB mean and standard deviation resampled to roughly 1-ha cells driven by the model
VolD (Figure 10A,B), as well as the difference between the Vol and VolD outputs (Figure 10C), which
corresponds to roughly 2.6 Mg¨ha´1 across the analysis extent.
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Figure 10. Mapped mean biomass (Mg AGB) binned into roughly 0.08-ha hexels across the analysis
extent derived from the best predictors of equivalent stem diameter, volume and density (A) and the
corresponding mean standard deviation for the mean AGB in each hex (B); (C) highlights the difference
between biomass predictions using ESD as a function of volume only, vs. ESD derived from volume
and density, calculated as Vol—VolD, where the resulting difference is expressed in terms of Mg AGB.

4. Discussion

We showed that the scaling of the measured ESD between individuals as a function
of LiDAR-derived segment volume produced estimations of AGB that matched single tree
allometry-derived predictions. Using canopy object density as a covariate to constrain the relationship
between ESD and canopy volume not only improved the statistical power of the model, but also
clarified the conceptual model relationship as:

ESD “ Segment Volumeˆ Segment Density (3)
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Therefore, the inclusion of segment point density, derived from the LiDAR point cloud, increased
the quality of the relationship between field-measured and clump-estimated ESD (Figure 8), which
improved with the additional parameter in spite of increasing model complexity (R2

ADJ = 0.91).
Our field measurements of J. monosperma were highly representative of the entire analysis

extent, given the similarities in single crown maximum height and the distributions of LiDAR-
and field-derived tree height. Further, the similarity between the LiDAR-derived heights and the
field-measured heights for the 52 trees measured in this study showed good agreement (R2 of 0.79,
p < 0.001), consistent with the good agreement seen in previous studies (e.g., [35,36]). Potential sources
of error between field-measured crown parameters and those derived from LiDAR are potentially due
to the horizontal resolution of the LiDAR data (1 m), effectively smoothing maximum heights and
canopy edges, and to errors in the ground data collection. Higher resolution data may constrain the
absolute error associated with measuring canopy heights, but agreement with field measurements may
not improve unless the sophistication of the field height estimates increases (e.g., with the use of a laser
hypsometer rather than a collapsible height stick). Our sample size for the regressions used to assess
the goodness of fit at the segmentation level was greatly reduced relative to our ground validation
sample size (n = 52 for field regressions, n = 15 for segmentation-based regressions) given that in most
cases, single canopy objects derived from LiDAR were actually comprised of multiple individuals.
Further, our circle plot-based validation approach poorly accommodated segmented canopy objects,
which spanned the circle plot perimeter, reducing the number of segments we were able to include in
the predictive models. This small sample size may reduce our ability to scale these results to areas
further reaching than our immediate analysis area. However, we believe the method we employed is
scalable and that the general results of increasing explanatory power by leveraging the full point cloud
data would not fall apart had we increased our sampling number.

The relationship we developed between crown volume and equivalent stem diameter (ESD;
Equation (2)), corresponds well with our field-measured trees, with nearly 90% of the variance in ESD
explained by canopy volume. This seems intuitive given the morphology of the trees (Figure 2), which
grow more like large shrubs in this ecosystem. The complication in scaling this relationship using
the LiDAR-derived segments is that the segmentation only produces crown-shaped objects when
the vegetation is isolated on the landscape. In many instances, however, juniper grows in clumps of
several trees. By using structural metrics derived from the LiDAR 3D point cloud, such as canopy
volume, canopy density and canopy closure, we showed that the cumulative ESD and, subsequently,
AGB agreed well with field-measured estimates for a vegetation clump. This result demonstrates that
a single tree segmentation may not be required to estimate biomass in juniper-dominated ecosystems.
Because the segmentation was actually conducted on the full 3D point cloud, each canopy object
carried with it a host of ancillary data (Table 1) that reduced the need for single tree segmentation.
Further, the power law relationship between stem diameter and crown volume necessitates log
transforming ground-based measurements to apply linear fits (e.g., Figure 7). When scaling ESD
to the level of vegetation clumps, the relationship between whole clump volume and whole clump
ESD is inherently linear, further increasing the simplicity and ease of use of this relationship (e.g.,
Figure 8). Unfortunately, we did not test this for arbitrarily large segments, and presumably, the scaling
of single crown allometrics across increasingly large canopy objects will increase the uncertainty of the
estimation. However, the TEXPERT segmentation process performed consistently in sparse, clumped
systems, constraining the variability in segment size across the scene.

The use of active sensors, such as airborne LiDAR, historically has improved the remote estimate
of above ground biomass by relating destructive harvesting with plot scale measurements of height or
fractional cover of vegetation (e.g., [37]). This approach also often hinges on individual tree crown
delineation (e.g., [8]), and the resulting segment statistics are used as coefficients in a regression against
harvested or allometrically-estimated biomass. In highly clumped vegetation, such as piñon-juniper
(PJ) woodlands or juniper savannas, the accuracy of single tree segmentation is difficult to quantify, and
consequently, scaling relationships designed for single crowns could be introducing systematic errors
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to the biomass estimation if, for instance, multiple woody boles are lumped into a single crown volume
or tree segment height estimate. Our results suggest that the use of a segmentation conducted on the
full 3D point cloud can produce accurate estimates of AGB even when multiple trees are clumped in
a single segment.

This work contributes to the challenging task of remotely estimating AGB in juniper-dominated
systems. Future work in juniper and juniper co-dominated woodlands (e.g., PJ woodlands) could
benefit from this approach, specifically by conducting the single or clumped crown segmentation on
the full 3D point cloud and preserving the within-clump LiDAR-derived statistics. However, mixed
species allometries are inherently less accurate than their single species counterparts, as remotely
leveraging single species allometries in a structurally-complex ecosystem like a PJ woodland would
require the ability to not only delineate crowns consistently, but also to identify the difference between
juniper and piñon or to determine an accurate mixed species allometry. This method holds potential
for application in other open systems, such as oak savannas, less arid woodlands and plantations.
In such systems, the over-story structure of vegetation is normally composed of one or two pant
functional types, and segmenting the vegetation into appropriate groups would be operationally
simple. In systems with more vertical structure, such as conifer or deciduous forests, the segmentation
process may begin to introduce too much error into the workflow to make the approach worthwhile.

5. Conclusions

Rapid and accurate remotely-sensed estimations of ecosystem AGB are now more than ever
a critical component to climate change mitigation strategies in the southwestern U.S. Given the spatial
extent of Juniperus spp. across the region and the complex growth morphology exhibited by the
genus, improving our ability to estimate the AGB of juniper-dominated systems will provide valuable
information about a range of ecosystems that will potentially undergo significant changes in structure
at the ecosystem scale. Our case study in a juniper savanna demonstrated the ability of LiDAR data to
drive existing stem diameter-based allometries remotely, using an object-based approach. Given that
delineating individual crowns in systems characterized by highly clumped vegetation is a challenging
and error-prone process, we scaled ground-derived allometries based on crown volume to segmented
groups of individuals. By driving the segmentation process on the full 3D point cloud data from
LiDAR, we were able to refine the regression between segment volume and stem diameter using
the density of points per segment. This work illustrates the capability of segmentation approaches
delineating groups of individuals rather than single crowns to scale the existing AGB allometric
relationship at the regional scale. While we believe this approach can both simplify the typical demand
for crown level segmentation, and constrain AGB prediction uncertainty by leveraging 3D statistics per
canopy segment, more work will be required to apply the technique in mixed species, highly clumped
ecosystems, such as PJ woodlands.
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