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Abstract: Hybrid energy storage systems (HESS) play an important role in maintaining the power
balance of a direct current (DC) micro-grid. A HESS is mainly composed of high power density
super-capacitors (SCs) and high energy density batteries. According to the operational requirements
of an SC, a bidirectional DC-DC converter with the characteristics of a good dynamic response and a
wide voltage conversion ratio is needed to interface the SC and a high-voltage DC bus. In this paper,
a novel common grounded H-type bidirectional converter characterized by a good dynamic response,
a low inductor current ripple, and a wide voltage conversion ratio is proposed. In addition, it can
avoid the narrow pulse of pulse width modulation (PWM) voltage waveforms when a high voltage
conversion ratio is achieved. All of these features are beneficial to the operation of the SC connected
to a DC bus. The operating principle and characteristics of the proposed converter are presented in
this paper. A 320 W prototype with a wide voltage conversion ranging from 3.3 to 8 in step-up mode
and 1/8 to 1/3 in step-down mode has been constructed to validate the feasibility and effectiveness
of the proposed converter.

Keywords: H-type bidirectional DC-DC converter; good dynamic response; hybrid energy storage
system; wide voltage conversion ratio

1. Introduction

With the high penetration of direct current (DC) energy sources, storage, and loads, DC micro-grids
are becoming more prevalent due to a lower number of power converters compared with an alternating
current (AC) micro-grid [1–3]. Because of the intermittent nature of renewable energy sources and
unpredictable load fluctuations in DC micro-grids, the problem of power imbalance may appear and
affect the operation of DC micro-grids. Therefore, energy storage systems (ESs) are always installed to
maintain the power balance of the DC micro-grid [4,5]. ESs can be divided into a power density type
and an energy density type based on their characteristics [6,7]. Unfortunately, there is no single type
of ES that fulfills all expected features [8]. Therefore, it is an economic and effective solution to use a
hybrid energy storage system (HESS) composed by different characteristics of ESs [9–11]. Generally,
a HESS is mainly composed of high power density super-capacitors (SCs) and high energy density
batteries. It is desirable to balance the steady-state power imbalance by the batteries and compensate
for the transient power imbalance by an SC with fast dynamics [12–14]. As a result, the degradation
impact on the batteries caused by sudden load changes can be greatly reduced, and the dynamic
response of the whole DC micro-grid can also be improved [15,16].

As mentioned above, high power density SCs play an important role in a HESS. However,
the output voltage of an SC is relatively low and changes widely. In order to connect the SC to a high
voltage level DC bus and to achieve a bidirectional power flow for the SC, a wide voltage conversion
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ratio bidirectional DC-DC converter is needed. Considering that the SC needs to compensate for
transient power, the bidirectional DC-DC converter needs to have the feature of an outstanding
dynamic response.

Many isolated and non-isolated bidirectional converters present in the literature can achieve a
wide voltage conversion ratio. Due to using a high-frequency transformer, the isolated bidirectional
converters can obtain a wide voltage conversion ratio in the step-up and step-down modes by adjusting
the turns ratio of the transformer. Because of the use of a transformer and a high number of switching
devices, the cost and switching losses of these converters will be increased and the control schemes
will be more complicated [17–20]. From the viewpoint of system cost-saving and improving system
efficiency, a non-isolated DC-DC converter is more suitable for HESS applications [21,22].

Research on non-isolated converters is focused on coupled-inductor, switched-capacitor, switched-
inductor, voltage-multiplier, and multi-stage/-level techniques [23]. The coupled-inductor-based converter
in [24] can have a higher voltage gain, and also reduce the reverse recovery losses of the diodes. However,
the current ripple of the low-voltage side is relatively large, which may damage the low-voltage side
source. With a simple structure, switched-capacitor converters are easy to expand. At the same time,
the control methods of these converters are also simple. In different switching states, the energy of the
capacitors in these converters can be delivered through different paths, making it easier for these converters
to achieve a high voltage gain [25–28]. Switched-inductor converters can also achieve a wide voltage
conversion ratio while avoiding extreme duty cycles. At the same time, the voltage stress of the power
semiconductors in these converters can be reduced. However, more inductors affect the power density
of these converters [29,30]. In [31], a new non-isolated single capacitor bidirectional DC-DC converter
with a simple structure and a wide voltage conversion ratio is presented. However, the voltage stress of
the power semiconductor is relatively high. A common ground switched-quasi-Z-source bidirectional
DC-DC converter is presented in [32]. The advantages of this converter are a wide voltage conversion ratio
and a lower voltage stress across the power switches. However, with the low voltage level (240 V) and
low rated power (300 W), the volume of the capacitors (470/520 uF) and inductors (434/600 uH) is high,
which results in a lower power density for this converter.

This paper presents a novel common grounded H-type bidirectional DC-DC converter, which not
only achieves a wide voltage conversion ratio, but also has the advantages of a low inductor current
ripple and a good dynamic response. In addition, a clamp capacitor is used in this converter to keep all
of the power switches turned on and off only once during each switching period, aiming at reducing
switching losses and avoiding narrow pulses of the pulse width modulation (PWM) voltage waveform
at high voltage gain. These features are beneficial to improve the efficiency and reliability of this
converter and its suitability for HESS applications.

As shown in Figure 1, a HESS contains a battery and an SC. The SC outputs are varying low
dc voltages (25–60 V) which cannot be used directly, and must be regulated via the bidirectional
converter. The proposed converter can fulfill the task well. The remainder of this paper is structured
as follows. In Section 2, the novel H-type bidirectional DC-DC converter topology and operating
principles are proposed. In Section 3, the characteristics of the proposed converter are analyzed and its
small signal model is established. Experimental results for the proposed converter are provided in
Section 4. The conclusion of this paper is introduced in Section 5.
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Figure 1. Configuration of the hybrid energy storage system (HESS). DC: direct current. 
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Figure 2. Configuration of the proposed converter. 

2.2. Operating Principles 

2.2.1. Step-Up Mode of the Proposed Converter 

As shown in Figure 2, Ulow can be stepped-up to Uhigh by controlling the power semiconductors 

Q1, and Q2. The relationship between d1 and d2 can be written as d1 = d2 = dBoost, where d1 and d2 are the 

duty cycles of Q1 and Q2, respectively. The phase difference between the gate-driving signals S1 and 

S2 is 180°. During one switching period, the converter has three switching states, and their sequence 

is ”10-00-01-00-10”. Figure 3 shows the energy flow paths and Figure 4 shows the typical waveforms. 

Due to using the clamp capacitor C1, all of the power semiconductors turn on and off only once during 

each switching period. 

When S1S2 = 10: As shown in Figure 3a, where switch S1 is ON and S2 is OFF. The anti-parallel 

diodes of Q4 and Q5 are forward biased, while the anti-parallel diode of Q3 is reverse biased. The 

inductor L is charged from the input source. Current iL rises linearly. The load is supplied by C1 and 

Chigh. Clamp capacitor C1 maintains the forward bias of the anti-parallel diodes of Q5. 

Figure 1. Configuration of the hybrid energy storage system (HESS). DC: direct current.

2. Operating Principles of the Proposed Converter

2.1. Configuration of the Proposed Converter

The configuration of the proposed converter is depicted in Figure 2. This converter is composed
of a capacitor-clamped H-type structure (Q1–Q4 and C1), an inductor, a power switch Q5, and two filter
capacitors Chigh and Clow. To simplify the analysis, it is assumed that the capacitors and inductor are
large enough and all of the power semiconductors are ideal. In order to protect the SC, the proposed
converter operates in the input current continuous model (CCM).
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Figure 2. Configuration of the proposed converter.

2.2. Operating Principles

2.2.1. Step-Up Mode of the Proposed Converter

As shown in Figure 2, Ulow can be stepped-up to Uhigh by controlling the power semiconductors
Q1, and Q2. The relationship between d1 and d2 can be written as d1 = d2 = dBoost, where d1 and d2

are the duty cycles of Q1 and Q2, respectively. The phase difference between the gate-driving signals
S1 and S2 is 180◦. During one switching period, the converter has three switching states, and their
sequence is “10-00-01-00-10”. Figure 3 shows the energy flow paths and Figure 4 shows the typical
waveforms. Due to using the clamp capacitor C1, all of the power semiconductors turn on and off only
once during each switching period.

When S1S2 = 10: As shown in Figure 3a, where switch S1 is ON and S2 is OFF. The anti-parallel
diodes of Q4 and Q5 are forward biased, while the anti-parallel diode of Q3 is reverse biased.
The inductor L is charged from the input source. Current iL rises linearly. The load is supplied
by C1 and Chigh. Clamp capacitor C1 maintains the forward bias of the anti-parallel diodes of Q5.
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When S1S2 = 00: As shown in Figure 3b, both switches S1 and S2 are OFF. The anti-parallel diodes
of Q3, Q4, and Q5 are forward biased. Capacitors C1 and Chigh are charged from L. The load is supplied
by L. There is no energy exchange between capacitors C1 and Chigh.

When S1S2 = 01: As shown in Figure 3c, where switch S1 is OFF and S2 is ON. The anti-parallel
diode of Q3 is forward biased, while the anti-parallel diodes of Q4 and Q5 are reverse biased. Inductor
L is charged from the input source. Current iL rises linearly. The load is supplied by output capacitor
Chigh. In this case, the voltage of capacitor C1 remains steady.
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2.2.2. Step-Down Mode of the Proposed Converter

As shown in Figure 2, Uhigh can be stepped down to Ulow by controlling the power semiconductors
Q3, Q4, and Q5. The relationship between d3, d4, and d5 can be written as d3 = d4 = d5 = dBuck, where d3,
d4, and d5 are the duty cycles of Q3, Q4, and Q5, respectively. The phase difference between the
gate-driving signals S3 and S4 is 180◦. The gate-driving signal S5 = S4. During one switching period,
the converter has three switching states, and their sequence is “111-100-111-011-111”. Figure 5 shows
the energy flow paths and Figure 6 shows the typical waveforms. During each switching period, all of
the power semiconductors also turn on and off once.

When S3S4S5 = 111: The switching state is shown in Figure 5a, where switches S3, S4, and S5

are ON. The anti-parallel diodes of Q1 and Q2 are forward biased. The high-voltage side Uhigh and
capacitor C1 charge the inductor L, and simultaneously provide energy to the load in the low-voltage
side. The current iL rises linearly.

When S3S4S5 = 100: The switching state is shown in Figure 5b, where switch S3 is ON and switches
S4 and S5 are OFF. The anti-parallel diode of Q2 is forward biased, while the anti-parallel diode of
Q1 is reverse biased. Inductor L provides energy to the load in the low-voltage side. The current iL
decreases linearly.

When S3S4S5 = 011: The switching state is shown in Figure 5c, where switches S4 and S5 are ON
and S3 is OFF. The anti-parallel diode of Q1 is forward biased, while the anti-parallel diode of Q2 is
reverse biased. Inductor L provides energy to the load in the low-voltage side. The current iL decreases
linearly. Capacitor C1 is charged by the high-voltage side Uhigh. The clamp capacitor C1 maintains the
power switch Q5 ON.
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2.2.3. Synchronous Rectification Mode of the Proposed Converter

The on-state resistance of the power switch is lower than its corresponding anti-parallel diode.
As mentioned above, current flow into the corresponding anti-parallel diodes of the slave power
switches will result in higher conduction losses and lower efficiency. In order to improve the efficiency,
the proposed converter uses synchronous rectifier technology [33,34].

The synchronous rectification operation principle of the proposed converter is shown in Figure 7.
Figure 7a shows the gate signals of S1–S5 in step-up mode and Figure 7b shows the gate signals of
S1–S5 in step-down mode. In step-up mode, the current has to fully flow into the corresponding
anti-parallel diodes of the slave power switches Q3, Q4, and Q5 at the dead time td. When the slave
power switches are ON, the current almost flows into the MOSFETS due to their lower on-resistance as
shown in Figure 7c. In step-down mode, the current flow path is the same as with the step-up mode as
shown in Figure 7d. The only difference is that the slave power switches are Q1 and Q2.

When the current flows into the corresponding anti-parallel diodes of the slave power switches at
dead time, the forward voltage drops of the anti-parallel diodes are close to zero. As a result, the slave
active power switches turn on and turn off with zero voltage. The turn on/off losses of the slave active
power switches will not be increased and the efficiency of the converter can be improved.
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Figure 7. Synchronous rectification operation principle of the proposed converter; (a) Gate signals and
dead time in step-up mode; (b) Gate signals and dead time in step-down mode; (c) Current flow path
in step-up mode; (d) Current flow path in step-down mode.

2.3. Control Strategy for Bidirectional Power Flow

For a HESS, the SC interface converter should be able to respond to fast bidirectional power
fluctuations immediately. Therefore, a virtual capacitor droop (VCD) control is adopted for this converter.
At the same time, the battery interface converter uses a virtual resistance droop (VRD) control to make
the battery provide total power at steady state. Due to using the VCD and VCR control, the HESS can
adapt to the distributed nature of the DC micro-grid and increase system reliability and scalability [35,36].
The specific control strategy is shown in Figure 8. As shown in Figure 8, the voltage controller is used to
follow the reference voltage Uref. The voltage Uhigh and the currents ihigh-sc and ihigh-bat are obtained by
the sensor samplings. ihigh-sc refers to the output current of the SC interface converter and ihigh-bat refers
to the output current of the battery interface converter.
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Figure 7. Synchronous rectification operation principle of the proposed converter; (a) Gate signals 

and dead time in step-up mode; (b) Gate signals and dead time in step-down mode; (c) Current flow 

path in step-up mode; (d) Current flow path in step-down mode. 

2.3. Control Strategy for Bidirectional Power Flow 

For a HESS, the SC interface converter should be able to respond to fast bidirectional power 

fluctuations immediately. Therefore, a virtual capacitor droop (VCD) control is adopted for this 
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reliability and scalability [35,36]. The specific control strategy is shown in Figure 8. As shown in 
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The operation modes of the proposed converter switch between the step-down and step-up modes
according to the necessary conditions of a general load. The current relationship at the DC bus is
expressed as

iHESS = ihigh−sc + ihigh−bat (1)

where iHESS is the equivalent load current of the HESS and can be either positive or negative. The output
voltage–current (V–I) relationship of the battery interface converter under the VRD control and that of
the SC interface converter under the VCD control are given by

Uhigh = U ∗ref −Rvbihigh−bat

Uhigh = U ∗ref − 1
sCvc

ihigh−sc

(2)

where Rvb is the virtual resistance and Cvc is the virtual capacitance. Based on (1) and (2), the current-
sharing relationship between battery and SC is derived as

ihigh−bat =
1

sRvbCvc+1 iHESS

ihigh−sc =
sRvbCvc

sRvbCvc+1 iHESS

. (3)

3. Characteristics of the Proposed Converter

3.1. Wide Voltage Conversion Ratio

3.1.1. Voltage Conversion Ratio in Step-Up Mode

For the proposed converter shown in Figure 2, the voltage conversion ratio can be derived from
the volt-sec balance of the inductor L. According to Figure 3a, Q4 and Q5 are ON, so that the voltages
of C1 and Chigh are equal. In the low-voltage side current continuous model, the equations can be
obtained as follows: {

2UlowdBoost + (Ulow −Uhigh)(1− 2dBoost) = 0
UC1 = Uhigh

(4)

where UC1 is the voltage over C1. By simplifying (1), the following equation can be derived:{
Uhigh = 1

1−2dBoost
Ulow

UC1 = Uhigh
. (5)

The voltage conversion ratio MBoost of the proposed converter is
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MBoost =
1

1− 2dBoost
(6)

where 0 < dBoost < 0.5.

3.1.2. Voltage Conversion Ratio in Step-Down Mode

According to Figure 5c, the power switches Q4 and Q5 are ON, so that the voltages of C1 and
Chigh are equal. By applying the volt-second balance principle on L, the voltage conversion ratio in
CCM can be obtained as{

(Ulow −Uhigh)(2dBuck − 1) + 2Ulow(1− dBuck) = 0
UC1 = Uhigh

. (7)

By simplifying (7), the following equation can be derived:{
Ulow = (2dBuck − 1)Uhigh
UC1 = Uhigh

(8)

The voltage conversion ratio MBuck in step-down mode is

MBuck = 2dBuck − 1 (9)

where 0.5 < dBuck < 1.
Under the same voltage conversion ratio, 0 shows the comparison between the proposed and the

traditional two-level bidirectional converters. According to Figure 9, when the voltage conversion
ratio is 8 in the step-up mode, the duty cycles of the proposed and the traditional converters are 0.4375
and 0.875, respectively; in step-down mode, when the voltage conversion ratio is 0.125, the duty cycles
of the proposed and the traditional converters are 0.5625 and 0.125, respectively. Compared with
the traditional converter, the proposed one can avoid the extreme duty cycle while achieving a high
voltage conversion ratio. What is more, the higher the voltage conversion ratio, the closer the duty
cycle is to 0.5. When the duty cycle approaches 0.5, the time used to maintain the ON and OFF state
for all power semiconductors is nearly equal in each period, which is beneficial to avoid the narrow
pulse of PWM voltage waveforms while the high voltage conversion ratio is achieved.
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3.2. Low Inductor Current Ripple

3.2.1. The Average Inductor Current and Inductor Current Ripple in Step-Up Mode

The average inductor current can be derived from the ampere-second balance of the capacitors C1

and Chigh in CCM.{
dBoost Ic1a + (1− 2dBoost)Ic1b = 0
−dBoost(2Ihigh + Ic1a) + (1− 2dBoost)(IL − Ihigh − Ic1b) = 0

(10)

where IC1a and IC1b are the average currents across C1 in state 10 and 00, respectively. It follows from
(10) that the average inductor current IL can be obtained as follows:

IL =
1

1− 2dBoost
× Ihigh. (11)

In the state 10, the inductor current increases linearly, and (12) can be obtained as

iL(dBoostT) = iL(0) +
1
L

∫ dBoostT

0
Ulowdt⇒ ∆iL =

1
L

∫ dBoostT

0
Ulowdt =

dBoost ×Ulow
L f

(12)

where f is the switching frequency and ∆iL is the inductor current ripple. It follows from (11) and (12)
that the current ripple ratio rBoost of the inductor can be obtained as

rBoost =
∆iL
IL

=
dBoost(1− 2dBoost)

2 × Rhigh

L f
(13)

where Rhigh is the equivalent load of the high-voltage side.

3.2.2. The Average Inductor Current and Inductor Current Ripple in Step-Down Mode

The average inductor current IL can be obtained as follows:

IL = Ilow. (14)

In the state 100, the inductor current decreases linearly, and (15) can be obtained as

iL(dBuckT) = iL(0) +
1
L

∫ 0.5T

(dBuck−0.5)T
Ulowdt⇒ ∆iL =

1
L

∫ 0.5T

(dBuck−0.5)T
Ulowdt =

(1− dBuck)×Ulow
L f

. (15)

It follows from (14) and (15) that the current ripple ratio rBuck of the inductor can be obtained as
follows:

rBuck =
∆iL
IL

=
(1− dBuck)× Rlow

L f
(16)

where Rlow is the equivalent load of the low-voltage side.
The inductor current ripple ratios of a traditional two-level bidirectional converter are: r′Boost =

d′Boost(1−d′Boost)
2×Rhigh

L f

r′Buck = (1−dBuck′)×Rlow
L f

(17)

where d′Boost and dBuck′ are the duty cycles of that converter in step-up and step-down mode,
respectively. r′Boost and r′Buck are the current ripple ratios of that converter in step-up and step-down
mode, respectively.
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Supposing that the output power, inductor, and switching frequency of the proposed converter
and the traditional two-level converter are equal, it can be obtained that

rBoost

r′Boost
=

rBuck
r′Buck

=
1
2

. (18)

It can be concluded from (18) that the inductor current ripple ratio in the proposed converter
is lower than that in the traditional two-level converter. On the other hand, if the inductor current
ripple ratios are equal, the inductor of the proposed converter is only half that of the traditional one,
which means that the proposed converter has outstanding dynamic response.

3.3. Good Dynamic Performance

The proposed converter can work in both the step-up and step-down modes. In order to save
paper space, only the dynamic performance in step-down mode is analyzed. Before analyzing the
dynamic performance, a small-signal model of step-down mode is needed.

When the proposed converter operates in the range 0.5 < dBuck < 1, the main power switches Q3,
Q4, and Q5 have three effective switching states: S3S4S5 = [111, 100, 011]. uhigh, ulow, and dBuck are the
input, the output, and the control variables, respectively. iL, uC1, and uClow are the state variables. r is
the equivalent series resistance for C1.

When S3S4S5 = 111, the operating time of the proposed converter is (2dBuck − 1) × T. The state
space average model in this operating time is


.
iL
.
uC1.

uClow

 =

 0 0 1
L

0 − 1
C1r 0

− 1
Clow

0 − 1
ClowR


 iL

uC1

uClow

+

 −
1
L

1
C1r
0

uhigh

ulow =
[

0 0 1
][

iL uC1 uClow

]T

. (19)

When S3S4S5 = 100, the operating time of the proposed converter is (1 − dBuck) × T. The state
space average model in this operating time is


.
iL
.
uC1.

uClow

 =

 0 0 1
L

0 0 0
− 1

Clow
0 − 1

ClowR


 iL

uC1

uClow

+

 0
0
0

uhigh

ulow =
[

0 0 1
][

iL uC1 uClow

]T

. (20)

When S3S4S5 = 011, the operating time of the proposed converter is (1 − dBuck) × T. The state
space average model in this operating time is


.
iL
.
uC1.

uClow

 =

 0 0 1
L

0 − 1
C1r 0

− 1
Clow

0 − 1
ClowR


 iL

uC1

uClow

+

 0
1

C1r
0

uhigh

ulow =
[

0 0 1
][

iL uC1 uClow

]T

. (21)
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Combining (19) and (20) with (21), the average model of the proposed converter is


.
iL
.
uC1.

uClow

 =

 0 0 1
L

0 − dBuck
C1r 0

− 1
Clow

0 − 1
ClowR


 iL

uC1

uClow

+


1−2dBuck

L
dBuck
C1r
0

uhigh

ulow =
[

0 0 1
][

iL uC1 uClow

]T

. (22)

The state, the input, the output, and the control variables can be described by using the
small-signal disturbance variables as:

iL = IL + îL
uC1 = UC1 + ûC1

uClow = UClow + ûClow
uhigh = Uhigh + ûhigh
ulow = Ulow + ûlow
dBuck = DBuck + d̂Buck

(23)

where IL, UC1, UClow, Ulow, Uhigh, and DBuck are steady state components, and îL, ûC1, ûClow, ûlow,
and d̂Buck are their corresponding small-signal disturbance variables.

As a result, the small-signal model of the proposed converter is




.
îL.

ûC1.
ûClow

 =

 0 0 1
L

0 − dBuck
C1r 0

− 1
Clow

0 − 1
ClowR


 îL

ûC1

ûClow

+


1−2dBuck

L
dBuck
C1r
0

ûhigh +


 0 0 0

0 − 1
C1r 0

0 0 0


 iL

uC1

uClow

+

 −
2
L

1
C1r
0

uhigh

d̂

ûlow =
[

0 0 1
][

îL ûC1 ûClow

]T

. (24)

Using the parameters shown in Table 1, when the output voltage is 25 V, the control-to-output
transfer function can be expressed as

GC =
ûlow(s)
d̂Buck(s)

∣∣∣∣
ûhigh(s)=0

=
6.52× 107s + 1.5× 1013

s3 + 3.32× 105s2 + 2.55× 108s + 7.52× 1012 . (25)

Assume that the proposed converter and the traditional two-level converter have the same output
power, inductor current ripple ratio, and switching frequency. Then, the inductor of the traditional
two-level converter is double that of the proposed converter. The control-to-output transfer function
of the traditional two-level converter in step-down mode can be expressed as

GC′ =
ûlow(s)
d̂Buck(s)

∣∣∣∣
ûhigh(s)=0

=
200

6.14× 10−8s2 + 59× 10−6s + 1
. (26)

The Bode diagram of the duty cycle to output voltage open-loop transfer function is shown in
Figure 10. According to Figure 10, the crossover frequency of the proposed converter is higher than
that of the traditional two-level converter due to smaller inductance.
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Lî , 

C1û , 
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The switching frequency of the traditional two-level converter can be chosen to be five times
the crossover frequency. At this point, the equivalent switching frequency of the proposed converter
is twice that of the switching frequency. The side-band effect has been eliminated due to interleave
control. Therefore, the crossover frequency of the proposed converter can be increased to two-fifths of
f. It means that the proposed converter can push to a higher control bandwidth, which leads to better
dynamic performance.

In step-up mode, small inductance and a higher equivalent switching frequency lead to better
dynamic performance too.

The control-to-output transfer function derived above is helpful to design the voltage controller
shown in Figure 8. The voltage controller is a PI (proportional integral) regulator and it can be expressed as

GPI(s) = kp + ki
1
s

. (27)

Using the control-to-output transfer function, kp and ki can be deduced.
Due to the use of the capacitor-clamped H-type structure, the proposed converter has the following

advantages:

• Avoiding the narrow pulse of PWM voltage waveforms when a high voltage conversion ratio is
achieved: It costs a little time to turn a power semiconductor on and off, thus the ideal narrow
pulse of the PWM voltage waveform is difficult to realize. The higher the voltage conversion ratio
of the proposed converter is, the closer the duty cycle is to 0.5. When the duty cycle approaches
0.5, the time used to maintain the ON and OFF state for all power semiconductors is nearly equal
in each period, which is beneficial to avoid the narrow pulse of PWM voltage waveforms while a
high voltage conversion ratio is achieved.

• Reducing inductor current ripple: The inductor L is charged and discharged twice during each
switching period, as 0 and 0 show. With a small duty cycle in step-up mode, the charging time of
the inductor is short. The charging time of the inductor in step-down mode is short too. Then,
the inductor current ripple will decrease.

• Good dynamic performance: Due to using small inductance and a higher equivalent switching
frequency, the proposed converter has a better dynamic performance.
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3.4. Voltage and Current Stress on the Power Switches

According to the current flow path of the proposed converter in step-up mode, as shown in 0
(or the current-flow path of the step-down mode, as shown in Figure 5), using the KVL (Kirchhoff’s
voltage law), the voltage stress on Q1–Q5 in the step-up and the step-down modes can be obtained as

UQ1 = UQ2 = UQ3 = UQ4 = UQ5 = Uhigh. (28)

The voltage stress on Q1–Q5 in the step-up and step-down modes is the same.
Similarly, according to current-flow path in step-up mode, as shown in Figure 3 (or the

current-flow path in step-down mode, as shown in Figure 5), and the KCL (Kirchhoff’s current
law), the current stress (namely average currents when the switch is ON) on Q1–Q5 in the step-up and
the step-down modes can be obtained as

IQ1 = IQ2 = IQ3 = 1
1−2dBoost

× Ihigh

IQ4 = dBoost
(1−dBoost)(1−2dBoost)

× Ihigh

IQ5 = 1
1−dBoost

× Ihigh

. (29)

The current stress on Q1–Q5 in the step-up and step-down modes is also identical.

4. Experimental Result and Analyses

In order to verify the feasibility of the theoretical analysis, an experimental prototype with the
parameters shown in Table 1 has been developed.

Table 1. Experiment parameters.

Parameters Values

Rated power Pn 320 W
Storage/filter capacitor Clow and Chigh 260 uF

Clamp capacitor C1 260 uF
Storage/filter inductor L 114 uH
High-voltage side Uhigh 200 V
Low-voltage side Ulow 25~60 V
Switching frequency f 20 kHz

Power semiconductors Q1–Q5 IXTH 88N30P

4.1. Experimental Results in the Step-Up Mode

The PWM voltages of power semiconductors and the inductor current waveforms are shown in
Figures 11 and 12. The PWM voltage of each power semiconductor is about 200 V, approximately equal
to the high-voltage side Uhigh, which validates the analysis in Section 3. According to Figures 11 and 12,
the voltage gain MBoost of the proposed converter is 8 and the duty cycle dBoost is about 0.44. The ON
state time of the power switches Q1–Q2 is about 0.44 T and the ON state time of the power switches
Q3–Q5 is about 0.56 T. At that high voltage gain, both the ON and OFF state times of those power
switches are close to 0.5 T, which is effective for avoiding the narrow pulse of the PWM voltage
waveforms. Due to using the synchronous rectification, the turn on and turn off of the controlled
MOSFETs Q3, Q4, and Q5 realize the ZVS (zero voltage switching), e.g., the gate signal S4 and the
voltage stress of Q4 as shown in Figure 13. According to Figure 11, the inductor L is charged and
discharged twice during each switching period. Therefore, the equivalent switching frequency of
the proposed converter is double that of the real switching frequency f. This feature is beneficial to
improve the dynamic performance and reduce the inductor current ripple of this converter.
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Figure 13. Voltage stress and gate signal of synchronous rectification power switch Q4.

The voltage across clamp capacitor C1 is approximately 200 V, being well-consistent with Uhigh
as shown in Figure 14. Therefore, in the switching state 01, the clamp capacitor C1 can maintain the
forward bias of the anti-parallel diode of Q5. The feature that all power semiconductors turn on and
off only once during each switching period can be achieved. This is beneficial to avoid narrow pulses
of the PWM voltage waveform at high voltage gain.
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Figure 14. Output voltage and capacitor voltage stress when Ulow = 25 V.

In the step-up mode, Ulow and Uhigh are the input and output voltage, respectively. The output
voltage can stay around the reference value of 200 V. The output/input voltage waveforms shown
in Figure 15 can be obtained when changing the input voltage dynamically. According to Figure 15,
when the input voltage varies continuously from 25 V to 60 V, the output voltage can stay around
200 V. The conclusion can be obtained from Figure 15 that the proposed converter can obtain a wide
voltage conversion ratio from 3.3 to 8 in step-up mode.
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Figure 15. The output voltage and the wide-range changed input voltage from 25 V to 60 V in
step-up mode.

4.2. Experimental Results in the Step-Down Mode

Figures 16 and 17 show the voltage waveforms of power semiconductors in the step-down
operation mode. According to Figures 16 and 17, the PWM voltage of each power semiconductor
is about 200 V, approximately equaling the high-voltage side Uhigh. The voltage gain MBuck of the
proposed converter is 1/8 and the duty cycle dBuck is about 0.56. The ON state time of the power
switches Q3–Q5 is about 0.56 T and the ON state time of the power switches Q1–Q2 is about 0.44 T.
At that high voltage conversion ratio, both the ON and OFF state times of those power switches
are close to 0.5 T, which is effective for avoiding the narrow pulse of the PWM voltage waveforms.
In addition, the slave power semiconductors Q1 and Q2 also acted in the synchronous rectification
operation, which turned on and turned off with ZVS, e.g., the gate signal S1 and the voltage stress of
Q1, as shown in Figure 18. According to Figure 16, the inductor L is also charged and discharged twice
during each switching period. The dynamic performance of the proposed converter in step-down
mode is also improved.
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According to Figure 19, the voltage across clamp capacitor C1 is approximately 200 V, being well-
consistent with Uhigh. Therefore, in the switching state 011, the clamp capacitor C1 can maintain the
power switch Q5 ON. The feature that all power semiconductors turn on and off only once during each
switching period can be achieved. This is also beneficial to avoid narrow pulses of the PWM voltage
waveform at a high voltage conversion ratio, just like in step-up mode.
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Figure 19. Output voltage and capacitor voltage stress when Uhigh = 200 V.

In the step-down mode, the input voltage is Uhigh and the output voltage is Ulow. The output
voltage can also stay around the reference value of 25 V with the action of the voltage control loop.
The output/input voltage waveforms shown in Figure 20 can be obtained when changing the input
voltage dynamically. According to Figure 20, when the input voltage varies continuously from 200 V to
75 V, the output voltage can stay around 200 V. The conclusion can be obtained from Figure 20 that the
proposed converter can obtain a wide voltage conversion ratio from 1/8 to 1/3 in step-down mode.
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4.3. Bidirectional Power Flow Experiment

In order to verify the performance of the proposed converter in a HESS, the related experiments
are carried out using the HESS shown in Figure 1. The output voltages of the SC and battery are about
42 V and 50 V, respectively, and the DC load power varies with a step change between 400 W and
650 W. The proposed converter is used as the power interface between the SC and the DC bus.

With the DC load being suddenly increased and decreased, changes in the output currents are
shown in Figure 21, where ibat and isc denote the output currents of the battery and the SC, respectively.
When the DC load required power changes from 400 W to 650 W suddenly, the SC compensates for
the required power immediately by increasing the current isc from 0 to 6 A in 20 ms approximately,
which protects the battery by avoiding a sudden change in current and prolongs its life. Gradually,
the task of supplying the power shortage is transferred from the SC to the battery. The isc falls to 0
from 6 A along with the ibat rising from 8 A to 13 A. Similarly, when the DC load required power
changes from 650 W to 400 W suddenly, the current isc varies from 0 to −6 A in 20 ms approximately.
As a result, the current from the battery decreases from 13 A to 8 A gradually, and the current of
the SC returns to 0 from −6 A. When the DC load required power suddenly increases or decreases,
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the SC can respond quickly to compensate for the power gap between the battery and the DC load.
In this situation, the service life of the battery is extended because of the slow changes in its output
current. It can be concluded from Figure 21 that the proposed converter can cooperate well in the
HESS whether the load is suddenly changed or not.
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The efficiencies of the proposed converter in the step-up and step-down modes are shown
in Figure 22. In step-up mode, Uhigh is 200 V and Ulow varies from 25 V to 60 V continuously;
in step-down mode, Ulow is 25 V and Uhigh varies from 80 V to 200 V continuously. According to
Figure 22, the efficiency varies from 91.52% to 94.80% in step-up mode, which is slightly lower than
that in the step-down mode (varies from 92.01% to 95.30%). With the constant load power in step-up
mode, the efficiency decreases accompanied by the input voltage declining due to the increasing losses
caused by the growing input current. In the step-down mode, the efficiency decreases with the increase
of high side voltages. Due to the increase in the high side voltages, the voltage stresses of the power
semiconductors increase. Therefore, the turn on/off losses of the power semiconductors will increase.Energies 2018, 11, x FOR PEER REVIEW  20 of 22 
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5. Conclusions

A new common grounded H-type bidirectional converter was proposed in this paper. It has the
advantages of a wide voltage conversion ratio and a good dynamic response in both step-down and
step-up operation modes. In addition, only one inductor is used in this converter, and the inductor is
charged and discharged twice during each switching period, which results in a low inductor current
ripple and a small size for this converter. Due to the use of a capacitor-clamped H-type structure,
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the proposed converter can avoid the narrow pulse of the PWM voltage waveforms while achieving
a high voltage conversion ratio. Besides, the efficiency of the converter is improved because the
slave active power switches turn on and turn off with zero voltage. In order to prove the feasibility,
the proposed converter was implemented in the laboratory with the proper voltage conversion ratio
(3.3–8 in step-up mode and 1/8–1/3 in step-down mode). A theoretical analysis and experimental
results proved that the proposed converter is suitable for connecting a low-voltage SC to a high-voltage
DC bus.
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