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Abstract: The Petrov classification of stress-energy tensors provides a model-independent definition
of a vacuum by the algebraic structure of its stress-energy tensor and implies the existence of vacua
whose symmetry is reduced as compared with the maximally symmetric de Sitter vacuum associated
with the Einstein cosmological term. This allows to describe a vacuum in general setting by dynamical
vacuum dark fluid, presented by a variable cosmological term with the reduced symmetry which
makes vacuum fluid essentially anisotropic and allows it to be evolving and clustering. The relevant
solutions to the Einstein equations describe regular cosmological models with time-evolving and
spatially inhomogeneous vacuum dark energy, and compact vacuum objects generically related to
a dark energy: regular black holes, their remnants and self-gravitating vacuum solitons with de
Sitter vacuum interiors—which can be responsible for observational effects typically related to a dark
matter. The mass of objects with de Sitter interior is generically related to vacuum dark energy and
to breaking of space-time symmetry. In the cosmological context spacetime symmetry provides
a mechanism for relaxing cosmological constant to a needed non-zero value.

Keywords: dark energy; de Sitter vacuum; spacetime symmetry; relaxing cosmological constant;
dark matter; regular black hole remnants; mass and spacetime symmetry

1. Introduction

Dark Energy is described by the equation of state p = wρ with w < −1/3 responsible for
accelerated expansion ä ∼ −a(ρ + 3p). The best fit, w = −1.06± 0.06 at 68% CL [1], corresponds to
the cosmological constant λ related to the vacuum density ρvac by λ = 8πGρvac.

In the Einstein equations with the cosmological constant Gµ
ν + λδ

µ
ν = 0; Gµ

ν = −λδ
µ
ν = −8πGTµ

ν

the cosmological term corresponds to the de Sitter vacuum (false vacuum in the Standard Model)

Tµ
ν = ρvacδ

µ
ν ; ρvac = (8πG)−1λ = const, (1)

which is able also to support the inflationary dynamics in the very early Universe. The problem is
that the first inflation needs the value at the GUT level ρvac ' ρGUT ' 5× 1077 g·cm−3, the QFT
estimates the value of ρvac by ρPl = 5× 1093 g·cm−3 which by many orders of magnitude exceeds the
observational value ρvac ' 3.6× 10−30 g·cm−3, and the Einstein equations require ρvac = const.

Alternative models typically impose ρvac = 0 for some reason (still unknown) and introduce
a dark energy of a non-vacuum origin which mimics λ when necessary (for a review [2–4]).

In this paper we present the time-dependent and spatially inhomogeneous vacuum dark energy
which is intrinsically related to the spacetime symmetry and can be evolving and clustering.
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2. Vacuum Dark Energy

2.1. Vacuum Dark Fluid

QFT does not contain an appropriate symmetry to zero out ρvac, or to reduce it to a certain
non-zero value. A relevant symmetry does however exist in General Relativity. It follows from the
Petrov classification for the algebraic structure of stress-energy tensors, Tν

µ = diag[ρ,−p1,−p2,−p3],
as intrinsically related to it (via the Einstein equations) the spacetime symmetry.

Eigenvectors of Tµν form a comoving reference frame with a time-like eigenvector representing
a velocity. In the Petrov classification the maximally symmetric de Sitter vacuum (1) is denoted by
[(IIII)]—all eigenvalues equal. As a result it has an infinite set of comoving reference frames which
makes impossible to fix a velocity with respect to it which is the most general intrinsic property of
a vacuum. Tν

µ with [(IIII)] generates the maximally symmetric de Sitter spacetime for any underlying
particular model of Tν

µ . The isotropic medium is denoted by [I(III)] and anisotropic media by [IIII].
A maximal symmetry [(IIII)] can be reduced to [5,6]

Tt
t = Tα

α (pα = −ρ) (2)

which represents a vacuum dark fluid invariant under the Lorentz boosts in the α-direction(s)
which still makes impossible to single out a preferred comoving reference frame and thus to fix
the velocity with respect to a medium specified by (2), but makes density and pressures time- and
spatially-dependent. The Petrov classification suggests the following types of vacuum dark fluid [7]:
[(IIII)]—isotropic vacuum dark fluid (de Sitter vacuum); [(II)II], [(III)I], [(II)(II)]—anisotropic vacuum
dark fluids, associated with variable cosmological term [6]

Λµ
ν = (8πG)−1Tµ

ν ; Λ =⇒ Λt
t = (8πG)−1Tt

t . (3)

It generates spacetimes which contain regions of the de Sitter vacuum with the restored maximal
symmetry; transitions to regions with the reduced vacuum symmetry involve breaking of spacetime
symmetry from the de Sitter group.

2.2. Spherically Symmetric Vacuum Dark Energy

A spherically symmetric vacuum dark fluid, defined by Tt
t = Tr

r (pr = −ρ) [5], generates
spacetimes with the obligatory de Sitter center [8,9]. Regular spacetimes with the de Sitter center are
described by the metric [6,8,9]

ds2 = g(r)dt2 − dr2

g(r)
− r2dΩ2; g(r) = 1− 2G

r
M(r); M(r) =

∫ r

0
ρ(x)x2dx. (4)

The number of the spacetime horizons is related to the number of the de Sitter vacuum scales,
Nhorizons ≤ (2Nvacuum scales − 1) [10].

For the case of two vacuum scales a stress-energy tensor for vacuum dark energy connects two de
Sitter vacua, at the center and at infinity,

Tµ
ν (deSitter) = (8πG)−1Λδ

µ
ν ⇐= Tµ

ν =⇒ Tµ
ν (deSitter) = (8πG)−1λδ

µ
ν , (5)

and the metric evolves between two de Sitter asymptotics with λ < Λ. Spacetime can have at most
3 horizons and describes five possible configurations shown in Figure 1: regular cosmological black
hole within the mass range Mcr1 < M < Mcr2, between the event horizon rb and the internal Cauchy
horizon ra in the universe with the cosmological horizon rc (Figure 1a); two double-horizon states,
ra = rb(M = Mcr1) and rb = rc(M = Mcr2), and two one-horizon states (Figure 1b) [11].
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(a) (b)

Figure 1. Typical behavior of the metric function g(r) for the case of two vacuum scales.

Dependently on the coordinate mapping, solutions to the Einstein equations with the source
term (5) describe cosmological models or compact objects with the de Sitter vacuum interiors.

3. Regular Cosmological Models

Lemaître class cosmological models are described by the metric ([10] and references therein)

ds2 = dτ2 − b2(R, τ)dR2 − r2(R, τ)dΩ2 = dτ2 − E2(R)− g(r(R, τ))

E2(R)
dR2 − r2(R, τ)dΩ2. (6)

Coordinates R, τ are the Lagrange (comoving) coordinates. For Lemaître observers, shown in
Figure 2 for the case of the one-horizon spacetime with the same global structure as for the de Sitter
spacetime (Figure 2 right), for spatially flat models with Ω = 1 evolution starts with the non-singular
non-simultaneous de Sitter bang at (τ + R)→ −∞ from the regular timelike surface r(R, τ) = 0. It is
followed by the anisotropic stage at which the expansion in the transversal direction with ∂τr > 0 is
accompanied by shrinking in the radial direction where ∂R|gRR| < 0 until dg(r)/dr < 0 [10,12].
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Figure 2. One-horizon spacetimes with vacuum dark fluid.

Regular models of the Kantowski-Sachs type are described by the metric ds2 = |g(t)|−1dt2 −
|g(t)|dr2 − t2dΩ2. These are homogeneous anisotropic T-models. Evolution starts with a null bang
from the Killing horizon (rh in Figure 2), and pre-bang information from a regular asymptotically de
Sitter region behind the horizon rh is available for KS observers (shown in Figure 2 left) [12].

More general class of regular homogeneous anisotropic T-models is described by the t-dependent
metric

ds2 = eα(t)dt2 − eβ(t)dx2 − eγ(t)dΩ2. (7)

Characteristic features of this class models are (i) existence of a Killing horizon; (ii) a null bang
from horizon; (iii) pre-bang information available; (iv) creation of matter from anisotropic vacuum [13].
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4. Spacetime Singled Out By the Holographic Principle

For the class of metrics (4) the quantum temperature of any horizon is given by [14]

kTh =
h̄c
4π
|g′(rh)| (8)

The partition function calculated as the path integral for a canonical ensemble of metrics from the
class (4), which satisfy gttgrr = −1 and are generated by source terms with Tt

t = Tr
r , reads [15]

Z(kTh) = Z0 exp
[

1
4

(
4πr2

h

)
− 1

kTh

(
|g′|
g′

rh
2

)]
exp

[
S(rh)−

E(rh)

kTh

]
→ Sh = πr2

h; Eh =
|g′|
g′

rh
2

. (9)

The specific heat of a horizon is given by [16]

Ch = dEh/dTh =
2πrh

g′(rh) + g′′(rh)rh
. (10)

The Holographic Principle states that the number of quantum degrees of freedom in a spatial
volume is bounded from above by its surface area [17]. It is also formulated as the Conjecture:
A physical system can be completely specified by data stored on its boundary [18].

Quantum evaporation proceeds with decreasing mass M [16]. In the case of one-horizon spacetime
with the de Sitter global structure and two vacuum scales (initial and final) the process directed towards
diminishing M starts in the state M > Mcr2 (Figure 3a). Evaporation results in the state M = Mcr2

(the Nariai solution) with the negative specific heat according to (10), which is thermodynamically
unstable. There exists, however, another possibility presented by the class of one-horizon solutions
with the inflection point instead of extrema (Figure 3b). In this case quantum evaporation of the
cosmological horizon starts in the state M > Mcr and goes towards the triple-horizon spacetime
determined by g(rt) = g′ = g′′ = 0, which define uniquely the final mass Mcr, the horizon raius rt

and the key parameter qcr (q2 = ρΛ/ρλ = Λ/λ) [19].

(a) (b)

Figure 3. Two options for quantum evaporation of one-horizon spacetimes.

The triple-horizon spacetime is distinguished by quantum dynamics of the cosmological horizon
as the only thermodynamically stable final product of its evaporation: Evaporation stops when
Th = 0 and Ch → ∞. What is most important—evaporation stops with the finite non-zero value
of the cosmological constant given by the finite value of qcr, so that the spacetime symmetry acts
as the symmetry which provides, via the Holographic Principle, the mechanism of relaxing of the
cosmological constant to a certain tightly fixed non-zero value.
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Choosing a density profile one can calculate the final value of ρλ and compare it with that given
by observations. We apply the density profile [5]

ρ(r) = ρΛe−r3/r2
Λrg ; r2

Λ =
3

8πGρΛ
; ρΛ = ρ(r → 0); rg = 2GM. (11)

It describes vacuum polarization effects, which contribute all together to vacuum polarization in
the gravitational field [5], in the simple semiclassical model ρ ∝ exp (−Fcr/F), where the gravitational
(tidal) force F ∝ rg/r3, and the critical (de Sitter) force Fcr ∝ 1/r2

Λ [8,20].
Estimate with ρΛ = ρGUT and EGUT ' 1015 GeV, gives rt = 5.4× 1028 cm, Mcr = 2.33× 1056 g, and

q2
cr ' 1.37× 10107. Observational value ρλ ' 3.6× 10−30 g·cm−3 corresponds to q2

obs ' 1.39× 10107.

5. Regular Compact Objects with de Sitter Vacuum Interiors

5.1. Regular Black Holes and Vacuum Gravitational Solitons G-Lumps

The early proposals of replacing a singularity with the de Sitter vacuum were based on the
hypotheses of self-regulation of geometry by vacuum polarization effects [21], of the existence
of the limiting curvature [22], and of the symmetry restoration at the GUT scale in the course of
the gravitational collapse [5,23]. The first solution describing regular black hole with the de Sitter
interior [5] was obtained with the density profile (11). A loop quantum gravity provides arguments in
favor of a regular black hole with the de Sitter interior [24–27].

During evaporation a regular black hole with three horizons (shown in Figure 1a) evolves to
its extreme state with the double horizon ra ⇀↽ rb (the curve M = Mcr1 in Figure 1b). Behavior of
temperature of the event horizon shown in Figure 4a, is generic for black holes with the de Sitter
center [16,20]. In the maximum of temperature, the specific heat Ch = dEh/dTh (shown in Figure 4b)
is broken and changes sign, i.e., the second order phase transition occurs which is followed by the
quantum cooling [16,20,28]. At the double horizon temperature vanishes while specific heat becomes
positive, in accordance with (10).

(a) (b)

Figure 4. Temperature (a) and specific heat (b) of the black hole horizon.

Maximal temperature at the phase transition is given by Ttr ' αTPl
√

ρΛ/ρPl . For the density
profile (11) with ρΛ = ρGUT and MGUT ' 1015 GeV, temperature at the phase transition
Ttr ' 0.2× 1011GeV [20].

Spacetime without the event horizon (the upper curve, M < Mcr1, at the Figure 1b) represents
a vacuum gravitational soliton G-lump [8,20], a non-singular non-dissipative particle-like structure
taking itself together by its own gravitational self-interaction. Energy of G-lump calculated in the
minisuperspace model is En = h̄ω(n+ 1

2 )−
GM(rm)

rm
EPl ; ω =

√
p⊥(rm)Λc, where p⊥ is the transversal

pressure (normalized to ρΛ) at the minimum rm of the G-lump potential [8].
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Regular black holes, their remnants and self-gravitating vacuum solitons G-lumps with de Sitter
vacuum interiors can be responsible for observational effects typically related to a dark matter [29].

5.2. Regular Black Hole Remnants

BH remnants are considered as a reliable source of dark matter for more than three decades [30–32].
Singular black hole remnants are plagued by the existential problem: No evident symmetry or quantum
number exists which would prevent complete evaporation [18,33]. On the other hand, complete
evaporation would involve a fundamental change in the spacetime structure in the transition from
a spacetime with the distinguished center (distinguished by the singularity), the Schwarzschild-de
Sitter spacetime g(r)Schw−deS = 1 − 2GM

r − λ
3 r2 (the curve 3 in Figure 5a), to the globally regular

maximally symmetric de Sitter spacetime g(r)deS = 1− λ
3 r2 (Figure 5b) and actually would require to

find an answer to the question—How to evaporate a singularity? [34].
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Figure 5. Evolution of the Schwarzschild-de Sitter black hole in the case of complete evaporation.
(a) Schwarzschild-de Sitter metric function; (b) De Sitter metric function and global structure.

A regular black hole leaves behind a thermodynamically stable double-horizon remnant
generically related to vacuum dark energy through its interior de Sitter vacuum ([16,35] and references
therein). Mass of the remnant is given by Mremnant ' βMPl

√
ρPl/ρint. For the density profile (11)

with ρΛ = ρGUT and MGUT ' 1015 GeV, the mass Mremnant ' 0.3× 1011GeV [20].

5.3. Graviatoms with the de Sitter Interiors

Regular primordial black holes, their remnants and G-lumps can arise during first and second
(100–200 MeV [36]) inflationary stages in a quantum collapse of primordial fluctuations. Probability of
tunnelling in a collapse is given by [37]

D ≥ exp

[
−4
(

M
MPl

)3/4
(

EPl
Ein f l

)]
f or

M
MPl

≥
(Ein f l

EPl

)4 ( EPl
Eint

)8
, (12)

where Ein f l is the scale of the inflationary vacuum. At the first inflation, Ein f l = EGUT , regular objects
with the interior de Sitter vacuum Eint = EGUT can arise with masses M > 1011 g. For Eint = EPl any
mass is possible, as well as for regular objects arising at the second inflationary stage, Ein f l = EQCD.

Regular primordial black holes, their remnants and G-lumps can capture available particles and
form graviatoms ([37] and references therein) - gravitationally bound (αG = GMm/h̄c) quantum
systems with charged particles. Conditions of the existence of graviatoms [37] constrain the masses of
captured particles by m > 109 GeV for Eint = EGUT . They can be (i) GUT particles captured at the first
inflation; and (ii) leptoquarks survived in galactic haloes [38].

Observational signatures of graviatoms as heavy dark matter candidates provide additional
signatures for inhomogeneity of the early Universe [39]. Most promising is the oscillatory electromagnetic
radiation of graviatom whose characteristic frequency depends on the scale Eint of the interior de
Sitter vacuum [37]. For the density profile (11) h̄ω = 0.678h̄c/rdeS = 0.678× 1011 GeV(Eint/EGUT)

2.
Detection of cosmic photons is possible up to 1011.5 GeV [40]. In graviatoms with the GUT scale interiors,
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where baryon and lepton numbers are not conserved, a remnant component of graviatom can induce
proton decay, which could in principle serve as an additional observational signature of graviatom for
heavy dark matter searches at the IceCUBE experiment [39].

5.4. Mass and Spacetime Symmetry

Masses of objects with the de Sitter vacuum interiors are generically related to the de Sitter
vacuum and to breaking of spacetime symmetry from the de Sitter group in the origin [8].

In the Standard Model de Sitter vacuum appears as the false vacuum of the Higgs field responsible
for particle mass. Calculation of mass in the gravito-electroweak vortex by the Casimir formula in de
Sitter space provides explanation for the observational effect known as negative mass-square difference
for neutrinos [41,42]. This can also explain appearance of the minimal length scale l = 1.57× 10−17 cm
at the energy scale E = 1.253 TeV in the annihilation reaction e+e− → γγ(γ) [43]. QED hypotheses
applied in the χ2-test predict increasing of the total cross section. Contrary to these expectations,
the fit displays a minimum with the negative fit parameter with a significance about 5σ. The scale
le = 1.57× 10−17 cm fits inside the internal de Sitter region where gravity is repulsive. The minimal
length scale le can be thus understood as a distance at which electromagnetic attraction is balanced by
the gravitational repulsion of the interior de Sitter vacuum [43].

6. Summary and Discussion

Algebraic classification of stress-energy tensors and related (via the Einstein equations) spacetime
symmetry implies the possibility to introduce in general setting dynamical vacuum dark energy which
can be evolving and clustering. It is presented by the class of regular spherical solutions to the Einstein
equations specified by Tt

t = Tr
r (pr = −ρ) which generate the metrics ds2 = g(r)dt2− g(r)−1dr2− r2dΩ2.

These metrics belong to the Kerr-Schild class and can be presented as gµν = ηµν + 2 f (r)kµkν,
where ηµν is the Minkowski metric and kµ are principal null congruences. This is the special class of
algebraically degenerated solutions to the Einstein equations. In the algebraically special Kerr-Shild
geometry the Einstein equations take the linear form, ∂µTµ

ν = 0, and pseudotensor of gravitational
energy tµν = 0 [44]. They admit decomposition into free-falling (2 + 1)-dimensional shells with the
associated conserved stress-energy tensors, each of shells can be treated as a closed system and described
by a (2 + 1) Hamiltonian [45].

Regular spherical solutions of the class Tt
t = Tr

r have obligatory de Sitter center, represent dynamical
vacuum dark energy on the basis of spacetime symmetry, and describe, dependently on a mapping
(reference frame), regular cosmological dark energy models and regular compact objects with the de
Sitter vacuum interiors (black holes, their remnants and gravitational solitons).

In the case of two vacuum scales (e.g., for initial inflation and the present accelerated expansion)
the Holographic Principle singles out the triple-horizon spacetime as the only thermodynamically
stable product of quantum evaporation of the cosmological horizon. What is most important—the
spacetime symmetry appears to be that (lacking in QFT) symmetry which provides, via the Holographic
Principle, the mechanism of relaxing cosmological constant to a certain non-zero value, tightly fixed by
quantum dynamics of quantum evaporation of the cosmological horizon. Choice of the density profile
related to vacuum polarization effects and of the GUT scale for the first inflation gives the non-zero
final value of the vacuum density in remarkable agreement with its observational value.

Regular compact objects generically related to vacuum dark energy through their de Sitter vacuum
interiors, include regular black holes, their remnants and vacuum gravitational solitons G-lumps,
which can be responsible for observational effects typically related to a dark matter.

Mass of objects is generically related to breaking of spacetime symmetry from the de Sitter group
in the origin which is confirmed by explanation of observational effects in high energy physics.

Conflicts of Interest: The authors declare no conflict of interest.
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