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Abstract: In this paper, we study the stability of the zero equilibria of two close-to-symmetric systems
of difference equations with exponential terms in the special case in which one of their eigenvalues
is equal to −1 and the other eigenvalue has an absolute value of less than 1. In the present study,
we use the approach of center manifold theory.
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1. Introduction

There has been interest in difference equations of biological models for a long period of
time. Some of the research can be found in [1–8]. The most interesting special cases of such
equations are usually those whose characteristic polynomials of their linearizations have characteristic
zeros belonging to the unit circle. Some classical results in this direction can be found in [9,10].
The case in which general difference equations of biological models have unity as a characteristic
zero has been thoroughly investigated in [6]. Some interesting concrete systems, which naturally
extend one of the basic biological models of this type and which appear also in [7], can be found
in [11,12]. In [2], the authors obtained results concerning the global behavior of the positive solutions
for the difference equation:

xn+1 = axn + bxn−1e−xn , n = 0, 1, ...

where a and b are positive constants and the initial values x−1 and x0 are positive numbers, which,
as mentioned above, makes this a biological model.

Motivated by some studies of (one-dimensional) difference equations during the second half of
1990s, we started studying some symmetric and related systems of difference equations (see [13–16]).
Systems that are obtained from symmetric systems by modifying their parameters are now frequently
called close-to-symmetric systems [17–19]. The papers [12,20–28] deal with such systems. It should
be noted that many systems of this type, such as those in [12,17,18,25–28], are solvable, which is not
so surprising given there are solvable one-dimensional equations of biological models such as that
in [7]. In the papers [13–28] are given some study rational systems (see [13–17,25–28]), some nonlinear
systems with exponential terms (see [20–24]), and some product-type systems (see [18,19]).

In [22,23], the authors studied analogous results for the following close-to-symmetric systems of
difference equations:

xn+1 = axn + byn−1e−xn , yn+1 = cyn + dxn−1e−yn

and
xn+1 = ayn + bxn−1e−yn , yn+1 = cxn + dyn−1e−xn ,
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respectively, where a, b, c, and d are positive constants and the initial values x−1, x0, y−1, and y0 are
also positive numbers.

Now in this paper, using the center manifold theorem (see [9,10,29]), we study the stability of the
zero equilibrium of the following close-to-symmetric systems of difference equations:

xn+1 = axn + byne−xn , yn+1 = cyn + dxne−yn (1)

and
xn+1 = ayn + bxne−yn , yn+1 = cxn + dyne−xn , (2)

where a, b, c, and d are real constants. In [24], the authors studied the instability of Equations (1)
and (2). It is known that if the zero equilibrium of Equation (1) (resp. Equation (2)) is hyperbolic,
that is, the coefficient matrix of the linearized system of Equation (1) (resp. Equation (2)) has all the
eigenvalues inside the unit circle, then it is easy to determine the stability of the zero equilibrium of
Equation (1) (resp. Equation (2)) (see Theorem 4.11 of [29]). In the case for which the zero equilibrium
of the above systems in non-hyperbolic, the dynamics of the center manifold plays an important role
in the determination of the stability of the zero equilibrium of the systems. More precisely, using the
center manifold theorem (see [9,10,29]), the dynamics of the systems can be obtained by studying a
one-dimensional equation that contains an approximation of the center manifold.

Regarding the asymptotic behavior of the positive solutions of some scalar equations related to
the above systems, we note that the most interesting case is when the sum of the coefficients is equal
to one (see [6]). For this goal, asymptotic methods and their applications were employed. For some
results on the methods and on the existence of specific types of solutions, see, for example, [30–32]
and the references therein. Some of the equations related to that in [2] have appeared in mathematical
biology (see, e.g., [6–8]). We also note that results concerning symmetric and cyclic systems of
difference equations, for study that seemed to have been initiated in [33], are included in the
papers [5,13–16,20–24,34–42] and the related references therein. Finally, we note that, because
difference equations have several applications in applied sciences, there exists a rich bibliography
concerning theory and applications (see [1–42]).

2. Stability of Zero Equilibrium of Equation (1)

In the following, we find conditions for the stability of the zero equilibrium of Equation (1) using
center manifold theory.

Proposition 1. Consider Equation (1), in which a, b, c, and d are real constants and x0 and y0 are also real
numbers. Suppose that the following relations hold:

(1 + a)(1 + c) = bd, −2 < a + c < 0. (3)

Then the matrix

J =

[
a b
d c

]
has one eigenvalue λ1 = −1 and the other eigenvalue λ2 < 1. Suppose also that one of the following holds:
Equation (3) and

−2 +
√

4− 3c2

3
< a, −1 < c < 0, b > ρ2, (4)

where

ρ2 =
(a + 1)(a− c)2 + D

3a2 + 4a + c2

and
D = (a + 1)

√
(a− c)4 − (3a2 + 4a + c2)(3c2 + 4c + a2), (5)
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or Equation (3) and the relations

− 1 < a, c < − 2√
3

, m < b < ρ2, (6)

where

m = max {0, ρ1}, ρ1 =
(a + 1)(a− c)2 − D

3a2 + 4a + c2 ,

or Equation (3) and the relations

−2 +
√

4− 3c2

3
< a, − 2√

3
< c < −1, m < b < ρ2. (7)

Then the zero equilibrium of Equation (1) is stable.

Proof. The initial system can be written as[
xn+1

yn+1

]
=

[
a b
d c

] [
xn

yn

]
+

[
f (xn, yn)

g(xn, yn)

]
, (8)

where
f (x, y) = by(e−x − 1), g(x, y) = dx(e−y − 1).

Because the characteristic equation of J is p(λ) = λ2 − λ(a + c) + ac − bd = 0 and the
conditions for Equation (3) hold, we have that λ1 = −1 is an eigenvalue of J. Moreover, we obtain
p(λ) = (λ + 1)(λ− a− c− 1), and therefore λ2 = a + c + 1 is also an eigenvalue of J. Because
Equation (3) is satisfied, it is clear that |λ2| < 1. We now let[

xn

yn

]
= T

[
un

vn

]
,

where T is the matrix that diagonalizes J defined by

T =

[
b b

−1− a 1 + c

]
.

Then Equation (8) can be written as[
un+1

vn+1

]
=

[
−1 0
0 1 + a + c

] [
un

vn

]
+

[
f̂ (un, vn)

ĝ(un, vn)

]
, (9)

where

f̂ (u, v) = 1
b(a+c+2)

(
(1 + c)b(−(a + 1)u + (1 + c)v)(e−b(u+v) − 1)−

db2(u + v)(e(a+1)u−(1+c)v − 1)

)
,

ĝ(u, v) = 1
b(2+a+c)

(
(1 + a)b(−(a + 1)u + (1 + c)v)(e−b(u+v) − 1)+

db2(u + v)(e(a+1)u−(1+c)v − 1)

)
.

(10)

We now let v = h(u) with h(u) = ψ(u) + O(u4) and ψ(u) = Au2 + Bu3, where A and B are
real numbers, the center manifold. The use of ψ(u) as an approximation of h(u) is justified by
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Theorem 7 of [9]. Consequently, according to Theorem 8 of [9] (see also Theorem 5.2 of [29]), and using
Equations (9) and (10), the study of the stability of the zero equilibrium of Equation (1) reduces to the
study of the stability of the scalar equation

un+1 = −un + f̂ (un, ψ(un)) = G(un). (11)

The map G can also be written in the following form:

G(u) = −u + (c1u + c2u2 + c3u3)(ec4u+c5u2+c6u3 − 1) + (c7u + c8u2 + c9u3)(ec10u+c11u2+c12u3 − 1), (12)

where ci, i = 1, 2, ..., 12 are real constants depending on a, c, b, d, and A. In what follows in this section,
we use the following constants:

c1 = − (1 + a)(1 + c)
2 + a + c

, c2 = A
(1 + c)2

2 + a + c
, c4 = −b, c5 = −bA,

c7 = − bd
2 + a + c

, c8 = −A
bd

2 + a + c
, c10 = a + 1, c11 = −A(c + 1).

(13)

We need to compute the constant A of the center manifold. From Equation (9), we take

h(−u + f̂ (u, ψ(u))) = (1 + a + c)ψ(u) + ĝ(u, ψ(u)),

which implies that

A(−u + f̂ (u, ψ(u)))2 + B(−u + f̂ (u, ψ(u)))3 = (1 + a + c)(Au2 + Bu3) + ĝ(u, Au2 + Bu3).

Then we take

Au2 = A(1 + a + c)u2 +
b(a + 1)2u2

2 + a + c
+

bd(a + 1)u2

2 + a + c
.

Therefore,

A = − b(a + 1)(a + d + 1)
(a + c)(2 + a + c)

. (14)

From Equation (12), we see that G′(0) = −1 and

G′′′(0) = 6c2c4 + 6c1c5 + 3c1c2
4 + 6c8c10 + 6c7c11 + 3c7c2

10. (15)

Then from Equations (13)–(15) and from Equation (3), d = (a+1)(c+1)
b , we obtain

G′′′(0) = 3(a+1)(c+1)
(−a−c)(a+c+2)2 h(b),

h(b) = (3a2 + 4a + c2)b2 − 2(a + 1)(a− c)2b + (a + 1)2(3c2 + 4c + a2).
(16)

We suppose first that Equations (3) and (4) are satisfied, considering that ρ2 is a root of the
quadratic polynomial h(b). We now show that

h(b) > 0. (17)

We consider
∆ = (a− c)4 − (3a2 + 4a + c2)(3c2 + 4c + a2).

We can easily prove that

∆ = −2(2 + a + c)(a3 + a2c + c3 + 4ac + ac2). (18)
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Because a > −2+
√

4−3c2

3 , we obtain 3a2 + 4a + c2 > 0. Moreover, because c < 0, we have

3a2c + 4ac + c3 < 0. (19)

Then, if a < 0, from the inequality of Equation (19), we obtain

a3 + a2c + c3 + 4ac + ac2 = a(a− c)2 + 3a2c + 4ac + c3 < 0. (20)

Equations (3), (18), and (20) imply that ∆ > 0. This means that D, as defined in Equation (5), is a
real number. Finally, from the third inequality of Equation (4), we have that Equation (17) is true.

Now, if a > 0, from Equation (3), we have

a3 + a2c + c3 + 4ac + ac2 = (a2 + c2)(a + c) + 4ac < 0, (21)

and thus from Equations (3) and (18), we obtain ∆ > 0. Thus, D is a real number. Hence from the
third inequality of Equation (4), we have that Equation (17) is satisfied. Therefore, from Equations (3),
(4), and (16), we obtain G′′′(0) > 0. This implies that SG(0) = −G′′′(0)− 3/2(G(0)′′)2 < 0, where
SG(0) is the Schwarzian derivative. Hence the zero equilibrium is stable for the scalar Equation (11).
Thus, from Theorem 8 of [9] (see also Theorem 5.2 of [29]), the zero equilibrium of the original system
(Equation (1)) is stable.

We suppose now that Equations (3) and (6) are satisfied, considering that ρ1 and ρ2 are the roots
of the quadratic polynomial h(b) in Equation (16). From Equation (6), we obtain 4− 3c2 < 0, and thus
3a2 + 4a + c2 > 0. Therefore, arguing as in the first case, we can prove that D is a real number.
Then from Equation (6), we take h(b) < 0. Therefore from Equations (3), (6), and (16), we obtain
G′′′(0) > 0. Then SG(0) < 0. Hence the zero equilibrium is stable for the scalar Equation (11). Thus,
from Theorem 8 of [9] (see also Theorem 5.2 of [29]), the zero equilibrium of the original system
(Equation (1)) is stable.

Finally, we suppose that Equations (3) and (7) are satisfied. As we have already seen in the first
case from Equation (7), it follows that 3a2 + 4a+ c2 > 0. Thus, arguing as in the first case, we can prove
that D is a real number. Then from Equation (7), we take h(b) < 0. Therefore from Equations (3), (7),
and (16), we obtain G′′′(0) > 0. Then SG(0) < 0. Hence the zero equilibrium is stable for the scalar
Equation (11). Thus, from Theorem 8 of [9] (see also Theorem 5.2 of [29]), the zero equilibrium of the
original system (Equation (1)) is stable.

3. Stability of Zero Equilibrium of Equation (2)

In the following, we study the stability of the zero equilibrium of Equation (2) using center
manifold theory.

Proposition 2. Consider Equation (2) where a, b, c, and d are arbitrary real constants and the initial values x0

and y0 are also real numbers. Suppose that the following relations hold:

(1+ b)(1+ d) = ac, −2 < b + d < 0. (22)

Then the matrix

J =

[
b a
c d

]
has one eigenvalue λ1 = −1 and the other eigenvalue λ2 < 1. Suppose also that either Equation (22) and

b > 0, −1 < d < 0, max { b(d+1)
d ,−

√
− b(b+1)(1+d)

d } < a < min {− b(b+1)
d ,

√
− b(b+1)(1+d)

d } (23)
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hold, or that Equation (22) and the relations

d > 0, −1 < b < 0, a > max {−b(b + 1)
d

,

√
−b(b + 1)(1+ d)

d
} (24)

hold. Then the zero equilibrium of Equation (2) is stable.

Proof. The initial system can be written as[
xn+1

yn+1

]
=

[
b a
c d

] [
xn

yn

]
+

[
f (xn, yn)

g(xn, yn)

]
, (25)

where
f (x, y) = bx(e−y − 1), g(x, y) = dy(e−x − 1).

Because the characteristic equation of J is p(λ) = λ2−λ(b+ d)+ bd− ac = 0 and the Equation (22)
conditions hold, we have that λ1 = −1 is an eigenvalue of J. Moreover, we obtain p(λ) = (λ + 1)(λ−
b− d− 1), and therefore λ2 = b + d + 1 is also an eigenvalue of J. Because Equation (22) is satisfied,
it is clear that |λ2| < 1. We let now [

xn

yn

]
= T

[
un

vn

]
,

where T is the matrix that diagonalizes J, defined by

T =

[
a a

−1− b 1+ d

]
.

Therefore, Equation (25) can be written as[
un+1

vn+1

]
=

[
−1 0
0 1+ b + d

] [
un

vn

]
+

[
f̂ (un, vn)

ĝ(un, vn)

]
, (26)

where

f̂ (u, v) = (1+d)b
b+d+2 (u + v)(e(1+b)u−(1+d)v − 1)− d

b+d+2(−(1+ b)u + (1+ d)v)(e−a(u+v) − 1),

ĝ(u, v) = (1+b)b
b+d+2(u + v)(e(1+b)u−(1+d)v − 1) + d

b+d+2(−(1+ b)u + (1+ d)v)(e−a(u+v) − 1).

(27)

We now let v = h(u) with h(u) = ψ(u) + O(u4) and ψ(u) = Au2 + Bu3, where A and B are
real numbers, the center manifold. The use of ψ(u) as an approximation of h(u) is justified by
Theorem 7 of [9]. Consequently, according to Theorem 8 of [9] (see also Theorem 5.2 of [29]) and using
Equations (26) and (27), the study of the stability of the zero equilibrium of Equation (2) reduces to the
study of the stability of the following scalar equation:

un+1 = −un + f̂ (un, ψ(un)) = G(un). (28)

The map G can also be written in the following form:

G(u) = −u + (c1u + c2u2 + c3u3)(ec4u+c5u2+c6u3 − 1) + (c7u + c8u2 + c9u3)(ec10u+c11u2+c12u3 − 1), (29)
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where ci, i = 1, 2, ..., 12 are real constants that depend on a, b, c, d, and A. In what follows, we use the
following constants:

c1 =
b(1+ d)
2+ b + d

, c2 = A
b(1+ d)
2+ b + d

, c4 = 1+ b, c5 = −(1+ d)A,

c7 =
d(1+ b)
2+ b + d

, c8 = −A
d(1+ d)
2+ b + d

, c10 = −a, c11 = −aA.

(30)

We need to compute the constant A. From Equation (26), we take

h(−u + f̂ (u, ψ(u))) = (1+ b + d)ψ(u) + ĝ(u, ψ(u)),

which implies that

A(−u + f̂ (u, ψ(u)))2 + B(−u + f̂ (u, ψ(u)))3 = (1+ b + d)(Au2 + Bu3) + ĝ(u, Au2 + Bu3).

Then we take

Au2 = A(1+ b + d)u2 +
b(b + 1)2u2

2+ b + d
+

ad(b + 1)u2

2+ b + d
.

Therefore,

A =
(b + 1)(ad + b + b2)

(−b− d)(2+ b + d)
. (31)

From Equation (29), we see that G′(0) = −1, and Equation (15) is satisfied. Then from Equations
(15), (30), and (31), we obtain

G′′′(0) =
6(1+ b)(b + b2 + ad)(b− d)(b + bd− ad)

−(b + d)(b + d + 2)2 +
3(b + 1)
2+ b + d

(b(b + 1)(d + 1) + da2). (32)

Suppose firstly that Equations (22) and (23) hold. We now show that G′′′(0) > 0. From
Equation (23), we have b− d > 0. Because a < − b

d (b + 1) and d < 0, we obtain ad > −b(b + 1),
and therefore ad + b(b + 1) > 0. Moreover, because a > b

d (d + 1) and d < 0, we obtain b(d + 1) > ad,
and therefore b + bd− ad > 0. Hence

6(1+ b)(b + b2 + ad)(b− d)(b + bd− ad)
−(b + d)(b + d + 2)2 > 0. (33)

In addition, from Equation (23), we have |a| <
√
− b

d (b + 1)(d + 1). Hence a2d > −b(1+ b)(1+ d),
which means that

3(b + 1)
2+ b + d

(b(b + 1)(d + 1) + da2) > 0. (34)

Therefore, from Equations (32), (33), and (34), we have G′′′(0) > 0.
Finally suppose that Equations (22) and (24) are satisfied. From Equation (24), we have b− d < 0.

Because a >
√
− b

d (b + 1)(d + 1), we have a2d + b(1 + b)(1 + d) > 0. Moreover, from a > − b
d (b + 1),

we obtain ad + b2 + b > 0. It is now clear that b + bd− ad < 0. Therefore G′′′(0) > 0.
Hence, we have SG(0) < 0, where SG(0) is the Schwarzian derivative. This implies that

the zero equilibrium is stable for the scalar Equation (28). Thus, from Theorem 8 of [9] (see also
Theorem 5.2 of [29]), the zero equilibrium of the original system (Equation (2)) is also stable.
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30. Berg, L.; Stević, S. On the asymptotics of the difference equation yn(1 + yn−1 · · · yn−k+1) = yn−k. J. Differ.

Equ. Appl. 2011, 17, 577–586. [CrossRef]
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