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Abstract: Passive video forensics has drawn much attention in recent years. However, research on
detection of object-based forgery, especially for forged video encoded with advanced codec
frameworks, is still a great challenge. In this paper, we propose a deep learning-based approach to
detect object-based forgery in the advanced video. The presented deep learning approach utilizes a
convolutional neural network (CNN) to automatically extract high-dimension features from the input
image patches. Different from the traditional CNN models used in computer vision domain, we let
video frames go through three preprocessing layers before being fed into our CNN model. They include
a frame absolute difference layer to cut down temporal redundancy between video frames, a max
pooling layer to reduce computational complexity of image convolution, and a high-pass filter layer
to enhance the residual signal left by video forgery. In addition, an asymmetric data augmentation
strategy has been established to get a similar number of positive and negative image patches before
the training. The experiments have demonstrated that the proposed CNN-based model with the
preprocessing layers has achieved excellent results.

Keywords: deep learning approach; convolutional neural network; video object forgery detection;
forgery detection and temporal localization

1. Introduction

Due to the rapid development of digital video technology, editing or tampering a video sequence
becomes much easier than before. Everyone can remove an object in a video sequence with the aid of
powerful video editing software, e.g., Adobe Premiere, Adobe After Effects, and Apple Final Cut Pro.
The videos with alternated objects spreading over the Internet often interfere with our understanding
of the video content, and lead to a serious social security event [1]. In recent years, more and more
researchers focus on the study of video tampering detection. Object forgery detection has become a
new topic in the research field of digital video passive forensics [2].

Object forgery in video is a common video tampering method by means of adding new objects
to a video sequence or removing existing ones [3,4]. In contrast to the image copy-move forensics
approaches [5–7], video object tamper detection is a more challenging task. If we use image forensics
algorithms to detect video tampering, the computational cost will be unacceptable. As a result,
the methods for image forensics cannot be applied straightforwardly to video forensics. The temporal
correlation between video frames should be considered to reduce the complexity of video forensics.

For this purpose, several video forensic algorithms have been proposed in recent years [8]. Some of
these methods analyse pixel-similarity between different video frames. Bestagini et al. [9] presented two
algorithms to detect the image-based attack and the video-based attack based on exploiting a correlation
analysis for image pixels and image blocks. Lin and Tsay [10] presented a passive approach for effective
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detection and localization of region-level forgery from video sequences based on spatio-temporal
coherence analysis. Other methods extract specific statistical features, then do classification with
machine learning algorithms. In [11], several statistical features have been proposed for classification
through SVM (support vector machine) algorithms. In [12], SIFT features are extracted from the video
frames, then K-NN matching is used to find out spatial copy-move forgery. Chen et al. [3,4] has
adopted the 548 dimensional CC-PEV image steganalysis features to detect the alteration inside the
motion residuals of the video frames, then use ensemble classifier to locate the forged video segments
in the forged videos. However, all the above methods have depended on manually designed features
from tampered video sequences and pristine video sequences.

In recent years, deep learning-based techniques, such as convolutional neural network(CNN),
have achieved a great success in the field of computer vision. Deep neural networks have the
ability to extract complex high dimensional features and make efficient representations. More recently,
deep learning-based approach has been used in many new fields, such as camera model
identification [13,14], steganalysis [15], image recapture forensics [16], image manipulation detection [17],
image copy-move forgery detection [18], and so on.

In this paper, we propose a new video object tamper detection approach based on deep learning
framework. The main contributions are described as follows: (1) We propose a CNN-based model
with five layers to automatically learn high-dimension features from the input image patches;
(2) Different from the traditional CNN models in the field of computer vision, we let video frames
go through three preprocessing layers before feeding our CNN model. In the first layer, the absolute
difference of consecutive frames can be calculated so as to cut down temporal redundancy between
video frames and reveal the trace of tampering operation; (3) The second layer is a max pooling layer
to reduce computation complexity of image convolutional; (4) The third layer is a high-pass filter layer
to strengthen the residual signal left by video forgery; (5) After the first layer and before the second
layer, we adopt an asymmetric data augmentation strategy to get a similar number of positive and
negative image patches. This is a data augmentation method based on video frame clipping for neural
network training to avoid overfitting and improve the network generalization capability.

2. Proposed Method

The proposed method is composed of two main steps, i.e., video sequence preprocessing and
network model training. In the first step, an absolute difference algorithm is applied to the input video
sequence, then the output difference frames are clipped to image patches by means of asymmetric data
augmentation strategy. In this way, the input video sequence is converted to image patches. We label
these image patches as positive and negative samples, which constitute the training data set. In the
second step, the training data set is processed with a max pooling layer and a high pass filter, and then
the output is used to train a five-layer CNN-based model. In this section, we discuss the two steps of
our proposed method in details.

2.1. Video Sequence Preprocessing

The video sequence consists of a number of consecutive image frames. These image frames
are very similar to each other. The only difference between adjacent frames is the status of moving
video objects. Object-based forgery means that video objects are copied and moved elsewhere in the
video sequence or removed by manipulation of inpainting. These tampering operations leave some
perceptible traces inevitably. In order to detect these tampering traces, we propose to compute the
absolute difference between consecutive frames to reduce the temporal redundancy, and then clip the
residual sequence of absolute difference to residual image patches. Therefore, object-based forgery
detection in video sequence can be regarded as forensics of the modification in residual image patches.
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2.1.1. Absolute Difference of Consecutive Frames

In order to input video data into the deep neural network model, the video frames are converted to
motion residual images through applying the proposed absolute difference algorithms. The proposed
algorithms consist of the following steps: converting each frame of the video sequence into a gray-scale
image firstly, and then starting from the second grayscale image, subtracting its previous grayscale
image from the current ones, and finally taking the absolute value of the subtracted result to obtain
absolute difference images, which represent the motion residual between consecutive video frames.

Denote the input video sequence of decoded video frames of length N as

S = {F1, F2, ..., Fi, ..., FN}, i ∈ {1, . . . , N} (1)

where Fi represents the ith decoded video frame.
Since the decoded video frame is decompressed from advanced video with advanced encoding

standards, it has a color space of RGB with R, G, B components. In order to reduce the computational
complexity, we convert the decoded video frame into a grayscale image and then perform subtraction
and absolute operations. Finally, we can have the absolute difference image Dj as

Dj = abs(Gray(Fj)− Gray(Fj−1)), j ∈ {2, . . . , N} (2)

where the function of Gray() represent color space converting from RGB to gray-scale, abs() is the
absolute operation for the difference of two adjacent gray-scale image.

The subtraction operation starts from the second video frame. Note that according to Formula (2),
the pixel value outputed by Gray() is limited to [0, 255]. Therefore, the resulting Dj can be regarded
as an 8-bit gray-scale absolute difference image, which represents the motion residual between
consecutive video frames.

2.1.2. Asymmetric Data Augmentation

A large number of training data can be a great help to avoid overfitting and improve the network
model generalization capability. Data augmentation [19] provides a method for increasing the amount
of training data available for machine learning. It has been extensively adopted in the area of deep
learning research for computer vision [19]. In this paper, we present an asymmetric data augmentation
strategy to generate more image patches. These image patches are labeled as positive or negative
samples for training.

In order to get more training data, the gray-scale frame absolute difference image Dj, which was
calculated from Formula (2), is clipped into several image patches. All of the clip operations can achieve
label-preserving. Namely, to prepare the positive samples (tampered image patches), we can draw
image patches from tampered frames. In a similar way, we can get negative samples (un-tampered
image patches) from pristine frames. All video frames in the pristine video sequence are pristine frames,
but there are pristine frames and tampered frames in tampered video sequences. Therefore, the number
of pristine frames is far more than the tampered ones. In light of this, we draw more image patches in
each tampered frames than we draw in pristine frames. This clipping method for image patches is
named as an asymmetric data augmentation strategy and shown in Figure 1.

As shown in Figure 1, we draw three image patches from the pristine frame (Figure 1a) with
a suitable stride size, and label these image patches as negative samples. The three image patches
are respectively located on the left, right and central position of the pristine frame. In the tampered
frame (Figure 1b), the moving pedestrian has been removed from the scene. The tampered region
is marked with a rectangle R, and point C is the central point of rectangle R. We draw M image
patches from the right tampered frame with a stride size 10, and label these image patches as positive
samples. To ensure all of the M image patch are positive samples, the point C must be contained in
each image patches. In other words, the number of positive samples M is limited to an appropriate
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value. Therefore, the quantity of positive samples and the quantity of negative samples are similar by
using the proposed asymmetric data augmentation strategy.

R

C

(b)

image patch 2

image patch 3

image patch 1

stride

image patch M

image patch 2

(a)

image patch 3

image patch 1

stride

stride

Figure 1. Asymmetric data augmentation strategy. (a) Draw three image patches from the pristine
frame; (b) Draw M image patches from the tampered frame.

2.2. Network Architecture

The proposed network architecture is shown in Figure 2. There are a max pooling layer and a
high-pass filter layer at the very beginning of the proposed architecture. The proposed network is a
five-layer CNN-based model.

2.2.1. Max Pooling

Max pooling is such a subsampling scheme that the maximum value of the input block is returned.
It is widely used in some deep learning networks. At the front of the proposed network, a max pooling
layer is not only used to reduce the resolution of the input image patches but also used to make the
network robust to the variations on motion residual values of the frame absolute difference image.

The input image patches of the CNN-based model are image blocks of 2-D array with size
1 × (720 × 720) (1 represent channel number of gray-scale). With a window size of 3 × 3 and a stride
size of 3, the resolution of the image patch is reduced from 720 × 720 to 240 × 240 after the max
pooling layer.

2.2.2. High Pass Filter

Qian et al. [20] presented a predefined high pass filter, which was also defined as a SQUARE5 × 5
residual class in [21], for image steganalysis to enhance the weak steganography signal and suppress
the impact caused by image content. This high-pass filter is a 5 × 5 shift-invariant convolution
kernel. The value of this kernel keeps fixed during training. This filtering has been applied to deep
learning-based steganalysis [15] as well as to deep learning-based camera model identification [14],
and has achieved good performance.

In this paper, we use the high-pass filter in our video tamper detection to strengthen the residual
signal at the frame absolute difference image, and to reduce the impact caused by video object motion
between video frames. The fixed high-pass filter is applied to the input image patches, then the filtered
image patches are fed to our CNN-based model.
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2.2.3. CNN Based Model

The proposed CNN-based model is illustrated in Figure 2. This CNN-based model consists of
5 convolution layers. Each convolution layer is followed by Batch Normalization (BN) [22], Rectified
Linear Units (ReLU) [23], and Average Pooling. At the end of proposed network, a fully connected
layer and a softmax layer are used to convert 128-D feature vectors to 2-D probabilities, then the
classification results are outputted based on the 2-D probabilities.

Image Patch

Convolutional 1
8x(5x5x1)

1x(720x720)

BN

ReLU

Average Pooling
size 5x5 stride 2

Convolutional 2
16x(3x3x8)

BN

ReLU

Average Pooling
size 5x5 stride 2

Convolutional 4
64x(1x1x32)

BN

ReLU

Average Pooling
size 5x5 stride 2

Convolutional 5
128x(1x1x64)

BN

ReLU

Average Pooling
size 15x15 global

Fully-connected

Classification Results

8x(120x120)

16x(60x60)

64x(15x15)

128x(1x1)
128-D features

Convolutional 3
32x(3x3x16)

BN

ReLU

Average Pooling
size 5x5 stride 2

32x(30x30)

Max Pooling
size 3x3 stride 3

High Pass Filter
1x(5x5x1)

1x(240x240)

1x(240x240)

Softmax

2-D probabilities

Layer 2

Layer 1

Layer 4

Layer 3

Layer 5

Figure 2. The network architecture of proposed method. Layer functions and parameters are displayed
in the boxes. Kernels sizes of convolution in each layers are described in number_o f _kernels ×
(width× height × number_o f _input). Sizes of feature maps between different layers are described in
number_o f _ f eature_maps× (width× height). To keep the shape of image patches, padding is applied
in each layer.

The kernel’s sizes in the five convolution layers are 5 × 5, 3 × 3, 3 × 3, 1 × 1, 1 × 1, respectively,
and the corresponding amounts of feature maps are 8, 16, 32, 64, 128, respectively. The size of feature
maps are 240 × 240, 120 × 120, 60 × 60, 30 × 30, 15 × 15, respectively. The window sizes of each
average pooling layers are 5 × 5 and stride size is 2, except the last average pooling layer with a global
window size of 15 × 15.
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3. Experimental

3.1. Dataset

We test our deep learning-based method on SYSU-OBJFORG data set [3]. SYSU-OBJFORG is the
largest object-based forged video data set according to the report in [3]. It consists of 100 pristine video
sequences and 100 forged video sequences. The pristine video sequences are directly cut from some
primitive video sequences obtained with several static video surveillance cameras without any type of
tampering. Every forged video sequence is tampered from one of the corresponding pristine video
sequence by means of changing moving objects in the scene. All video sequences are of 25 frames/s,
1280 × 720 H.264/MPEG-4 encoded video sequences with a bitrate of 3 Mbit/s.

In our experiment, 50 pairs of video sequences, which consist of 50 pristine video sequences and
50 tampered video sequences, are used for training and validation. The other 50 pairs are set aside
for testing. We divide the 50 pairs in training and validation data set into five non-overlapping parts.
At training stage, one of the five parts is used for validation, and the rest parts are used for training.
The training stage is conducted five times based on different validation data set and training data set at
each time. After five times of training stage, we obtain five trained CNN-based models with different
weights and parameters.

In the testing stage, the 50 pairs of testing video sequences are converted to image patches by
means described in Figure 1a firstly. Then all of the image patches are fed to each of the five trained
CNN-based models. As a result, we can get five probabilities for each test image patch. The five
probabilities are averaged to get a classification for each test image patch. By means of averaging the
five probabilities, we can get more accurate and more robust classification results.

3.2. Experimental Setup

The proposed CNN-based model is implemented based on the Caffe deep learning framework [24]
and executed on a NVIDIA GeForce GTX 1080ti GPU. Stochastic Gradient Descent is used to optimize
our CNN-based model. We set the parameters of momentum to 0.9, and weight_decay to 0.0005.
The initial learning rate is set to 0.001. The learning rate update policy is set to inv with the gamma
value of 0.0001 and the power value of 0.75. We set the batch size for training to 64, namely 64 image
patches (as positive and negative samples) are input for each iteration. After 120,000 iterations, we can
obtain the trained CNN-based model with trained weights and parameters for testing.

In order to verify the performance of the trained CNN-based model on the testing data set, all of
the testing video sequences need to be preprocessed. The preprocessing procedure for testing data set
is similar to the procedure for training data set. Firstly, the input testing video sequences are converted
to absolute difference images through Formula (2). Secondly, the absolute difference images are clipped
to image patches. Different from video sequence preprocessing for training data set, data augmentation
isn’t applied to testing data set. We only draw three image patches from each of the absolute difference
images. In other words, three image patches are clipped from each of the pristine frame and the
tampered frame by the means described in Figure 1a.

After preprocessing, the testing image patches are input to the trained CNN-based model, and the
classification results for each image patch are obtained. As described above, there are three image
patches in each of video frames. If any one of the three image patches is predicted as tampered image
patch, the video frames, which contained this image patch, should be marked as tampered frame.
On the other hand, when all of the three image patches in a video frame are classified as pristine ones,
this video frame should be labeled as pristine. Based on this classification rule, we can make a rough
decision for each of the video frames.

We also deploy a very simple post-processing procedure for each of video frames to get a more
accurate classification. This post-processing procedure uses a non-overlapping slide window to refine
the previous rough decision. Let L denote the sliding window size, T represent the number of video
frames labeled as tampered in the sliding window. Therefore, L− T is the number of pristine video
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frames in the same sliding window. In this paper, we set L = 10, and stride size of the sliding window
to L, namely let all slide windows non-overlapping. In the post-processing procedure for more accurate
classification, if T ≥ 7, all of the video frames labeled as pristine in the sliding window are changed to
tampered ones. On the contrary, if T ≤ 3, all of the video frames labeled as tampered are changed to
pristine ones.

3.3. Experimental Results

We compare our deep learning forgery detection approach with Chen et al.’s method in [3].
The following criteria defined in [3] are used in the experiments.

PFACC = ∑ correctly_classi f ied_pristine_ f rames/ ∑ pristine_ f rames
FFACC = ∑ correctly_classi f ied_ f orged_ f rames/ ∑ f orged_ f rames

FACC = ∑ correctly_classi f ied_ f rames/ ∑ all_the_ f rames

where PFACC is Pristine Frame Accuracy, FFACC is Forged Frame Accuracy and FACC is Frame Accuracy.
All of these are performance metrics for frame-type identification. After we use the non-overlapping
slide window to get a more accurate classification, some frames in the forged video sequence,
which were classified to incorrect labels, may be reassigned new labels. Precision, Recall and F1 score
are used to evaluate the final classified accuracy for forged frames.

The performance comparison of experimental results are shown in Figure 3. We have repeated
our experiment 10 times and obtained a total of 10 testing results. The testing results were computed as
the mean and standard deviation of detection accuracy. As shown in Figure 3, the standard deviations
of the average accuracy show the robustness of our approach. In order to make the lines in the figure
easy to be discriminate, VACC (Video Accuracy) is not shown in Figure 3. The performance of VACC,
which was greater than 99% achieved by Chen et al.’s method, is 100% by the proposed method.

PFACC FFACC FACC Precision Recall F1Score

75%

80%

85%

90%

95%

100%
98.45±0.37

89.
90±

1.1
5

96.79±0.11 97.31±0.81

91.05
±1.05
94.07±0.31

proposed
CC-JRM

J+SRM
CC-PEV

CDF
CF*

SRM
SPAM

Figure 3. Detection performance of the proposed method compared with Chen et al.’s methods [3].
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Chen et al. adopt seven steganalysis feature sets to achieve different performance. The seven
steganalysis feature sets consist of CC-JRM [25], J+SRM [25], CC-PEV [26,27], CDF [28], CF* [29],
SRM [21] and SPAM [30]. There are various performances achieved with using these feature sets.
The accuracy rate provided by the seven algorithms can be found at Table II in [3]. As shown in
Figure 3, the proposed method has achieved better performance than that achieved by using the
steganalysis feature sets based approach in [3].

The proposed method is a deep learning approach for detection of object forgery in advanced
video. Different from the traditional non-deep learning methods, the proposed method has the
capability to automatically extract high-dimension features from the input image patches and make
efficient representations. The traditional methods, such as the Chen et al.’s methods [3], could only
use one type of artificial features to realize classification. As a result, we can see that our method is
superior to the traditional methods.

4. Conclusions

In this paper, we developed an object forgery detection approach based on the deep convolutional
neural network. The experimental results have shown that the proposed method achieves better
performance than that reported in [3] on SYSU-OBJFORG, which is reported as the largest object forged
video data set with advanced video encode frameworks. In the future, we will focus on the localization
for forged region in each of the tampered video frames. Also, how to apply the trained CNN-based
model to detect object forgery for lower bitrate video sequence or lower resolution video sequence,
which is named as transfer learning [31–34] in deep learning research, would be another important
future work.
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