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Abstract: The efficient use of electrical energy is a topic that has attracted attention for its
environmental consequences. On the other hand, induction motors represent the main component
in most industries. They consume the highest energy percentages in industrial facilities. This
energy consumption depends on the operation conditions of the induction motor imposed by its
internal parameters. Since the internal parameters of an induction motor are not directly measurable,
an identification process must be conducted to obtain them. In the identification process, the
parameter estimation is transformed into a multidimensional optimization problem where the internal
parameters of the induction motor are considered as decision variables. Under this approach, the
complexity of the optimization problem tends to produce multimodal error surfaces for which
their cost functions are significantly difficult to minimize. Several algorithms based on evolutionary
computation principles have been successfully applied to identify the optimal parameters of induction
motors. However, most of them maintain an important limitation: They frequently obtain sub-optimal
solutions as a result of an improper equilibrium between exploitation and exploration in their search
strategies. This paper presents an algorithm for the optimal parameter identification of induction
motors. To determine the parameters, the proposed method uses a recent evolutionary method called
the gravitational search algorithm (GSA). Different from most of the existent evolutionary algorithms,
the GSA presents a better performance in multimodal problems, avoiding critical flaws such as the
premature convergence to sub-optimal solutions. Numerical simulations have been conducted on
several models to show the effectiveness of the proposed scheme.

Keywords: gravitational search algorithm (GSA); induction motors; multimodal error surface

1. Introduction

The environmental consequences that overconsumption of electrical energy entails has recently
attracted the attention in different fields of engineering. Therefore, the improvement of machinery and
elements that have high electrical energy consumption levels has become an important task today [1].

Induction motors present several benefits such as their ruggedness, low price, cheap maintenance,
and easy operation [2]. However, more than half of the electric energy consumed by industrial facilities
is due to the use of induction motors. With the massive use of induction motors, electrical energy
consumption has increased exponentially over the years. This fact has generated the need to improve
their efficiency, which mainly depends on their internal parameters. The parameter estimation of
induction motors represents a complex task due to its non-linearity. As a consequence, different
alternatives have been proposed in the literature. Some examples include that proposed by Waters
and Willoughby [3], where the parameter are estimated from the knowledge of certain variables, such
as stator resistance and the leakage reactance, that proposed by Ansuj [4], where the identification is
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based on a sensitivity analysis, and that proposed by De Kock [5], where the estimation is conducted
through an output error technique.

Asan alternative to such techniques, the problem of parameter estimation in induction motors
has also been addressed via evolutionary methods. In general, they have demonstrated, under several
circumstances, to deliver better results than those based on deterministic approaches in terms of accuracy
and robustness [6]. Some examples of these approaches used in the identification of parameters in
induction motors involve methods, such as genetic algorithms (GAs) [7], particle swarm optimization
(PSO) [8,9], artificial immune system (AIS) [10], the bacterial foraging algorithm (BFA) [11], the shuffled
frog-leaping algorithm [12], a hybrid of GAs and PSO [13], and multiple-global-best guided artificial
bee colony (ABC) [14]. Although these algorithms present interesting results, they have an important
limitation: They frequently obtain sub-optimal solutions as a consequence of the limited balance
between exploration and exploitation in their search strategies.

On the other hand, the gravitational search algorithm (GSA) [15] is a recent evolutionary
computation algorithm which was inspired by the physical phenomenon of the gravity. In the GSA, its
evolutionary operators are built considering gravitation principles. Different from most of the existent
evolutionary algorithms, the GSA presents a better performance in multimodal problems, avoiding
critical flaws such as the premature convergence to sub-optimal solutions [16,17]. Such characteristics
have motivated its use to solve an extensive variety of engineering applications such as energy [18],
image processing [6] and machine learning [19].

This paper presents an algorithm for the optimal parameter identification of induction motors.
To determine the parameters, the proposed method uses a GSA. A comparison with state-of-the-art
methods such as ABC [20], differential evolution (DE) [21], and PSO [22] on different induction models
has been incorporated to demonstrate the performance of the proposed approach. Conclusions of the
experimental comparison are validated through statistical tests that properly support the discussion.

The sections of this paper are organized as follows: Section 2 describes the GSA method. In
Section 3, the identification problem is exposed. In Section 4, the experimental results are presented.
Finally, in Section 5, the conclusions are stated.

2. Gravitational Search Algorithm

The GSA was proposed by Rashedi [15] in 2009, inspired by the laws of gravity. Different from
most of the existent evolutionary algorithms, the GSA presents a better performance in multimodal
problems, avoiding critical flaws such as the premature convergence to sub-optimal solutions [13,14].
In the GSA, candidate solutions emulate masses which attract each other through operators that mimic
the gravitational force. Under the GSA, the mass (quality) of each candidate solution is assigned
according to its corresponding fitness value. The GSA has been designed to find the global solution of
a nonlinear optimization problem with box constraints in the form:

minimize f pxq, x “ px1, . . . , xdq P Rd,

subject to x P X
(1)

where f : Rd
Ñ R is a nonlinear function, whereas X “

!

x P Rd
ˇ

ˇ

ˇ
lh ď xh ď uh, h “ 1, . . . , d

)

is a
bounded feasible space, constrained by the lower (lh) and upper (uh) limits. To solve the problem
formulated in Equation (1), the GSA utilizes a population of N candidate solutions. Each mass (or
candidate solution) represents a d-dimensional vector xiptq “ px1

i , . . . , xd
i q pi P 1 . . . , Nq, where each

dimension corresponds to a decision variable of the optimization problem at hand.
In the GSA, at a time t, the force acting from a mass i to a mass j of the h variable ph P 1 . . . , dq is

defined as follows:

Fh
ijptq “ Gptq

Mpiptq ˆMajptq
Rijptq ` ε

pxh
j ptq ´ xh

i ptqq (2)
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where Maj is the active gravitational mass related to solution j, Mpi symbolizes the passive
gravitational mass of solution i, Gptq is the gravitational constant at time t, ε is a small constant, and
Rij is the Euclidian distance between the i-th and j-th individuals. In the GSA, G(t) is a function which
is modified during the evolution process. The idea behind this modification is to adjust the balance
between exploration and exploitation through the alteration of the attraction forces among solutions.

The total force acting over a candidate solution i is defined by the following model:

Fh
i ptq “

N
ÿ

j“1,j‰i

Fh
ijptq (3)

Then, the acceleration of the candidate solution i at time t is computed as follows:

ah
i ptq “

Fh
i ptq

Mniptq
(4)

where Mni represents the inertial mass of the candidate solution i. Under such conditions, the new
position of each candidate solution i is calculated as follows:

xh
i pt` 1q “ xh

i ptq ` vh
i pt` 1q

vh
i pt` 1q “ randpq ¨ vh

i ptq ` ah
i ptq

(5)

At each iteration, the gravitational and inertia masses of each particle are evaluated in terms of its
fitness function. Therefore, the gravitational and inertia masses are updated by the following equations:

Mai “ Mpi “ Mii “ Mi (6)

miptq “
f pxiptqq ´worstptq
bestptq ´worstptq

(7)

Miptq “
miptq

řN
j“1 mjptq

(8)

where f p¨q represents the objective function whose final result exhibits the fitness value. On the other
hand, best(t) and worst(t) symbolizes the best and worst fitness values found at time t in the complete
population. Algorithm 1 illustrates the pseudo code of the GSA method.

Algorithm 1. Gravitational search algorithm (GSA) pseudo code.

Random Initialization of the population
Find the best and worst solutions in the initial population
while (stop criteria)

for i = 1:N (for all elements)
update Gptq, bestptq, worstptq and Miptq for i “ 1, 2.., N
calculate the mass of individual Miptq
calculate the gravitational constant Gptq
calculate acceleration ah

i ptq
update the velocity and positions of each individual vh

i , xh
i

end for
Find the best individual

end while
Display the best individual as the solution
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3. Identification Problem Formulation

The parameters of an induction motor are not directly measurable. Because of this, they are
commonly estimated by identification methods. Under such approaches, the behavior of an induction
motor is modeled by equivalent nonlinear circuits. Depending on the accuracy, there are two different
circuit models [10]: the approximate circuit model and the exact circuit model. In general, they allow
the adequate relation of the motor parameters for their estimation.

In the identification process, the parameter estimation is transformed into a multidimensional
optimization problem where the internal parameters of the induction motor are considered as decision
variables. Therefore, the objective is to minimize the error between the estimated and the manufacturer
data, adjusting the parameters of the equivalent circuit. Under this approach, the complexity of the
produced formulations tends to produce multimodal error surfaces for which their cost functions are
significantly difficult to minimize.

3.1. Approximate Circuit Model

The approximate circuit model does not consider the magnetizing reactance and rotor reactance
in its structure; hence, its accuracy is less than the exact circuit model. The approximate circuit model
uses the manufacturer data starting torque (Tlr), maximum torque (Tmax), and full load torque

´

Tf l

¯

to determine the stator resistance (R1), rotor resistance (R2), stator leakage reactance pX1q, and motor
slip (s). Figure 1 illustrates the approximate circuit model. Under the approximate circuit model, the
identification task can be formulated as the following optimization problem:

minimize JApxq, x “ pR1, R2, X1, sq P R4,

subject to 0 ď R1 ď 1, 0 ď R2 ď 1, 0 ď X1 ď 10, 0 ď s ď 1
(9)

where
JApxq “ p f1pxqq

2
` p f2pxqq

2
` p f3pxqq

2

f1pxq “

KtR2

s
”

pR1`R2{sq
2
`X2

1

ı ´ Tf l

Tf l

f2pxq “

KtR2
pR1`R2q

2
`X2

1
´ Tlr

Tlr

f3pxq “

Kt

2
”

R1`

b

R2
1`X2

1

ı ´ Tmax

Tmax

Kt “
3V2

ph

ωs

(10)
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3.2. Exact Circuit Model

Different from the approximate circuit model, in the exact circuit model, the effects of the
magnetizing reactance and rotor reactance are considered in the computation. In this model, the
stator resistance (R1), rotor resistance (R2), stator leakage inductance pX1q, rotor leakage reactance
pX2q, magnetizing leakage reactance pXmq, and motor slip (s) are calculated to determine the maximum
torque (Tmax), full load torque

´

Tf l

¯

, starting torque (Tstr), and full load power factor (pf ). Figure 2
shows the exact circuit model. Under the exact circuit model, the identification task can be formulated
as the following optimization problem:

minimize JEpxq, x “ pR1, R2, X1, X2, Xm, sq P R6,

subject to 0 ď R1 ď 1, 0 ď R2 ď 1, 0 ď X1 ď 1, 0 ď X2 ď 1, 0 ď Xm ď 10, 0 ď s ď 1
(11)

where
JEpxq “ p f1pxqq

2
` p f2pxqq

2
` p f3pxqq

2
` p f4pxqq

2

f1pxq “

KtR2

s
”

pRth`R2{sq
2
`X2

ı ´ Tf l

Tf l
, f2pxq “

KtR2
pRth`R2q

2
`X2 ´ Tstr

Tstr

f3pxq “

Kt

2
”

Rth`
b

R2
th`X2

ı ´ Tmax

Tmaxpm f q
, f4pxq “

cos
´

tan´1
´

X
Rth`R2{s

¯¯

´ p f

p f

Rth “
R1Xm

X1 ` Xm
, Vth “

VphXm

X1 ` Xm
, Xth “

X1Xm

X1 ` Xm
, Kt “

3V2
th

ωs
, X “ X2 ` Xth

(12)

In the minimization of Equation (11), it is also necessary to meet an additional condition, the
values of the calculated parameters must fulfill the following restriction:

p f l ´ pI2
1 R1 ` I2

2 R2 ` Protq

p f l
“ η f l (13)

where p f l and Prot represents the rated power and rotational losses, respectively. Furthermore, η f l
symbolizes the efficiency provided by the manufacturer. With this restriction, the calculated efficiency
is forced to be equal to the manufacturer efficiency, maintaining a balance between both. In general,
the parameters p f l and Prot are calculated through two experimental tests known as No-load-test and
Blocked-rotor-test [23,24]. However, in order to maintain compatibility with similar works reported in
the literature, they were obtained from references [11–13].
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4. Experimental Results

In this paper, the GSA is used to determine the optimal parameters of two induction motors
considering the approximate circuit model (JA) and exact circuit model (JE). Table 1 presents the
technical characteristics of both motors used in the experiments. The proposed method is also evaluated
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in comparison with other similar approaches based on evolutionary algorithms. In the experiments,
we have applied the GSA estimator to the parameter identification of both induction motors, whereas
its results are compared to those produced by ABC [20], DE [21], and PSO [22]. The parameter settings
of all compared algorithms are obtained from their own referenced papers. The parameter setting for
each algorithm in the comparison is described as follows:

1- PSO, parameters c1 “ 2, c2 “ 2 and weights factors were set wmax “ 0.9, and wmin “ 0.4 [22].
2- ABC, the parameters implemented were provided by [20], limit = 100.
3- DE, in accordance with [21] the parameters were set pc “ 0.5 and f “ 0.5.
4- GSA, the parameter were set according to [15].

Table 1. Manufacturer data of the motors used in the experiments.

Motor 1 Motor 2

Power (HP) 5 40
Voltage (V) 400 400
Current (A) 8 45

Frequency (Hz) 50 50
No. Poles 4 4

Full load slip (s) 0.07 0.09
Starting torque (Tstr) 15 260
Max. Torque (Tmax) 42 370

Stator current 22 180
Full load torque (Tf l) 25 190

The experimental results are divided into three sub-sections. In the first Section 4.1, the
performance of the proposed algorithm is evaluated with regard to its own tuning parameters
(sensibility analysis). In Section 4.2, an overall performance of the proposed method in comparison
with similar approaches is provided. Finally, in Section 4.3, the results are statistically analyzed and
validated by using the Wilcoxon test.

4.1. Performance Evaluation with Regard to Its Own Tuning Parameters

In the GSA, the parameters G0 and α affect mainly its expected performance [R]. In this sub-section,
the behavior of the GSA over the motor parameter estimation problem is analyzed considering different
setting parameters.

During the test, each parameter G0 and α is set to a default value such as G0 “ 100 and α “ 20.
In the analysis, when one of the two parameters is evaluated, the other parameter remain fixed to
the default value. To minimize the stochastic effect of the algorithm, each benchmark function is
executed independently 30 times. As a termination criteria, the maximum number of iterations is
considered, which has been set to 3000. In all simulations, the population size N has been configured
to 25 individuals.

In the first stage, the behavior of the proposed algorithm is analyzed considering different values
for G0. In the analysis, the values of G0 are varied from 80 to 120, whereas the values of α remains fixed
at 10 and 30, respectively. In the simulation, the proposed method is executed independently 30 times
for each value of G0. The results obtained for the parameter combination of G0 and α are shown in
Table 2. Such values represent the minimum, maximum, standard deviation, and mean values of JE
(exact circuit model), considering the characteristics of Motor 1. The best results are marked in boldface.
From Table 2, we can conclude that the proposed GSA with G0 “ 100 maintains the best performance.

Then, in the second stage, the performance of the proposed algorithm is evaluated considering
different values for α. In the experiment, the values of α are varied from 10 to 30 whereas the value
of G0 remains fixed to 100. The statistical results obtained by the GSA using different values of α
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are presented in Table 3. Such values represent the minimum, maximum, standard deviation, and
mean values of JE (exact circuit model), considering the characteristics of Motor 2. The best results are
marked in boldface. From Table 3, it is evident that the proposed algorithm with α “ 20 outperforms
the other parameter configurations.

In general, the experimental results in Tables 2 and 3 suggest that a proper combination of
different parameter values can improve the performance of the proposed method and the quality of
the solutions. From the experiment, it can be concluded that the best parameter set is composed of the
following values: G0 “ 100 and α “ 20. Once they have been determined experimentally, they are
kept for all test functions through the following experiments.

Table 2. Experimental results obtained by the proposed algorithm using different values of G0.

G0 “ 80
α “ 20

G0 “ 90
α “ 20

G0 “ 100
α “ 20

G0 “ 110
α “ 20

G0 “ 120
α “ 20

Min 0.0044 0.0036 0.0032 0.0036 0.0033
Max 0.0119 0.0103 0.0032 0.0082 0.0088
Std 0.0016 0.0013 0.0000 0.0012 0.0014

Mean 0.0052 0.0040 0.0032 0.0042 0.0039

Table 3. Experimental results obtained by the proposed algorithm using different values of α.

G0 “ 100
α “ 10

G0 “ 100
α “ 15

G0 “ 100
α “ 20

G0 “ 100
α “ 25

G0 “ 100
α “ 30

Min 0.0093 0.0093 0.0071 0.0093 0.0092
Max 0.0730 0.0433 0.0209 0.0435 0.0493
Std 0.0147 0.0085 0.0043 0.0094 0.0109

Mean 0.0235 0.0164 0.0094 0.0191 0.0215

4.2. Induction Motor Parameter Identification

In this experiment, the performance of the proposed GSA method is compared with DE, ABC,
and PSO, considering the parameter estimation of both circuit models. In the test, all algorithms are
operated with a population of 25 individuals (N = 25). The maximum iteration number for all methods
has been set to 3000. This stop criterion has been selected to maintain compatibility to similar works
reported in the literature [20–22]. All the experimental results presented in this section consider the
analysis of 35 independent executions of each algorithm. Thus, the values of JA (approximate model),
deviation standard, and mean obtained by each algorithm for Motor 1 are reported in Table 4, whereas
the results produced by Motor 2 are shown in Table 5. On the other hand, the values of JE (exact model)
for Motor 1 and Motor 2 are exhibited in Tables 6 and 7 respectively. The best results in all tables are
marked in boldface.

Table 4. Results of JA, considering Motor 1.

GSA DE ABC PSO

Min 3.4768ˆ10´22 1.9687ˆ10´15 2.5701ˆ10´5 1.07474ˆ10´4

Max 1.6715ˆ10´20 0.0043 0.0126 0.0253
Mean 5.4439ˆ10´21 1.5408ˆ10´4 0.0030 0.0075

Std 4.1473ˆ10´21 7.3369ˆ10´4 0.0024 0.0075
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Table 5. Results of JA, considering Motor 2.

GSA DE ABC PSO

Min 3.7189ˆ10´20 1.1369ˆ10´13 3.6127ˆ10´4 0.0016
Max 1.4020ˆ10´18 0.0067 0.0251 0.0829

Mean 5.3373ˆ10´19 4.5700ˆ10´4 0.0078 0.0161
Std 3.8914ˆ10´19 0.0013 0.0055 0.0165

Table 6. Results of JE, considering Motor 1.

GSA DE ABC PSO

Min 0.0032 0.0172 0.0172 0.0174
Max 0.0032 0.0288 0.0477 0.0629

Mean 0.0032 0.0192 0.0231 0.0330
Std 0.0000 0.0035 0.0103 0.0629

Table 7. Results of JE, considering Motor 2.

GSA DE ABC PSO

Min 0.0071 0.0091 0.0180 0.0072
Max 0.0209 0.0305 0.2720 0.6721

Mean 0.0094 0.0190 0.0791 0.0369
Std 0.0043 0.0057 0.0572 0.1108

According to the results from Tables 4–7 the proposed approach provides a better performance
than DE, ABC, and PSO in all tests. These differences are directly related to the better trade-off between
exploration and exploitation of the GSA method.

Once the motor parameters of all algorithms were estimated, their estimations were compared
with the ideal starting torque (Tstr), maximum torque (Tmax), and full load torque

´

Tf l

¯

values provided
by the manufacturer in Table 1. The main objective of this comparison is to evaluate the accuracy of each
approach with regard to the actual motor parameters. Tables 8 and 9 present the experimental results
of JA for Motors 1 and 2, respectively. On the other hand, Tables 10 and 11 exhibit the comparative
results of JE for Motors 1 and 2, respectively. The best results in all tables are marked in boldface.

Since the convergence rate of evolutionary algorithms is an important characteristic to assess their
performance for solving the optimization problems, the convergence of all algorithms facing functions
JA and JE is compared in Figure 3a,b. The remarkable convergence rate of the proposed algorithm can
be observed in both figures. According to these figures, it tends to find the global optimum faster than
other algorithms.

Finally, Figure 4 shows graphically the relation of the slip vs. torque for both models (JA and JE)
and for both Motors (1 and 2).

Table 8. Comparison of GSA, DE, ABC, and PSO with manufacturer data, JA, for Motor 1.

True val GSA Error% DE Error% ABC Error% PSO Error%

Tst 15 15.00 0 14.9803 ´0.131 14.3800 ´4.133 15.4496 2.9973
Tmax 42 42.00 0 42.0568 0.135 40.5726 ´3.398 39.6603 ´5.570
Tfl 25 25.00 0 24.9608 ´0.156 25.0480 0.192 25.7955 3.182

Table 9. Comparison of GSA, DE, ABC, and PSO with manufacturer data, JA, for Motor 2.

True val GSA Error% DE Error% ABC Error% PSO Error%

Tst 260 260.00 0 258.4709 ´0.588 260.6362 0.2446 288.9052 11.117
Tmax 370 370.00 0 372.7692 0.7484 375.0662 1.3692 343.5384 ´7.151
Tfl 190 190.00 0 189.0508 ´0.499 204.1499 7.447 196.1172 3.2195
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Table 10. Comparison of GSA, DE, ABC, and PSO with manufacturer data, JE, for Motor 1.

True val GSA Error% DE Error% ABC Error% PSO Error%

Tst 15 14.9470 ´0.353 15.4089 2.726 16.4193 9.462 15.6462 4.308
Tmax 42 42.00 0 42.00 0 42.00 0 42.00 0
Tfl 25 25.0660 0.264 26.0829 4.3316 25.3395 1.358 26.6197 6.4788

Table 11. Comparison of GSA, DE, ABC, and PSO with manufacturer data, JE, for Motor 2.

True val GSA Error% DE Error% ABC Error% PSO Error%

Tst 260 258.1583 ´0.708 262.0565 0.7909 246.2137 ´5.302 281.8977 8.4221
Tmax 370 370.00 0 370.00 0 370.00 0 370.00 0
Tfl 190 189.8841 ´0.061 192.2916 1.2061 207.9139 9.428 166.6764 ´12.27
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4.3. Statistical Analysis

To statistically analyze the results, a non-parametric test known as Wilcoxon analysis [25] was
conducted. It permits the evaluation of the differences between two related methods. The test is
performed in a 5% significance level over the mean fitness values of JA and JE, considering Motors 1
and 2. Table 12 reports the p-values generated by Wilcoxon analysis for the pair-wise comparison
among the algorithms. Under such conditions, three groups are produced: GSA vs. DE, GSA vs. ABC,
and GSA vs. PSO. In the Wilcoxon test, it is assumed as a null hypothesis that there is no significant
difference between the two algorithms. On the other hand, it is considered as an alternative hypothesis
that there is a significant difference between both approaches. An inspection of Table 12 demonstrates
that all p-values in the Table 12 are less than 0.05 (5% significance level). This fact provides strong
evidence against the null hypothesis, indicating that the proposed method statistically presents better
results than the other algorithms.

Table 12. p-values produced by Wilcoxon test comparing GSA vs. DE, GSA vs. ABC, and GSA vs. PSO
over the mean fitness values of JA and JB considering the Motors 1 and 2 from Tables 4–7.

GSA vs. DE ABC PSO

JA, Motor 1 6.545500588914223ˆ10´13 6.545500588914223ˆ10´13 6.545500588914223ˆ10´13

JA, Motor 2 0.009117078811112 0.036545600995029 0.004643055264741
JE, Motor 1 6.545500588914223ˆ10´13 6.545500588914223ˆ10´13 6.545500588914223ˆ10´13

JE, Motor 2 1.612798082388261ˆ10´9 9.465531545379272ˆ10´13 3.483016312301559ˆ10´8

5. Conclusions

In this paper, an algorithm for the optimal parameter identification of induction motors has
been presented. In the proposed method, the parameter estimation process is transformed into
a multidimensional optimization problem where the internal parameters of the induction motor
are considered as decision variables. Under this approach, the complexity of the optimization
problem tends to produce multimodal error surfaces for which their cost functions are significantly
difficult to minimize. To determine the parameters, the proposed method uses a relatively recent
evolutionary method called the gravitational search algorithm (GSA). Different from most of the
existent evolutionary algorithms, the GSA presents a better performance in multimodal problems,
avoiding critical flaws such as the premature convergence to sub-optimal solutions.

To illustrate the proficiency and robustness of the proposed approach, the GSA estimator has been
experimentally evaluated considering two different motor models. To assess the performance of the
proposed algorithm, it has been compared to other similar evolutionary approaches such as differential
evolution (DE), ABC, and PSO. The experiments, statistically validated, have demonstrated that the
proposed method outperforms the other techniques in most experiments in terms of solution quality.
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