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Abstract: Vitamins are a class of essential nutrients in the body; thus, they play important roles in human
health. The chemicals are involved in many physiological functions and both their lack and excess
can put health at risk. Therefore, the establishment of methods for monitoring vitamin concentrations
in different matrices is necessary. In this review, an updated overview of the main pretreatments
and determination methods that have been used since 2010 is given. Ultrasonic assisted extraction,
liquid–liquid extraction, solid phase extraction and dispersive liquid–liquid microextraction are the most
common pretreatment methods, while the determination methods involve chromatography methods,
electrophoretic methods, microbiological assays, immunoassays, biosensors and several other methods.
Different pretreatments and determination methods are discussed.
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1. Introduction

As one of the seven major nutrients, vitamins play important roles in the body. Vitamins are
involved in the processes of normal metabolism and cell regulation, and they are necessary for
growth and development; thus, they are chemicals that we all need to stay healthy [1,2]. There are
thirteen vitamins that are recognized as playing roles in human nutrition [3]. Based on their solubility,
these vitamins can be divided into fat-soluble vitamins and water-soluble vitamins. The former
contains vitamin A, D, E and K, while the latter group includes the B-complex and C vitamins.

A number of biological functions in the body have been associated with the fat-soluble
vitamins [4–12]. Once the amount of vitamins cannot meet the body’s needs, the vitamins must be
supplied from the diet. The functions and dietary sources of these fat-soluble vitamins are represented
in Table 1 [13].
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Table 1. List of fat-soluble vitamins [13].

Vitamin Name Function Dietary Sources

Vitamin A

Helps with (1) healthy mucous
membranes; (2) skin, vision, tooth
and bone growth; (3) health of the
immune system.

From animal sources (retinol): liver, eggs, fortified margarine,
butter, cream, cheese, fortified milk.

From plant sources (beta-carotene): dark orange vegetables
(pumpkin, sweet potatoes, winter squash, carrots), fruits
(cantaloupe, apricots), dark green leafy vegetables.

Vitamin K Required for correct blood clotting. Vegetables from the cabbage family, leafy green vegetables,
milk; it is also produced in the intestinal tract by the bacteria.

Vitamin E Helps to protect the cell walls. Nuts and seeds, egg yolks, liver, wholegrain products, wheat
germ, leafy green vegetables and polyunsaturated plant oils.

Vitamin D Required to properly absorb calcium.
Fortified margarine, fortified milk, fatty fish, liver, egg yolks;
the skin can also produce vitamin D when it is exposed to
sunlight.

B-complex and C vitamins are water-soluble vitamins. The B-group is a big family, which contains
B1 (thiamine), B2 (riboflavin), B3 (niacin), B5 (pantothenic acid), B6 (pyridoxine), B8 (biotin),
B9 (folic acid), B12 (cyanocobalamine) and related substances. In metabolic processes, several B-group
vitamins act mainly as coenzymes to produce energy and play important roles [14]. Vitamin C is one
of the most important vitamins which is also indispensable for life and is involved in many important
physiological processes, such as iron absorption, the immune response and so on [3]. The functions
and dietary sources of these water-soluble vitamins are represented in Table 2 [13].

Table 2. List of water-soluble vitamins [13].

Vitamin Name Benefits Dietary Sources

Ascorbic Acid
(Vitamin C)

Ascorbic acid is an antioxidant, and it is a portion of an
enzyme that is required for protein metabolism. It also
helps with iron absorption and is important for the health
of the immune system.

Found in vegetables and fruits, especially: kiwifruit,
mangoes, papayas, lettuce, potatoes, tomatoes,
peppers, strawberries, cantaloupe and so on.

Thiamine
(Vitamin B1)

Thiamine is a portion of an enzyme that is required for
energy metabolism, and it is important for nerve function.

Found in moderate amounts in all nutritious foods:
nuts and seeds, legumes, wholegrain/enriched cereals
and breads, pork.

Riboflavin
(Vitamin B2)

Riboflavin is a portion of an enzyme that is required for
energy metabolism. It is also important for skin health and
normal vision.

Enriched, wholegrain cereals and breads, leafy green
vegetables, milk products.

Niacin
(Vitamin B3)

Niacin is a portion of an enzyme that is required for energy
metabolism. It is also important for skin health as well as
the digestive and nervous systems.

Peanut butter, vegetables (particularly leafy green
vegetables, asparagus and mushrooms), enriched or
wholegrain cereals and breads, fish, poultry and meat.

Pantothenic Acid
(Vitamin B5)

Pantothenic acid is a portion of an enzyme that is required
for energy metabolism. It is widespread in foods.

Pyridoxine
(Vitamin B6)

Pyridoxine is a portion of an enzyme that is required for
protein metabolism. It also helps with the production of
red blood cells.

Fruits, vegetables, poultry, fish, meat.

Folic Acid Folic acid is a portion of an enzyme that is required for
creating new cells and DNA.

Liver, orange juice, seeds, legumes, leafy green
vegetables. It is now added to many refined grains.(Vitamin B9)

Cobalamin
(Vitamin B12)

Cobalamin is a portion of an enzyme required for the
production of new cells, and it is important to the function
of nerves.

Milk, milk products, eggs, seafood, fish, poultry, meat.
It is not present in plant foods.

Biotin
(Vitamin H)

Biotin is a portion of any enzyme that is required for
energy metabolism.

It is widespread in foods and can be produced by
bacteria in the intestinal tract.

Different vitamins are necessary for the body to maintain normal health, as reported by the
US National Institute of Health [15]. In recent years, the essential roles of vitamins in human
health have received extensive attention. For people who are at risk of vitamin deficiencies, vitamin
supplementation is regarded as an effective treatment (e.g., intake of multivitamin tablets). However,
an overdose of vitamins can be toxic in nature [16–20]. In addition, interactions of vitamins and other
drugs are often reported [21]. Consequently, in order to use vitamins reasonably, it is essential to
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develop rapid, accurate, reliable and efficient methods for the simultaneous separation and quantitation
of multiple vitamins in different matrices.

Recently, research on vitamins has attracted widespread interest. The number of publications
involving vitamins has increased significantly which demonstrates that these issues are becoming more
and more popular. A lot of pretreatment and determination methods of vitamins were developed before
2010 [22–32]. At that time, general pretreatment techniques included liquid–liquid extraction (LLE),
solid-phase extraction (SPE) and so on, while the determination methods include chromatography
methods, electrophoretic methods and others. As we know, great progress in analytical chemistry has
been achieved and some new analytical instruments have been developed since 2010. Considering
few comprehensive reviews of pretreatment and determination of vitamins has been published
systematically, in this paper, we presented a review of the most common sample preparation methods,
including ultrasonic assisted extraction (UAE), supercritical fluid extraction (SFE), SPE, LLE, dispersive
liquid–liquid microextraction (DLLME) and different analysis methods, including chromatography
methods, electrophoretic methods, microbiological assays, immunoassays, biosensors and others
which have been reported and used to analyze vitamins since 2010. The pretreatment methods used
are summarized in Table 3 [33–102].

Table 3. Pretreatment methods, sample matrices and targets of the recent articles.

Pretreatments Determination Methods Sample Matrix Analytes Ref.

liquid–liquid
extraction (LLE)

liquid chromatography-
ultraviolet detection

(LC-UV)
Human serum

Vitamins A (retinol, retinyl esters),
E (α- and γ-tocopherol) and D
(25-OH vitamin D)

[33]

ultrasonic assisted
extraction (UAE),

filtration
LC-UV Multivitamin capsule Benfotiamine (B1). Pyridoxine

hydrochloride (B6), mecobalamin (B12) [34]

LLE LC-UV Milk, fruit juice and
vegetable beverage

Vitamins E (a-, c- and d-tocopherol) and
D (cholecalciferol and ergocalciferol) [35]

Dilute and shoot LC-UV Honey

Vitamin B2, riboflavin; vitamin B3,
nicotinic acid; vitamin B5, pantothenic
acid; vitamin B9, folic acid;
and vitamin C, ascorbic acid

[36]

UAE, filtration LC-UV Mineral tablets
Thiamine, riboflavin, niacinamide,
pantothenic acid, pyridoxine, folic acid
and ascorbic acid

[37]

Protein precipitation,
centrifugation and

filtration
LC-UV Rat plasma Vitamins D3 and K1 [38]

supercritical fluid
extraction (SPE) LC-UV Combined feed, premixes, and

biologically active supplements

Ascorbic acid (C), nicotinic acid
(B3 or PP), nicotinamide (B3 or PP),
pyridoxine hydrochloride (B6),
riboflavin (B2) and thiamine
hydrochloride (B1)

[39]

Protein precipitation,
filtration LC-FLD Plasma Vitamin B2 (riboflavin) [40]

LLE LC-UV Human serum All-trans-retinol, retinyl acetate,
a-tocopherol, a-tocopheryl acetate [41]

UAE LC-UV Vitamin tablets 10 vitamins (7 water-soluble and
3 fat-soluble) [42]

UAE LC-UV Energy drinks Caffeine and water-soluble vitamins [43]

LLE LC-UV Pharmaceutical formulations Fat-soluble vitamins [44]

Dilute and shoot LC-UV Red bull and other energy drinks Caffeine and vitamin B6 [45]

UAE LC-UV
Vitamin premixes, bioactive

dietary supplements and
pharmaceutical preparations

12 water-soluble vitamins [46]

UAE LC-UV Food samples, human plasma and
human adipose tissue

Retinol, tocopherols, coenzyme Q10 and
carotenoids [47]

Filtration, dilute and
shoot LC-UV A.marmelos fruit juice Vitamin C, polyphenols, organic acids

and sugars [48]

SPE LC-UV Meat products Vitamin B12 [49]
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Table 3. Cont.

Pretreatments Determination Methods Sample Matrix Analytes Ref.

Extraction, filtration LC-UV Leafy vegetables

Riboflavin (vitamin B2), niacin
(vitamin B3), pantothenic acid
(vitamin B5) and pyridoxine
(vitamin B6)

[50]

SPE LC-UV Leaves of Suaeda vermiculata Vitamin B group [51]

UAE LC-UV
12 multivitamin/multimineral

pharmaceuticals and preparations
and human serum

B-complex vitamins and vitamin C [52]

Extraction, filtration LC-UV Fruits and vegetables L-ascorbic and dehydroascorbic acids [53]

LLE LC-FLD Human serum Vitamin K [54]

Dilute and shoot LC-UV Fruit beverages and in
pharmaceutical preparations Vitamin C [55]

Dilute and shoot LC-UV Pharmaceutical solid dosage B-group vitamins and atorvastatin [56]

LLE LC-UV Urine Vitamin B12 [57]

SPE LC-UV Cereal samples Tocopherols, tocotrienols and
carotenoids [58]

Extraction, filtration Flow-Injection MS/MS Nutritional supplements B vitamins [59]

dispersive
liquid–liquid

microextraction
(DLLME)

LC-DAD-MS Infant foods and several green
vegetables Vitamins D and K [60]

LLE LC-MS Bovine milk Vitamins A, E and b-carotene [61]

LLE LC-MS Serum 25-Hydroxyvitamin D3 and
25-hydroxyvitamin D2

[62]

LLE LC-MS Infant formula and adult
nutritionals Vitamins D2 and D3 [63]

LLE LC-MS Human plasma Vitamins A, D and E [64]

Centrifugation and
filtration LC-MS Vegetables and fruits Ascorbic and dehydroascorbic acids [65]

UAE LC-DAD-MS Green leafy vegetables Fat and water-soluble vitamins [66]

LLE LC-MS Infant formula and
adult nutritionals Vitamins D2 and D3 [67]

LLE LC-DAD-MS Milk Carotenoids and fat-soluble vitamins [68]

UAE LC-MS Nutritional formulations Fat- and water-soluble vitamins [69]

Centrifugation and
filtration LC-MS Rice Folates [70]

SPE LC-MS Neonatal dried blood spots 25-Hydroxyvitamin D3 [71]

LLE LC-MS Blood Vitamin K1 [72]

LLE LC-MS Serum 25(OH) Vitamin D3 and D2 [73]

Centrifugation and
filtration LC-MS SRM 1849 infant/adult nutritional

formula powder Water-soluble vitamins [74]

LLE LC-MS Milk Vitamin D3 [75]

UAE LC-corona-charged aerosol
detector

Infant milk and dietary
supplement Water-soluble vitamins [76]

UAE MEKC Food supplements Water-soluble vitamins [77]

UAE MEKC Commercial multivitamin
pharmaceutical formulation Water- and fat-soluble vitamins [78]

UAE MEKC Multivitamin formulation Water- and fat-soluble vitamins [79]

LLE MEKC Multivitamin tablets and vitamin
E soft capsules Fat-soluble vitamins [80]

Dilute and shoot HPTLC Standard stock solutions Vitamins B1, B2, B6 and B12 [81]

Extraction, dilute
and shoot PCR, PLS and TLC Pharmaceutical formulations Vitamins B1, B6 and B12 [82]

SPE Spectrophotometry Energy drinks Caffeine and B vitamins [83]

Extraction, dilute
and shoot Spectrofluorimetry Pharmaceuticals Water-soluble vitamins [84]

DLLME Spectrofluorimetry Tablets and urine samples Vitamin B1 [85]

Filtration Spectrofluorimetry Corn steep liquor Vitamins B2, B3, B6 and B7 [86]

Dilute and shoot Spectrofluorimetry Multivitamin drugs, food
additives and energy drinks Fat- and water-soluble vitamins [87]

Dilute and shoot Spectrofluorimetry Dosage forms Water-soluble vitamins [88]
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Table 3. Cont.

Pretreatments Determination Methods Sample Matrix Analytes Ref.

Centrifugation Voltammetry Fruit juices and wine Ascorbic acid content [89]

Centrifugation, UAE Voltammetric Sensor Food samples Vitamin C and vitamin B6 [90]

Dilution Electrode Human plasma Vitamins B2, B9 and C [91]

No previous
preparation Electrode Pharmaceutical samples and fruit

juices Vitamins C, B1 and B2 [92]

Dilution Electrode Orange juice samples Vitamins B2, B6 and C [93]

Centrifugation,
filtration Nanosensor Food samples Vitamins B9 [94]

No previous
preparation Sensor Aqueous solutions Vitamins B1, amino acids and

drug substances [95]

Dilution Sensors Polymerization samples Vitamin B3 [96]

Dilution Nanocomposites Honey samples Vitamins B2, B6 and C [97]

Dilution SFC-MS/MS Standard stock solutions Water- and fat-soluble vitamins [98]

Centrifugation HPLC, ELISA Serum Vitamins A, C and D [99]

SPE Microbiological assays Infant formula B group vitamins [100]

UAE LC-UV Rice bran powder Vitamins B1, B2, B3, B6 and B12 [101]

SPE LC-UV Plasma Retinol and α-tocopherol [102]

2. Sample Pretreatment Methods

Sample extraction and purification is vitally important. In the pretreatment processes of
vitamins, different substances can be separated and preconcentrated which can improve the analytical
performance significantly (e.g., selectivity, sensitivity, accuracy) [30,31]. In the past, soxhelt extraction
and heating under reflux have been the most commonly used methods; both these two methods have
limitations due to the high costs of time and organic solvents. With the development of analysis
technics, many eco-friendly and effective sample preparation technologies have emerged and are
becoming more and more popular. These new sample preparation technologies can significantly
decrease the personnel costs and time consumed [49,51,58,83,100,102].

The applied pretreatment methods heavily depend on the type of matrix used. A sample type can
be divided into two categories based on its state during the determination of vitamins. Liquid samples
and solid samples are most common for liquid samples such as serum, juice, milk and so on. There is
no need for grinding, and homogeneity, sonicating and heating reflux are often employed for extraction.
Then, LLE is frequently used. For solid samples, such as capsules, tablets, meat and so on, grinding
and homogeneity are necessary. After the targets have been extracted, different pretreatment methods
are needed. In brief, for different samples, different pretreatment methods have been established, e.g.,
for most solid samples, homogenization, drying and sieving through a screen were adopted, while for
serum, the samples can be processed with deproteinization only.

2.1. Protein Precipitation, Centrifugation and Filtration

Samples such as whole blood, serum, plasma or urine are a complex mixture of biologically active
compounds that can bond to the target analyte, interfere with determination or have a negative impact
on the stability of the observed compound. To increase compatibility with the detection and separation
techniques, some sample preparation procedures are worth considering, such as protein precipitation,
centrifugation and filtration [36,38,40,42,45,48,55,59].

Modern detection tools are far more sensitive and some samples are relatively simple to collect
and require only a few steps to purify. Methodology using a “dilute and shoot” technique is gaining
popularity and is now frequently used. Ciulu et al. [36] published a method for honey samples that
used a diluted mixture of 1 mL of 2 M NaOH with 12.5 mL of 1 M phosphate buffer followed by
filtration through a PVDF membrane filter. Dabre et al. [42] published a method for vitamin tablets
that used a solved and diluted solution followed by filtration through an 0.2 µm PTFE membrane filter.
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Leacock et al. [45] developed a method for energy drinks that used a diluted mixture of 60:40 phosphate
buffer/methanol solution and then delivered the sample to the detecting instrument. Different diluents
were used for different targets; among the diluents, phosphate buffer was the most commonly used
diluent [36,45]. Buffer can reduce the fluctuation of pH effectively and reduce the effect of pH on
retention time.

Gershkovich et al. [38] described a protein precipitation method for rat plasma centrifuged at
10,000 rpm for 10 min at 5 ◦C followed by the addition of ice cold acetonitrile. After being filtered using
PVDF 0.22 mm centrifugal filters, the supernatant was transferred into autosampler vials and directly
measured by HPLC. Brian et al. [40] described a protein precipitation method for plasma that had been
centrifuged after the addition of TCA using a 96-well protein precipitation plate filtration system.

Considering that some precipitation reagents used were not directly compatible with the
chromatographic equipment, a complete set of protein precipitation reagents were proposed and
documented. Still, the most abundantly used reagents include methanol, acetonitrile and a mixture of
deionized water with different concentrations of acids.

2.2. Ultrasonic Assisted Extraction

As a high efficiency pretreatment method, UAE can save time and increase the yield and the
quality of an extract dramatically [101]. The extraction efficiency can be enhanced by ultrasonic
energy through induced cavitation. Since 2010, UAE has gained popularity and is now frequently
used [34,42,43,47,52,66,69,76–79,101]. The information block diagram of UAE is shown in Figure 1.
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There are many commercial instruments to choose; thus, the UAE instruments are easy to
use. After ultrasonic, we can collect the solvents by filtration or centrifugation easily. In general,
after extraction, centrifugation or filtration is inevitable. Chen et al. [101] investigated the effects of
different factors on the extraction efficiency of vitamins B from rice bran powder. Different factors
(e.g., the extraction time, the ratio of the solvent to solid ratio) were optimized by a two-factor center
composite response surface method. The extraction time affects the efficiency of extraction significantly.
When the solvent to solid ratio is fixed, the increase in extraction time can significantly improve the
vitamin B content in the defatted rice bran extract. Good purification (purification factor is 4.55) and
recovery (recovery rate is 92.8%) can be obtained using at 323 K at a solvent to solid ratio of 10.0 for
1.5 h in dried, defatted rice bran extract. Unlike most drugs, most vitamins are sensitive to oxidation
and ultraviolet light; thus, some antioxidant measures are often carried out. Francisco et al. [35]
established an HPLC method for the analysis of vitamins D and E in milk, fruit juice and a vegetable
beverage. During the extraction process, saponification was adopted in a nitrogen atmosphere and
darkness. Further, the addition of ascorbic acid or BHT as an antioxidant was employed. Muhammad
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et al. [41] optimized and validated a liquid chromatography (LC) method for fat-soluble vitamins in
human serum. Ascorbic acid and BHT were used as stabilizers in order to prevent oxidation during
processing and storage.

Compared with the other pretreatment methods (e.g., heating reflux), the UAE methods
mentioned above have shorter extraction times with good recovery. However, the methods still
consume large volume of solvents.

2.3. Liquid–Liquid Extraction

Another complementary method for the extraction and purification of vitamins is
LLE [33,35,41,44,54,57,61–64,67,68,72,73,75,80]. Although it is now experiencing a renaissance, the use
of highly toxic volatile compounds makes this procedure experimental and not suitable for clinical
and routine use for high throughput analysis.

Fariborz et al. [44] described an LC method for fat-soluble vitamins using the LLE process.
Multivitamin syrup was transferred to a test tube, and then ascorbic acid, n-hexane–DEE solution
(9:1, v/v) and DMSO were added. After that, vortex and centrifugation were carried out, and then
the upper organic layer was gathered. After undergoing extraction four times, the organic phases
were joined, evaporated to dryness and the residue was redissolved before determination. This can
be taken as the normal procedure of LLE. Francisco et al. [35] compared the extraction efficiencies
of different regents. Extraction with diethyl ether and hexane (2 × 50 and 1 × 100 mL) was tested,
and the best results were obtained using hexane for the extraction of vitamins D and E. Muhammad
et al. [41] optimized and validated an LC method for several fat-soluble vitamins in human serum.
During the extraction process, n-hexane, chloroform, diethyl ether, ethyl acetate, and dichloromethane
were compared in terms of their extraction efficiency on the targets. The best recovery of the targets
was obtained using a two-step extraction process (n-hexane followed by dichloromethane). The above
pretreatment methods are mainly used to purify fat-soluble vitamins. For water-soluble vitamins,
LLE methods have also been developed. Cloud-point extraction is an alternative method. Berton
et al. [57] developed an LC method for vitamin B12 using the ionic liquid-based aqueous two-phase
system extraction process. The urine sample was transferred to a vial after being centrifuged, and then
the ionic liquid (0.2 g of [C6 mim] [Cl]) was added and fully dissolved into the pretreated sample. Then,
K2HPO4 (3 g) was added after being vortexed, the homogeneous solution became cloudy and VB12

was extracted into the ionic liquid (IL) phase. After five min of stirring (without vortex assistance),
two well-defined phases were formed. VB12 was gathered in the upper IL-enriched phase which can
be directly injected in to the detecting instruments. During the pretreatment process, variables such
as pH, temperature and the composition of aqueous two-phase system (ATPS), which can affect the
IL-based ATPS approach, were optimized. The average extraction efficiency was over 95% under
optimum conditions.

2.4. Dispersive Liquid–Liquid Micro-Extraction

Different miniaturized pre-treatment techniques based on LLE were developed prior to 2010,
including SDME, HF-LPME and so on. Since 2010, DLLME has become a very popular environmentally
benign sample preparation technique, because it has a lot of advantages, such as low solvent cost and
high enrichment factor [60,85].

In the work of Viñas et al. [60], DLLME with HPLC-PDA detection and a comparison with MS/MS
detection for vitamins D and K in foods were combined. For the DLLME procedure, the targets were
extracted with acetonitrile (3 mL) which was also used as dispersive solvent. Then, an extractant
solvent (carbon tetrachloride, 150 µL) was added, the mixture was injected into water directly using
a micropipette, and after being shaken and centrifuged, the demented phase was collected and
evaporated to dryness. The residue was reconstituted and injected into the LC. This method eliminates
interfering compounds in the matrix, is sensitive and has an improved limit of detection (LOD)
compared to other methods. Zeeb et al. [85] established a simple and accurate technique for the
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determination of vitamin B1 using the DLLME procedure to purify interfering substance in tablets
and urine samples. Under optimum conditions for DLLME, 10.0 mL of sample solution containing
the analytes (pH = 13) was transferred into a glass test tube with a conic bottom. One milliliter of
ferricyanide solution (0.01 mol·L−1) was added to sample and mixed completely. Then, 0.50 mL of
acetone (disperser solvent) containing 122 µL of chloroform (micro-extraction solvent) was injected
rapidly into the sample solution. Then, the cloudy solution was formed. After that, the dispersed fine
droplets of chloroform were sedimented, and the sedimented phase was removed and injected into the
analyzer. Subsequently, the samples were determined by spectrofluorimeter. The results showed that
this method has a good recovery and limit of quantitation.

Compared with traditional LLE methods, the abundant contact surface of fine droplets and
analytes speeds up the mass transferring processes of analytes from the aquatic phase to the organic
phase in a DLLME process, which not only greatly enhances the extraction efficiency but also overcomes
the time-consumption problem [56,57]. However, the recoveries obtained by the DLLME method are
usually not high enough compared with those of other methods. This may be caused by the use of
a dispersive solvent which usually decreases the partition coefficients of analytes into the extraction
solvents [58,59].

2.5. Solid Phase Extraction

SPE is one of the most common methods to pretreat samples and has been applied to analyze
vitamins in different matrices [39,49,51,58,71,83,102]. For liquid samples, SPE is generally directly used
to treat real samples [83,102]. However, for solid samples, the analytes are extracted from the sample
matrices using organic solvents, like acetonitrile, in advance, and then the SPE procedure is performed
to the extract [39,49,51,58]. Generally, SPE cartridge columns are activated before successive washing
with different agents during the SPE process. Then, the samples are passed through the cartridges at
settled flow rates. The cartridges are then dried, and analytes are eluted from the cartridges.

In the SPE process, solid phase materials, which are useful for extraction, concentration and
clean-up, are available in a wide variety of chemistries, adsorbents and sizes. The sorbent selected in
SPE controls analytical parameters such as selectivity, affinity and capacity. For this reason, different
SPE materials have been used. Because of the different chemical properties of water-soluble and
fat-soluble vitamins, SPE methods using different columns have been established.

An LC method was proposed to measure water-soluble vitamin B and C using SPE pretreatment
methods by Rudenko et al. [39]. The best results in terms of purification efficiency and recovery rate
were obtained with the reversed-phase adsorbent Sep-Pak C18 column. The adsorbent was preliminary
washed with methanol (5 mL) and distilled water (5 mL). Then, 3 mL of the extract of combined
feed was passed through the column. After that, the adsorbent was washed with 1 mL of distilled
water. Vitamins were desorbed with 3 mL of methanol. The eluate obtained was analyzed after several
treatments. Guggisberg et al. [49] established a purification method for vitamin B12 in meat samples
using an immunoaffinity column. Fifteen millilitres of the supernatant of the homogenized sample
was filtered and loaded onto an immunoaffinity column. Ten millilitres of purified water was used to
remove impurities, and then 3 mL of methanol was used to elute the targets by complete denaturation
of the antibody. The eluate was concentrated to dryness and reconstituted in the mobile phase before
analysis. The recoveries and limits of detection obtained were satisfactory.

Irakli et al. [58] developed and validated a HPLC method for the simultaneous determination
of vitamin E and carotenoids in cereals after SPE. As we know, vitamin E is a kind of fat-soluble
vitamin; thus, in addition to the SPE columns mentioned above, new columns were adopted to purify
the targets. In the experiment, three columns were compared in regard to their purification effects.
OASIS cartridges with CH2Cl2 as the elution solvent were selected for the extraction of studied
targets from cereal samples due to having better recoveries than others. Prior to the extraction of
SPE, cartridges were conditioned with 3 mL of methanol and 3 mL of water. Subsequently, the above
extracts were applied after the addition of 2 mL water to decrease the percentage of ethanol content in
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the supernatants and allowed to pass through the bed without suction. After washing with 2 mL of
water, the retained constituents were eluted with 2 mL dichloromethane, followed by evaporation to
dryness. The residue was reconstituted with 200 µL of methanolic solution of a-tocopherol acetate
(IS, 50 µg/mL), and aliquots of 20 µL were injected into an HPLC column. Higashi et al. [71] also
established a specific LC-MS/MS method for the determination of vitamin D. During the pretreatment
process, the methanolic extracts were combined, diluted with water (400 mL) and purified using an
Oasis HLBs cartridge. After successive washing with water (1 mL) and methanol–water (7:3, v/v,
1 mL), the vitamin D metabolites and internal standard (IS) were eluted with ethyl acetate (500 mL).
This method was reproducible (intra- and inter-assay relative standard deviations (RSDs), <6.9%)
and accurate (analytical recovery, 95.2–102.7%), and the limit of quantification (LOQ) was 3.0 ng/mL.
The developed method enabled specific quantification of vitamin D and its metabolites.

SPE methods have shown good behavior in the process of purification producing the desired
clean-up effect and achieving automation. With more and more sorbents been developed, more and
more SPE columns are becoming optional. Liu et al. [102] developed a novel packed-fiber solid phase
extraction procedure based on electrospun nanofibers in human serum. The parameters affecting
extraction efficiency were optimized. The LOD for retinol was 0.01 µg/mL and it was 0.3 µg/mL for
α-tocopherol. The relative recovery was >90%, which meets the requirements of the analyses of retinol
and α-tocopherol in human plasma with satisfactory results.

SPE has many advantages compared with other extraction methods, e.g., complete phase
separation, high recovery and low consumption of organic solvents. However, during the process,
breakthrough problems may occur. With the development of pretreatment technology, online SPE has
been developed to purify some targets. We researched the literature published after 2010, but found
no papers that used automatic sample pretreatment techniques to purify vitamins.

2.6. Supercritical Fluid Extraction

During the process of SFE, supercritical fluids (usually CO2) are adopted as extraction media.
Supercritical CO2 has the advantages of high diffusivity and low viscosity which helps it to diffuse
through solid materials easily. The characteristics of supercritical fluids allow faster extraction
compared with traditional LC. Chen et al. [101] studied the recovery of B vitamins from rice bran
powder. Before the UAE process, the rice bran was degreased using carbon dioxide and the degreasing
effect was good.

2.7. Brief Summary

Among all the sample preparation methods, reflux, UAE and SFE are preferred for solid samples,
while for liquid samples, LLE, SPE and DLLME are preferred. Reflux extraction methods are traditional
methods involving the consumption of large amounts of organic solvents and extraction time. A high
extraction efficiency can be obtained with SFE, but expensive instruments are required compared with
UAE. Considering the column passing operation, methods like SPE can be complicated. However,
multiple samples can be prepared simultaneously by SPE; thus, the total time required can be greatly
saved. Moreover, for SPE, it can be coupled with LC to achieve online analysis.

In the study of sample preparation methods, parameter optimization is very important. If the
optimization of a method is very complete, it is still a drawback. To find the conditions to allow fast and
efficient extraction or clean-up of the target compounds from the sample matrix, the fractional factorial
design has been used in some studies to investigate the influences of the extraction conditions [101].
Moreover, the selected design allows the interpretation of results using statistical tests and graphic
tools to determine which factors have statistically significant effects as well as to determine which
interactions are significant between factors.
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3. Analysis Methods

Analytical methods are often divided into three groups—screening, quantitative and confirmatory—
according to different purposes. Screening methods are specifically designed to avoid untrue results.
They usually offer semi-quantitative results and determine analytes at the level of interest. Quantitative
methods are often used for the quantification of targets based on different detectors. The ability to
reliably identify a compound is the most important feature of confirmatory methods.

The data from the determination methods of vitamins in foods [34,36,39,43,45,46,48–50,53,58–61,
63,65–70,74–77,86,87,89,90,93–97,100,101], drugs [35,37,39,42,44,46,51,52,56,78–80,82,84,85,88,92] and
biological fluids [33,38–41,47,55,57,62,64,71–73,91,99,102] using chromatography methods [33–76],
immunochemical methods [99], capillary electrophoresis [77–81] and so on [82–102] have been
summarized. Since 2010, HPLC has become the most common method for the determination of
vitamins. Considering the rapid development of HPLC and MS detectors, this technology will play an
even greater role.

3.1. Liquid Chromatography

Due to its high sensitivity and broad linear range, HPLC has been widely used. At present,
RP-HPLC are the most widely used analytical methods for vitamins. With the development of new HPLC
equipment, new systems that can tolerate ultra-high pressures have been developed. The new system,
which is called ultra-high performance liquid chromatography (UHPLC), uses sub-2-µm-particle
columns and improves chromatographic performance significantly, for example, in terms of sensitivity,
speed and resolution.

3.1.1. LC Coupled with MS and Multiclass Analyses

Table 4 represents a selection of analytical methods used for the detection of vitamins by RP-HPLC
and UHPLC with MS detection reported since 2010.

Table 4. Examples of HPLC-MS/MS methods for the detection of vitamins.

Analysis
Time (min)

Instrument Analysis
Methods Column Mobile Phase Limit of Detection

(LOD)
Limit of

Quantification (LOQ) Ref

45 min

Flow-Injection Tandem
Mass Spectrometry

(Linear Ion-Trap Mass
Spectrometer)

Cadenza CD-C18
column (4.6 × 250 mm,

3 µm)

A: 20 mM aqueous
ammonium formate
(pH 4); B: methanol.

Gradient

0.04–48.2 ng/g 0.13–160.6 ng/g [59]

15 min HPLC-APCI-MS/MS Zorbax Eclipse ODS
(4.6 × 250 mm, 5 µm)

Acetonitrile,
isopropanol and
water. Gradient

0.2–0.6 ng/mL 0.8–2 ng/mL [60]

26 min

High Performance
Liquid

Chromatography–Ion
Trap Mass Spectrometry

(HPLC–Msn)

Polaris C18 column
(2.1 × 150 mm, 5 µm)

A: water; B:
methanol. Gradient no report

0.1 µg/100 mL for all
trans-retinol and
α-tocopherol and 1
µg/100 mL for
β-carotene

[61]

15 min LC-MS/MS Zorbax SB-CN column
(4.6 × 250 mm, 5 µm)

34% water and 66%
methanol. Isocratic ∼0.15 ng/g no report [62]

3 min

Ultra-Pressure Liquid
Chromatography with

Tandem Mass
Spectrometry Detection

(UPLC-MS/MS)

UPLC HSS C18 column
(2.1 × 100 mm, 1.8 µm)

A: 2 mM
NH4COOH; B: 2
mM NH4COOH:
MeOH. Gradient

The LODs for
vitamin D2 were

reported as 0.20 and
0.61 µg/100 g,

The reported LOQ
values for vitamin D3

were 0.47 and 1.44
µg/100 g

[63]

6 min
Liquid

Chromatography/Tandem
Mass Spectrometry

Ascentis Express C18
column (4.6 × 50 mm,

2.7 µm)

A: Ammonium
formate in MeOH; B:

H2O. Gradient

0.1 µM for all-trans
retinol, 3.3 nM for
25-OH VD2 and

25-OH VD3

no report [64]

5 min

Liquid
Chromatography with

Tandem-Mass
Spectrometry

Prontosil C18 analytical
column (3 × 250 mm,

3 µm)

0.2% (v/v) formic
acid. Isocratic

13 ng/mL for AA
and 11 ng/mL for

DHAA

44 ng/mL for ascorbic
acid (AA) and 38

ng/mL for
dehydroascorbic acid

(DHAA)

[65]



Molecules 2018, 23, 1484 11 of 25

Table 4. Cont.

Analysis
Time (min)

Instrument Analysis
Methods Column Mobile Phase Limit of Detection

(LOD)
Limit of

Quantification (LOQ) Ref

30 min HPLC-MS/MS ACE-100 C18
(2.1 × 100 mm, 3 µm)

A: 10 mM
ammonium acetate
solution (pH 4.5); B:

MeOH with 0.1%
acetic acid; C:

MeOH with 0.3%
acetic acid. Gradient

0.07–170 ng/mL 0.2–520 ng/mL [66]

12 min HPLC-MS/MS HSS T3 (2.1 × 150 mm,
1.7 µm)

A: 2 mM
ammonium formate

in water; B: 2 mM
ammonium formate

in methanol.
Gradient

0.02 µg/100 g 0.12 µg/100 g [67]

30 min LC-DAD-MS/MS

a Supelcosil C18
(4.6 mm × 50 mm,

5 µm) and an Alltima
C18 (4.6 mm × 250 mm,

5 µm) for fat-soluble
vitamins, ProntoSIL C30
column (4.6 × 250 mm,
3 µm) for carotenoids

A: Methanol; B:
isopropanol/hexane

(50:50, v/v).
Gradient

0.9–15.6 µg/L 2.7–46.8 µg/L [68]

45 min LC-MS/MS

Cadenza CD-C18
stationary phase
(4.6 × 250 mm,
3 µm particles)

A: 20 mM
ammonium formate

(pH 4.0); B:
methanol. Gradient

no report no report [69]

8 min UPLC-MS/MS HSS T3 column
(2.1 × 150 mm, 1.8 µm)

A: 0.1% of formic
acid in water; B:

0.1% of formic acid
in acetonitrile.

Gradient

0.06–0.45 µg/100 g 0.12–0.91 µg/100 g [70]

12 min HPLC-MS/MS Pro C18 RS column
(2.0 × 150 mm, 5 µm)

Methanol–10 mM
ammonium formate

containing 5 mM
methylamine.

Isocratic

1.5 ng/mL 3 ng/mL [71]

24min UPLC-MS/MS Alltima C18 column
(2.1 × 150 mm, 3 µm)

Methanol acidified
with 0.1% formic

acid. Isocratic
14 ng/L 36 ng/L [72]

4 min LC-MS/MS MAX-RP (2.0 × 50 mm,
4 µm) column

A: 85% methanol, B:
15% ammonium
acetate. Isocratic

10 nmol/L no report [73]

27 min LC-MS/MS
HydroRP

(2.0 × 250 mm, 4 um)
column

A: 0.1% formic acid
in water; B: 0.1%

formic acid in
acetonitrile.

Gradient

no report no report [74]

24 min LC-LIT-MS Polaris C18 column
(2.1 × 150 mm, 5 µm)

A: Methanol: B:
water containing
5 mM ammonium

(92:8 v/v). Isocratic

no report 0.01 µg/100 g [75]

Among these methods, HPLC-MS/MS, which can also be considered to be a confirmatory method,
has become the main analytical technique used for the identification of vitamins due to its higher
selectivity and sensitivity than other instrumental methods. Being a confirmatory method, MS detection
is used to identify and quantify a substance and can be used to confirm a compound’s molecular
structure. The basic principle of this detection technique is measurement of the mass-to-charge (m/z)
ratios of ionized molecules. HPLC-MS/MS is often applied using a triple quadrupole analyzer and
a selected reaction monitoring mode. This mode allows for the confirmation of the composition of
compounds and provides structural information. In MS/MS, the most intensive ionic fragment from a
precursor ion is used for quantification. A less sensitive secondary transition is used as the second
criterion for confirmation purposes. This mode also improves the precision and sensitivity of the
analysis but does not collect the full scan data. This can limit the availability of the full scan data which
could otherwise be used to both identify target analytes and detect additional unknown compounds.
The choice of one or another MS approach to monitor certain substances and residues in live animals
and animal products can be referred to the European Union Commission Decision 2002/657/EC which
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established performance criteria and other requirements for analytical methods with different types
of detection, including MS. The first step in tandem MS detection is the selection of a precursor ion.
The HPLC-MS/MS analysis of vitamins is usually performed with an electrospray ionization (ESI)
source operated in positive ionization mode. The protonated molecule [M + H]+ was chosen as a
precursor ion for quantitation in all developed methods.

One of the advantages of MS/MS is the fact that complete HPLC separation of the target analytes
is not necessary for selective detection. However, it is always advisable to have good chromatographic
separation in order to reduce matrix effects that typically result in the suppression or, less frequently,
in the enhancement of analyte signals. Therefore, short HPLC columns are generally used, considerably
speeding up the analysis. As indicated in Table 4, C18 reversed phase based columns are widely used
for HPLC multiresidue analytical methods.

Because MS detection is incompatible with most mobile phases, volatile organic modifiers should
be used when HPLC is coupled to MS. Thus, formic and acetic acid or their ammonium salts are added
to acetonitrile–water or methanol–water mixtures. The typical concentrations of modifiers range from
2 to 20 mmol/L. It has been observed that the higher concentrations lead to reduced signal intensities.

HPLC-MS/MS methods have been applied to quantify vitamins in different matrices
successfully [59–75]. Midttun et al. [64] simultaneously determined three vitamins in a small amount
of human plasma. Mass spectrometric parameters were optimized before analysis. The LOD for
trans-retinols were 0.10 µM and 3.3 nM for 25-OH D2 and 25-OH D3, respectively. Thus, the method is
able to meet the requirements for determination and can be applied to biological samples. Besides the
fat-soluble vitamins, water-soluble vitamins can also be quantified by HPLC-MS/MS and a good level
of sensitivity can be obtained. Fenoll et al. [65] established a HPLC-MS/MS method for measuring
ascorbic and dehydroascorbic acids in several fruits (e.g., pepper, tomato, orange and lemon). MS/MS
transitions of m/z 173→143, 71 were used for ascorbic acid (AA) while m/z 175→115, 87 were used for
dehydroascorbic acid (DHAA). The negative ion mode of ESI was chosen. The method was successfully
applied for the determination of AA and DHAA without derivatization or oxidation/reduction
processes. The major advantages of the method include its simplicity (little sample preparation), speed
(analysis time is no more than 5 min) and great sensitivity (LODs were 13 ng/mL for AA and 11 ng/mL
for DHAA, respectively). The advanced instrument can also be used for the determination of fat- and
water-soluble vitamins simultaneously. Santos et al. [66] described a HPLC-DAD-MS/MS method
to determine both fat-soluble and water-soluble vitamins in green leafy vegetables simultaneously.
The LOD and LOQ were 0.07–170 ng/mL and 0.2–520 ng/mL, respectively.

A defining feature of HPLC-MS/MS methods is the high cost of the equipment and the large
consumption of organic reagents. With the invention of UHPLC in 2004, UHPLC-MS/MS has had
a wide range of applications in recent years. Stevens [63] determined the quantities of vitamin D2

and D3 in infant formula and adult nutritionals using a HSS C18 column (2.1 × 100 mm, 1.8 µm),
and the analysis time was less than 3 min which allowed dramatic administrative time savings.
Brouwer et al. [70] used an HSS T3 column (2.1 × 150 mm, 1.8 µm) to separate vitamin B groups. With
1.8 µm particles, the analytes can be separated in less than 8 min. In general, with a decrease in the
number of particles in the stationary phase, the analysis time reduces significantly.

Another inevitable drawback of HPLC-MS/MS is the occurrence of abundant matrix effects,
which compromise the quantitative aspects and selectivity of the methods. Extracts from
different matrices usually have high contents of organic components, such as lipids, protein, etc.
These interfering compounds compete with the analytes to reach the droplet surface positions which
affects the maximum evaporation efficiency and hampers ionization of the analytes. These components
also increase the viscosity of the sample and the surface tension of the droplets generated from the ESI
source, hindering the evaporation of the analytes. Therefore, before analysis using HPLC-MS/MS,
matrix effects should be examined. In order to reduce the effects of the matrix effects, different
approaches have been developed. Different factors can affect the matrix effects in theory. Firstly, better
separation of the matrix compounds from the analytes can reduce the matrix effects; thus, researchers
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have compared and optimized the columns in order to achieve better separation. Secondly, dilution of
the sample extracts and the use of internal standards or matrix-matched calibration are also frequently
used [65]. Thirdly, an internal standard can be applied to the matrix effects due to its nearly identical
chemical and physical properties. Brouwer et al. [70] investigated the matrix effect of the method
that they established. They found that ion suppression or enhancement occurs, with suppression
being most pronounced for 5-MTHF and 5, 10-CH+THF; hence, the isotopically labelled standards
compensated the ion suppression or enhancement, rendering the matrix effect for all compounds
between 85.4 and 103.9. Docros et al. [72] also studied the matrix effect of the quantitative method that
they created. The peak area ratio of vitamin K1 to its internal standard in plasma was used to calculate
the matrix effect. They found that the matrix has a week ion suppression effect on vitamin K1 but they
seemed to be dependent on each other.

In recent years, great progress has been made in mass detectors. Different mass detectors have
been developed, e.g., hybrid triple quadrupole-linear ion trap (QqLIT) instruments. QqLIT is a
powerful technique that is used for large-scale screening of targets in real samples with the advantages
of the new equipment, such as high resolution and extract confirmatory results. The method is based
on a QqQ with the third quadrupole (Q3) which can be used as either a conventional quadrupole mass
filter or a linear ion trap that combines the advantages of the classical QqQ scanning functionality
and the possibility of additional sensitive ion trap scans to allow structural analysis within the
same operating platform. Due to its high ion accumulation capacity, this method has improved
the full-spectrum sensitivity and provides very promising modes, such as enhanced full mass scan
and enhanced product-ion and multi-stage scans. All of these features make the technique very
powerful for the identification of unknown or suspected analytes, even those with poor fragmentation
and at low concentrations. Another attractive capability of QqLIT for semi-targeted analysis is its
information dependent acquisition that can automatically combine a survey scan with the dependent
(enhanced trap) scan during a single experiment. Trenerry et al. [75] described robust methods
using HPLC-QqLIT method and measured the serum vitamin D3 in different matrices. The level of
vitamin D3 in fresh bovine milk (0.05 µg/100 mL), commercial (natural and fortified) milk samples
(0.01–2 µg/100 mL) and a dairy based infant formula (8 µg/100 mL) was obtained without the need
for extensive clean-up procedures. The LOQs were 0.01 µg/100 mL and 0.02 µg/100 mL for LC-MSn
and LC-MS/MS, respectively.

3.1.2. Liquid Chromatography Coupled with Other Techniques

Classical reversed-phase HPLC with ultraviolet (UV), photodiode array (PDA) and fluorescence
detectors [33–58] is still widely used for the routine quantification of vitamins in different types of
samples. All of these approaches are quantitative but not confirmatory, as they cannot provide direct
evidence of the structure or composition of a substance. UV detection is the most affordable and
versatile method, but the least selective and sensitive, while FL detection is much more sensitive
and selective.

The vast majority of chromatographic separations of vitamins have been performed with
conventional silica-based reversed phased columns (mainly C18) with spherical sorbent particles,
3–5 µm in diameter. The speed of the analysis can be increased through the use of a high temperature
or ultra-high pressure system [33–55]. Considering the instability of some vitamins, such as vitamin C,
the high column temperature is rarely used. Momenbeik et al. [44] established an HPLC method for
the determination of vitamins A, D3, E and K. A Zorbax-eclipse XDB-C8 column (150 × 4.6 mm, 5 µm)
was employed in the experiment, with the wavelength set at 285 nm. This method has been validated
and found to be applicable for routine analyses, but the analysis is too long—30 min. Lorencio et
al. [33] assessed the suitability of UHPLC for the simultaneous determination of vitamins A, E and
D. The HSS T3 cloumn (2.1 × 100 mm, 1.8 µm) was employed. With the decrease in particles in the
stationary phases, the analysis time was much shorter. The method consumes no more than 4 min
which improves the efficiency significantly. Klimcazk et al. [55] made a comparison of the UPLC
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and HPLC methods for the determination of vitamin C. The two methods are both applicable for
the determination of vitamin C in routine analyses, while UPLC is faster, more sensitive and more
environmentally friendly.

Methanol–water and acetonitrile–water are the most common mobile phases. In addition, three-
component mixtures have been reported researchers: water, methanol and acetonitrile [58,72]. In most
cases, the mobile phase is modified with acetic, formic acid, acetate acid and so on. In addition,
the application of an elution gradient is often adopted.

A simple and rapid method for the simultaneous determination of seven water-soluble vitamins
in infant milk and dietary supplement uses LC coupled to a corona-charged aerosol detector.
The detection limits range from 0.17 to 0.62 mg/L for dietary supplements and 1.7 to 6.5 mg/L
for infant milk. The method is more sensitive than the common UV or DAD methods.

3.1.3. Summary

Multiclass analytical methods have been developed due to progress in chromatography and
mass spectrometry methods. This has led to significant trends in the detection of different vitamins
in complex samples. The progress in chromatography and mass-spectrometry methods has resulted
in the development of multiclass analytical methods which are currently a significant trend in the
detection of different vitamins in food and biological samples that can be successfully applied for both
quantification and screening purposes. These methods are able to detect both fat- and water-soluble
compounds and are of great interest to analytical laboratories due to their simplicity, high sample
throughput and cost-effectiveness.

3.2. Electrophoretic Methods

Capillary electrophoresis (CE) is another good quantitative analytical approach that is mainly
used when only small amounts of a sample are available. It is a highly efficient, fast and lower
solvent-consuming technique in which sample components are separated according to their sizes and
charges. Some advantages of CE are its high separation efficiency, ability to analyze several samples
simultaneously in multicapillary systems and low consumption of reagents and accessories (packaged
columns are not required). Several CE methods have been published and reviewed for the analysis of
vitamins since 2010 [77–80].

For the past 6 years, CE has been used for the determination of vitamins in different
samples [77–80]. Phosphate and borate buffers which sometimes contain additional organic modifiers,
such as sodium polystyrene sulfonate, have been used as running buffers.

Micellar electrokinetic chromatography (MEKC) is the most popular mode of CE. It allows the
separation of both ionic and neutral analytes. Applications of the MEKC method as determination
methods for the analysis of vitamins have been reported [77–80]. In the work of Danielle et al. [77],
to optimize the electrophoretic method, the composition and concentration of the buffer solution,
SDS and organic modifier (ethanol) concentrations, pH, temperature, injection time, injection pressure
and the inner diameter of the capillary were evaluated. In this work, a good separation of ten
water-soluble vitamins was obtained in only 18 min. This analytical procedure is precise (RSD < 6%),
accurate (better than 9%), selective, sensitive, robust and simple. Yin et al. [78] examined different
conditions, such as microemulsion composition (effect of surfactant, co-surfactants, oil phases, organic
solvents, pH and concentration of the buffer.) and the effects of voltage and temperature. After
being optimized, a novel microemulsion system consisting of 1.2% (w/w) sodium lauryl sulphate
(SDS), 21% (v/v) 1-butanol, 18% (v/v) acetonitrile, 0.8% (w/w) n-hexane and 20 mM borax buffer
(pH 8.7) was applied. Aurora-Prado et al. [79] described a rapid determination method for water-
and fat-soluble vitamins simultaneously in commercial formulations by MEKC. The final selected
buffer contained SDS (surfactant), butan-1-ol (co-surfactant), ethyl acetate (oil) and pH 9.2 tetraborate
buffer, modified with 15% (v/v) 2-propanol. The UV detection was set at 214 nm which gave adequate
sensitivity without interference from sample excipients. Under the optimized conditions, the vitamins
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were baseline separated in less than 7 min, and acceptable limits of quantification between 8.40 and
16.23 µg/mL were obtained. The method was considered appropriate for rapid and routine analyses.

3.3. Microbiological Assays

Based on the fact that specific vitamins are necessary for the growth of specific bacteria,
microbiological inhibition assays were established. Because they offer biological responses to vitamin
activity and allow the determination of different vitamins, microbiological assays have been recognized
by international official institutions as the gold standard for many years. However, the traditional
microbiological method still suffers from poor precision and accuracy—a relative measurement
uncertainty of ±20% is commonly observed. In the past, this microbiological method has often been
used as a screening approach, but with the development of technology in recent years, quantitative
methods have been established and the precision and accuracy have improved a lot.

Zhang et al. [100] established a “three-in-one” pretreatment method to determine several
water-soluble vitamins using VitaFast kits. The VitaFast kits are fast and friendly to users.
The experimental results of the assays which have employed “three-in-one” sample preparation
methods are in good agreement with those obtained from conventional VitaFast extraction methods.
The proposed new sample preparation method will significantly improve the efficiency of infant
formulae inspection.

3.4. Biosensors

Since 2010, it has been demonstrated that optical biosensors are excellent tools for detecting
vitamins in different matrices [89–97]. Their main advantages are their technical simplicity, low cost
and the possibility of being used in field analyses.

Electrochemical sensors based on the use of receptors fabricated through different imprinting
approaches have been developed for the detection of vitamins [89–97]. Trace quantities of vitamins B1,
B2 and C were successfully detected in a microfluidic device by employing electrokinetic separation
and electrochemical detection using silver liquid amalgam film–modified silver solid amalgam annular
band electrodes (AgLAF–AgSAE). The method is based on the adsorptive accumulation of analytes at
the AgLAF–AgSAE in a phosphate buffer (VB1), a phosphate buffer with Triton X-100 (VB2) and an
alkaline borate buffer with Triton X-100 (VC). The analytical parameters and procedure of electrode
activation were optimized. The calibration graphs obtained for vitamins C, B1 and B2 were linear,
respectively, for the concentration ranges 0.05–12, 0.01–0.1 and 0.05–3 mg/L. The detection limits
were calculated and equaled 0.02, 0.003 and 0.009 mg/L, while the repeatability of the peak current
was 2%, 1% and 3%, respectively [92]. On the basis of conventional electrodes, modified electrodes
were developed. Revin et al. [91] simultaneously determined several vitamins using a heterocyclic
conducting polymer modified electrode. The research compared a bare GC electrode and the proposed
3-amino-5-mercapto-1,2,4-triazole modified glassy carbon (p-AMTa) electrode. The former failed
to show stable voltammetric signals for the targets while the p-AMTa electrode showed stable
voltammetric signals for the vitamins in a mixture with potential differences of 670 mV and 530 mV
between riboflavin (RB)-ascorbic acid (AA) and AA-folic acid (FA), respectively. Nie et al. [93] used
electroactive species-doped poly(3,4-ethylenedioxythiophene) films to enhance the sensitivity for the
electrochemical simultaneous detection of vitamins B2, B6 and C. The functionalized PEDOT films were
prepared by incorporation of two electroactive species: ferrocene carboxylic acid (Fc-) and ferricyanide
(Fe(CN)64-). After comparison, the authors reported that the oxidation peak currents of vitamins
obtained at the glassy carbon electrodes (GCEs) modified with electroactive species-doped PEDOT
films were much higher than those at the ClO4-doped PEDOT films and bare GCEs.

Pisoschi et al. [89] developed a determination method for vitamin C in fruit samples by differential
pulse voltammetry. Four hundred and seventy millivolts on the carbon paste working electrode
and 530 mV on the Pt strip working electrode were used for the determination of ascorbic acid.
The influence of the operational parameters on the analytical signal was investigated. The obtained
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calibration graph showed a linear dependence between the peak height and the ascorbic acid
concentration within the range of 0.31–20 mM with a Pt working electrode and within the range
0.07–20 mM with a carbon paste working electrode. The developed method was applied for the
determination of vitamin C in wine and juice samples. A quantity of 6.83 mg/100 mL vitamin C was
detected using this method.

One of the prospective trends in this field is the development of nanoparticles, quantum dots
and nanocomposites. For example, a facile one-pot strategy for the electrochemical synthesis of
poly (3,4-ethylenedioxythiophene)/Zirconia nanocomposite has been applied to analyze vitamins
B2, B6 and C [97]. The obtained PEDOT/ZrO2NPs nanocomposite film showed a large specific
area, high conductivity, rapid redox properties and the presence of encapsulated structures, which
make it an excellent sensing platform for sensitive determination of the targets. Detection limits of
0.012 µM, 0.20 µM and 0.45 µM were obtained for vitamin B2 (VB2), vitamin B6 (VB6) and vitamin
C (VC), respectively. Jamali et al. [94] described a novel nanosensor based on Pt:Co nanoalloy ionic
liquid carbon paste electrode for the voltammetric determination of vitamin B9 in food samples.
The sensor exhibited an enhanced effectiveness for the electro-oxidation of vitamin B9 in aqueous
solution. The detection limit was 4 × 10−8 M. The proposed modified electrode has several
advantages, such as being simple, having high stability, high sensitivity, and excellent catalytic activity,
long-term stability and remarkable voltammetric reproducibility for the eletro-oxidation of vitamin B9.
Baghizadeh et al. [90] determined a voltammetric sensor for simultaneous determination of vitamin C
and B6 in food samples using a ZrO2 nanoparticle/ionic liquids carbon paste electrode. At an optimum
condition (pH 7.0), the two peaks separated into ca. 0.44 and 0.82 V for AA and vitamin B6, respectively.
The detection limits for AA and vitamin B6 were 0.009 and 0.1 µM, respectively. The modified electrode
has been successfully applied for assays of AA and vitamin B6.

Another interesting approach is the application of new potentiometric sensors with Donnan
potential as analytics. The Donnan potential at the interface between the ion-exchange polymer
and the solution of an electrolyte represents the difference between the Galvani potentials in the
ion–exchanger phase and solution phase. Its value can be estimated if one measures the electromotive
force (EMF) of the electrochemical circuit. Bobreshova et al. [95] determined the quantities of amino
acids, vitamins and drug substances in aqueous solutions using new potentiometric sensors with
Donnan potential. Certain regularities of the Donnan potential formation have been studied in systems
with polymers of different structures and solutions containing inorganic ions and organic electrolytes
in different ionic forms. The developed sensor was introduced as a cross-sensitive electrode into the
array of multisensor systems for multicomponent quantitative analysis and the measurement error of
electrolytes in aqueous solutions did not exceed 10%.

3.5. Spectrometry

Fluorescence spectrometry can be used as a screening method to detect vitamins in different
samples [84,85]. In a previous paper [85], DLLME combined with spectrofluorimetry was applied to
the extraction, pre-concentration and analysis of thiamine (vitamin B1). The method proposed to detect
vitamins was based on the oxidation of thiamine with ferricyanide to form fluorescent thiochrome
(TC). The excitation wavelengths and emission wavelengths were 375 and 438 nm, respectively. After
the optimization, the detection limit reached 0.06 ng/mL. The method was successfully applied to
pharmaceutical formulations and human urine. Mallboud et al. [84] described two spectrofluorimetric
methods for the detection of some water-soluble vitamins. The first proposed method depends on
the oxidation of thiamine to fluorescent thiochrome using iodine/NaOH, while the second method
depends on using an acetate buffer of pH 6 for the simultaneous determination of riboflavin and
pyridoxine HCl using their native fluorescence levels. Different variables that affect the fluorescence
intensity related to the two methods were optimized. The excitation wavelengths and emission
wavelengths of thiochrome were 375 and 438 nm, while pyridoxine and riboflavin exhibited intrinsic
native fluorescence with excitation and emission maxima at 325, 457 and 415, 527 nm, respectively.
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Good recoveries and sensitivities were obtained, and the proposed methods were applied to the
analysis of the investigated vitamins in their laboratory-prepared mixtures and pharmaceutical
dosage forms.

A simple, sensitive and accurate UV derivative spectrophotometric method for the detection of
caffeine and vitamin B groups in energy drinks has been developed [83]. Caffeine was determined in a
mixture with vitamin B2 with the zero-crossing technique from the I derivative spectra (λ = 266.8 nm),
and vitamin B3 in mixture with vitamin B6 vitamin from the II derivative spectra (λ = 280.1 nm).
Vitamin B12 was also been determined in a three-component mixture with vitamins B3 and B6.
Mohamed et al. [88] also described the use of two spectrophotometric methods—derivative and
multivariate methods—for the determination of several water-soluble vitamins, the described methods
were successfully applied for the determination of vitamin combinations in synthetic mixtures
and dosage forms from different manufacturers. The methods are sensitive enough for routine
analysis. Monakhova et al. [87] established a chemometrics-assisted spectrophotometric method for
the simultaneous detection of vitamins in complex mixtures. The main contribution of the method was
the advanced independent component analysis algorithm. The key features of the proposed method
are its simplicity, accuracy and reliability. Through comparison with some other established methods
(MCR-ALS, SIMPLISMA, other ICA techniques), the proposed method was shown to be comparable
or even outperformed other chemometrics methods.

Near-infrared spectroscopy (NIR) methods have been applied for the determination of the vitamin
B group [86]. The NIR spectra of the samples were acquired from 1350 nm to 1800 nm. The multivariate
regression models obtained by NIR spectroscopy and the PLS method showed a low rate of predictive
errors and good correlation coefficients.

3.6. Other Methods

Besides the methods mentioned above, several effective methods have also been developed,
e.g., immunoassays [99], high performance thin-layer chromatography [81] and supercritical fluid
chromatography [98]. The use of these methods is justified when it is necessary to carry out routine
quality control of relatively simple sample compositions. The advantages of these methods include
their simplicity, compactness and relatively low cost of the analysis.

Immunoassays are characterised by their high specificity, high sensitivity, simplicity and cost
effectiveness which makes them particularly useful for routine uses. These assays are based on a
specific reaction between an antibody and an antigen, and they are capable of detecting the low
concentration of residues in a short period of time and often do not require laborious extraction
or clean-up steps. Enzyme-linked immunosorbent assays (ELISA) are the most widely used
immunoassays due to their high sample throughput. These methods can drastically reduce the
number of analyses required to detect vitamins in different samples. Martin et al. [99] used the 25-OH
vitamin D ELISA Assay kit to determine the quantity of vitamin D; the method was successfully
applied into serum samples.

Recently, TLC has been improved to incorporate HPTLC grade stationary phases, automated
sample application devices, a controlled development environment, automated development,
forced-flow techniques, computer-controlled densitometry, quantitation and fully validated
procedures. HPTLC is becoming a routine analytical technique because of its advantages of
low operating cost, high sample throughput, simplicity, speed, need for minimum sample clean
up, high reproducibility, accuracy, reliability and robustness [81]. Panahi et al. [81] isolated
and quantified vitamins B1, B2, B6 and B12 using HPTLC. The precoated aluminum-backed
silica gel G60 F254 HPTLC plate was developed with nearly 30 different solvent systems.
The ethanol-chloroform–acetonitrile–toluene–ammonia–water (7:4:4.5:0.5:1:1) mixture was selected as
the mobile phase, and the wavelength was set at 254 nm. The retention factors of vitamins B1, B2, B6

and B12 were 0.36, 0.6, 0.85 and 0.46, respectively, the LOQ were 141.72, 42.41, 100.31 and 11.5 ng and
the LOD were 42.52, 12.72, 30.09 and 3.45 ng, which is applicable for routine analysis.



Molecules 2018, 23, 1484 18 of 25

SFC is a complementary separation technique to GC and LC. This technique employs supercritical
carbon dioxide or subcritical carbon dioxide as the mobile phase. As mentioned above, SFC could be
applied into purify the vitamins in rice [101], SFC could also be used to separate the vitamins. Taguchi
et al. [98] simultaneously separated and quantified water- and fat-soluble vitamins using a single
chromatography technique to unify SFC and LC. In this method, the phase state was continuously
changed in the following order: supercritical, subcritical and liquid. The gradient of the mobile phase
starting at almost 100% CO2 was replaced with 100% methanol at the end. As a result, this approach
achieved further extension of the polarity range of the mobile phase in a single run and successfully
enabled the simultaneous analysis of fat- and water-soluble vitamins with a wide log P range of −2.11
to 10.12. Furthermore, the seventeen vitamins were exceptionally separated in 4 min. The results
indicated that the use of dense CO2 and the replacement of CO2 by methanol are practical approaches
in unified chromatography covering diverse compounds. In conclusion, the SFE method has significant
advantages, including (1) the method is environmentally friendly, because the CO2 is non-flammable
and has no negative impact on human health; (2) The super fluid is flexible in adjusting its dissolving
power by adding different co-solvents; (3) SFE can inherently eliminate organic solvents and provide
cleaner extracts at the same time. The only serious drawback of SFE is its higher investment costs
compared to traditional atmospheric pressure extraction techniques.

3.7. Summary of Analysis Methods

Among all the analytical methods, LC is the most popular due to its advantages. LC methods can
meet the requirements of the qualitative and quantitative analysis of vitamins in different matrices,
such as foods and biological samples, especially when it is combined with MS. However, UV and
FLD detectors suffer overlapping peaks when dealing with complex samples, while matrix effects
and high costs are necessary when using LC-MS. CE is alternative method for the determination of
vitamins which is highly efficient, low solvent-consuming and fast, but its separation reproducibility
needs to be enhanced. The main advantages of biosensors include their low cost, technical simplicity
and the possibility of being used in field analyses, while their relatively short lifespan restricts the
development of technology. Spectrometry is cheap and easy to promote, but its sensitivity does not
quite meet requirements sometimes. In a word, with the development of equipment of HPLC and
MS, this technology will surely be broadly used, while other technologies, such as electrophoresis and
spectrometry, are seen as supplementary methods to be used when necessary.

4. Conclusions

Since 2010, different methods for determination of vitamins in various types of samples have
been proposed. The key roles of these methods are played by sample preparation techniques, and the
main efforts in this field have been focused on the optimization of the preparation, extraction and
clean-up steps and on the enhancement of the environmental safety of these procedures. The method
with the most promise in achieving these goals is SPE. The main advantages of this approach are its
good compatibility with high throughput multiresidue analytical procedures and its relatively low
cost. Therefore, this technique is expected to have the most pronounced development in the future.

The currently proposed analytical approaches for the detection of vitamins are mainly based
on HPLC–MS or HPLC-MS/MS. Great advances in HPLC-MS/MS have made it a key technique
for the determination of not only vitamins but also other targets. The main trend in this field is
the combination of MS detectors with modern chromatographic approaches such as UHPLC and
the application of the powerful QqTOF and Orbitrap instruments. These hybrid approaches have
made a great contribution to the analysis of trace organic contaminants, including vitamins, and have
contributed to the development of multianalyte techniques for the detection of a wide range of
substances in a single analytical run. These methods seem poised to be the most frequently used
techniques for the purposes of analysis in the future. The main disadvantages of these methods
are their complex equipment and high cost. There is currently great interest in the development of
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screening methods based on microbiological, immunoassays and biosensors, which have the main
advantages of being low cost, having short analysis times and the possibility of their onsite use.
The clear trend in this field is the miniaturization of screening systems (chips, microarrays, microtiter
plates) as well as their automation. We think that these features will maintain the sustainable progress
of these methods in the near future.
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Abbreviation

LLE Liquid–Liquid Extraction
SPE Solid-Phase Extraction
UAE Ultrasonic Assisted Extraction
SFE Supercritical Fluid Extraction
DLLME Dispersive Liquid–Liquid Microextraction
SDME Single-Drop Microextraction
HF-LPME Hollow Fibre Liquid Phase Microextraction
QqLIT Hybrid Triple Quadrupole-Linear Ion Trap
UPLC or UHPLC Ultra-High Performance Liquid Chromatography
HPLC High Performance Liquid Chromatography
SFC Supercritical Fluid Chromatography
HPLC-MS/MS High-Performance Liquid Chromatography-Tandem Mass Spectrometry
UV Ultraviolet
PDA Photodiode Array
DAD Diode Array Detector
AA Ascorbic Acid
ELISA Enzyme-Linked Immunosorbent Assays
TLC Thin-Layer Chromatography
CE Capillary Electrophoresis
TOF Time of Flight Mass Spectrometry
MEKC Micellar Electrokinetic Chromatography
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