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Abstract: Bad weather, mechanical failures, air control, and crew members of the discomfort health
are very likely to cause flight delays. If these events occur, decision-makers of airport operation
must rediscover the flight schedules through reassigning gates to these flights, delaying flights,
and canceling flights. Therefore, it is important to study the recovery strategy with the feasibility
and the least cost for delayed flights and to improve the airport operation efficiency. In this paper,
a mathematical model of gate reassignment based on the objectives of the loss of passengers, airport
operating, and airlines, and the most important index of disturbance value of the gate reassignment for
delayed flights is constructed. Then, the genetic algorithm (GA) and ant colony optimization (ACO)
algorithm are combined in order to propose a two-stage hybrid(GAOTWSH) algorithm, which is
used to solve the constructed mathematical model of gate reassignment for delayed flights. The test
data from the operations of the one airport is used to simulate and demonstrate the performance
of the constructed mathematical model of gate reassignment for irregular flights. The results show
that the proposed GAOTWSH algorithm has better optimization performance and the constructed
gate reassignment model is feasible and effective. The study provides a new idea and method for
irregular flights.

Keywords: gate reassignment; flight delays; two stage hybrid algorithm; optimization performance;
disturbance

1. Introduction

With the rapid development of air transport, the gates have become one of the bottlenecks of
airport resource operation. The gate assignment is to assign flights to the gates according to the certain
rules and the flight schedule by the airport controller [1]. Airport resource operation is very complex,
bad weather, aircraft failure, air control, crew members of their own discomfort health, and other
reasons are very likely to cause flight delays. If the flight delays are not handled promptly and fast, it
will affect the operation, revenue, decision-making efficiency, and passenger satisfaction, and so on of
the whole airport, as well as the airlines [2]. When the flight delays occur, the airlines must adjust their
flight schedules, such as delaying flights, canceling flights, resetting aircraft routes, reassigning crew
members, or assembling new units and rearranging passengers, and so on. Therefore, the airport must
be combined with the status of flight operation, on the basis of the original gate assignment schedule,
the gates are constantly reassigned in order to ensure the efficiency of gates, reduce the operation
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cost of airlines, and improve the service level of the airport. Consequently, it is one of the important
ways in how to study the recovery strategy with the feasibility and the least cost for the assignment of
delayed flights in order to improve the airport operation efficiency.

These have greatly increased the probability of flight delays, and at the same time, the flight
delays factors are complex and diverse. Airlines have their own reasons and non-airline reasons.
Therefore, the flight delay is a worldwide problem that puzzles the air transportation. The flight delay
does not only bring a lot of inconvenience to the passengers, but also causes the airlines to suffer
economic losses, and seriously threatens the safety of the airport and the airspace. Over the past
few decades, a lot of researchers and experts have proposed some methods to solve the problem of
flight delays, such as linear programming, genetic algorithm, simulated annealing, particle swarm
optimization algorithm, ant colony optimization algorithm, and other algorithms. Although these
methods better solve the gate problem of delayed flights, take on relatively easy implementing and
operation, the scheduling efficiency and solving accuracy are too low.

Genetic algorithms (GA) [3] is a metaheuristic inspired by imitating the processes that are observed
during natural evolution. It is a parallel, random, and adaptive search method, it can avoid the local
optimization result, but it exists in the relatively long calculation time, cannot guarantee the solution
quality. Ant colony optimization (ACO) [4] is a metaheuristic inspired by imitating the behavior of
real ants. It is a heuristic global optimization algorithm in essence, which has the characteristics of
distributed computation, information positive feedback, and heuristic search. But it exists the longer
search time, and is easy to appear the stagnation due to the found same solutions by all ants. Therefore,
in this paper, on the basis of analyzing gates of airport, the operation management of the airport,
and flight delays, an efficient optimization model of gate reassignment problem, which is based on
the objectives of the loss of passengers, airport operating, and airlines, and the most important index of
disturbance value of the gate reassignment for delayed flights is constructed. A new two-stage hybrid
algorithm based on the GA and ACO (GAOTWSH) algorithm is proposed in this paper to solve
the gate reassignment model for flight delays. An actual application case is used to test and verify
the effectiveness of the constructed gate reassignment model and the proposed GAOTWSH algorithm.

The remainder of the paper is organized as follows. The related work is described in Section 2.
A gate reassignment model is constructed in Section 3. In Section 4, the ant colony optimization
algorithm is introduced and two stage hybrid algorithm is proposed. In Section 5, data simulation and
analysis are introduced in detail. Finally, the conclusions are offered and future research direction is
discussed in Section 6.

2. Related Work

Flight delays have become a worldwide problem for airlines and travelers. A large number of
flight delays not only bring economic losses to airlines and passengers, but also damage the reputation
and competitiveness of airlines. Therefore, the gate assignment and reassignment problems have
already been studied by many researchers and experts. Pan and Wey [5] proposed an efficient gate
reassignment algorithm GRASS for inverter minimization in post technology mapping. Gu and
Chung [6] proposed a genetic algorithm approach to solving the gate reassignment problem in order
to efficiently find minimum extra delayed time solutions. Wong et al. [7] identified the causes, as well
as the practical measurement of aircraft flight delays. The performance of air traffic management is
measured by examining the technical delays and scheduled timetable delays, which are derived from
a mathematical programming model. Lo et al. [8] proposed a model to predict the variation with time
of the multipath delay for a jet aircraft or other broadband acoustic source in level flight with constant
velocity over a hard ground. Yan and Tang [9] proposed a heuristic approach embedded in a framework
that was designed to help the airport authorities make airport gate assignments that are sensitive
to stochastic flight delays. The framework includes three components, a stochastic gate assignment
model, a real-time assignment rule, and two penalty adjustment methods. Yan et al. [10] proposed a
model that will assist in the reassignment of flights to common-use check-in counters following airport
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incidents. Yan et al. [11] proposed a reassignment model based on minimizing the number of gate
changes for the purpose of helping airport authorities with flight-to-gate reassignments following
temporary airport closures. Churchill et al. [12] proposed the examined the delay propagation
in spatial and temporal terms. Two models, each incorporating different levels of fidelity and
flexibility, are applied in an effort to examine this phenomenon. Eun and Bang [13] proposed
the optimization problem and algorithm branch-and-bound algorithm with linear programming
and Lagrangian dual decomposition for a decision-support tool for air-traffic control, which uses
discrete delay times as optimization variables. Tang et al. [14] proposed a gate reassignment framework,
and a systematic computerized tool, for repeatedly handling gate reassignments when given varied
flight delay information. Maharjan and Matis [15] proposed a binary integer program based on
minimizeing the total walking distance of those passengers either connecting or originating at an
airport for the optimal reassignment of planes to gates in response to day-of flight delays. Tang [16]
proposed a gate reassignment model to deal with temporary gate shortages and stochastic flight
delays for the Taiwan Taoyuan airport. Yan et al. [17] proposed a gate reassignment model to
consider both deterministic and stochastic flight departure/arrival times. A 0–1 integer programming
technique is applied to formulate the model. Deshpande and Arikan [18] examined the impact of
the scheduled block time that was allocated for a flight, a factor controlled by airlines, on on-time
arrival performance. Li et al. [19] proposed a multi-objective programming model for airport gate
reassignment based on the concept of disruption management to improve the efficiency of gate
reassignment and to optimize the plan of gate reassignment. Wang et al. [20] proposed a real-time
gate reassignment model based on the objective functions of minimizing the disturbance and penalty
function in order to improve airport sources and service quality of travelers. ACO is presented to
simulate and verify the effectiveness of the model. Farley et al. [21] proposed the algorithm basic
reduction yare approach for flights, for minimizing the airline passenger trip delay. Wu et al. [22]
studied the robust stability and stabilization problem of uncertain networked flight control system
with random time delays. Radivojevic and Milbredt [23] proposed a decision support system tool
based upon an examination made from the airlines’ operational point of view and for determined
prioritization strategy for use in the disruption management of the airline operation control centre.
Montlaur and Delgado [24] compared different optimization strategies for the minimization of
flight and passenger delays at two levels: pre-tactical, with on-ground delay at origin, and tactical,
with airborne delay close to the destination airport. Zhang and Klabjan [25] proposed an efficient
gate re-assignment methodology to deal with the disruptions, in which the objective function is to
minimize the weighted sum of the total flight delays, the number of gate re-assignment operations,
and the number of missed passenger connections. Yu et al. [26] proposed a novel heuristic approach
to solve the integrated gate reassignment and taxiway scheduling based on considering the runway
restriction, gate allocation, and taxiway conflict. Takeich [27] proposed the nominal flight time
optimization strategies through the estimation/resolution of the delay accumulation, and discussed its
feasibility. Marla et al. [28] proposed a novel approach addressing airline delays and recovery. The used
mechanisms include aircraft swaps, flight cancellations, crew swaps, reserve crews, and passenger
rebooking. Xu and Prats [29] proposed an approach to implement linear holding for flights that were
initially subject to ground holding, in the context of Trajectory Based Operations for neutralizing
additional delays raised from the lack of coordination between various traffic management initiatives
and without incurring extra fuel consumption.

For solving methods of the gate assignment or reassignment, many researchers proposed a
lot of solving methods in the past few decades, such as linear programming methods, numerical
calculation methods, and intelligent algorithms. Genç et al. [30] proposed a method based on
combining the benefits of heuristic approaches with some stochastic approaches. Gu and Sheng [31]
proposed a regularization path algorithm for ν-support vector classification. Fu et al. [32] proposed an
efficient multi-keyword fuzzy ranked search scheme. Xue et al. [33] proposed a self-adaptive artificial
bee colony algorithm based on the global best candidate for solving global optimization problems.
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Gu et al. [34] proposed an effective incremental support vector ordinal regression formulation based
on a sum-of-margins strategy. Zhang et al. [35] proposed an optimal cluster-based mechanism for load
balancing with multiple mobile sinks. Wang et al. [36] proposed a back propagation neural network
model by using solar radiation to establish the relationship. Liu et al. [37] proposed a speculative
approach for spatial-temporal efficiency with multi-objective optimization. Pan et al. [38] proposed
an efficient motion estimation and disparity estimation algorithm for reducing the computational
complexity. Xiong et al. [39] proposed a novel reversible data hiding scheme using integer wavelet
transform, histogram shifting, and orthogonal decomposition. Kong et al. [40] proposed a belief
propagation-based optimization method for solving task allocation problem. Chen et al. [41] proposed
an improved quaternion principal component analysis method for processing nonlinear quaternion
signals. Gu et al. [42] proposed a structural minimax probability machine for constructing a margin
classifier. Wang et al. [43] proposed a novel multi-watermarking scheme based on hybrid multi-bit
multiplicative rules. Zhang et al. [44] proposed a special model known as RELAX-RSMN with a totally
unimodular constraint coefficient matrix to solve the relaxed 0–1 ILP rapidly through linear programming.
Rong et al. [45] proposed a novel K+-isomorphism method to achieve the K-anonymization state among
subgraphs. Ma et al. [46] proposed an efficient overlapping community detection algorithm based on
structural clustering. Deng et al. [47] proposed a novel collaborative optimization algorithm for solving
complex problems. Deng et al. [48] proposed an improved PSO algorithm for solving the gate assignment
problem. Other solving methods are proposed [49–52].

After the domestic and international research findings of the gate reassignment are reviewed, most
of the studies reassigned the delayed flights from the perspective of passengers under the determined
flight information. But in the process of actual operation, the airport cannot obtain all of the departure
and departure flight information in real time. The first-come first service algorithm is used to
reassign the delayed flights to the gates in China. Although this algorithm is relatively easy to
implement and operate, it exists with the low scheduling efficiency and it easily causes excessive
delays. Therefore, on the premise of ensuring safety and obeying the capacity limitation of the whole
airport, a gate reassignment model based on the objectives of the loss of passengers, airport operating,
and airlines, and the most important index of disturbance value is constricted and a two stage hybrid
algorithm based on GA and ACO algorithm is proposed in this paper to solve the constructed gate
reassignment model.

3. Construct a Gate Reassignment Model

3.1. Gate Reassignmet Modeling for Delayed Flights

In the actual operation of the airport, due to some uncertain factors, such as bad weather,
mechanical failures, air control, and crew members of the discomfort health, some flights are delayed.
In this time, the airport need to quickly and dynamically adjust the subsequent flights in order to meet
the actual needs. In addition to the scientific, fair and reasonable optimization adjustment can meet
the multi-stakeholder needs of the airlines, airports, and passengers, so as to maximize the service level
and efficiency of the civil aviation. However, in most of the papers for the flight delays, the two aspects
of airlines and passengers loss are considered, the increased costs of airport operating do not take into
account in most of papers. Therefore, this study does not only take into account the loss of airlines
and passengers, but also takes into account the increased costs of airport operating. Under different
conditions, the weights of the three factors may be different. For example, when the flight delay time is
longer, the loss of passengers should be mainly taken into account. Therefore, the weight of passengers
is increased in order to reflect the characteristics of public infrastructure industry. Based on the anlaysis,
in this paper, the gate reassignment for delayed flights mainly considers the loss of passengers, airport
operating, and airlines, which are minimized as the objective function, and the most important index
of disturbance value for the gate reassignment for delayed flights is regarded as the objective function
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in order to construct the gate reassignment model for delayed flights. The disturbance value indicates
the planned gate assignment to equal to the gate reassignment.

(1) The objective function of the least weighted sum of the loss of passengers

f1 = min
m

∑
i=1

n

∑
j=1

[Ti × Pi × 3
√
((RAi − Ai)× xij/60)2/29 + Si × Ti × (RAi − Ai)× xij + Ci × yi] (1)

(2) The objective function of the least weighted sum of the cost of airport operating

f2 = min[Hi × Ti × (RAi − Ai)× xij + Di × yi] (2)

(3) The objective function of the least weighted sum of the economic loss of airlines

f3 = min[gk × (RAi − Ai)× xij + Ei × yi] (3)

F1 = min
m
∑

i=1

n
∑

j=1
{w1 × [Ti × Pi × 3

√
((RAi − Ai)× xij/60)2/29 + Si × Ti × (RAi − Ai)× xij + Ci × yi]+

w2 × [Hi × Ti × (RAi − Ai)× xij + Di × yi] + w3 × [gi × (RAi − Ai)× xij + Ei × yi]
} (4)

(4) The objective function of the most important index of disturbance value for the gate
reassignment for delayed flights

F2 =
n

∑
i=1

zdi (5)

where m is the number of gates, n is the number of flights, Ai is the planned arrival time of the ith
flight, Di is the planned departure time of the ith flight, RAi is the actual arrival time of the ith flight,
RDi is the actual departure time of the ith flight, Si is the loss of each passenger of the ith flight in unit
time, Ci is the increased loss of each passenger of the canceled ith flight (8 h), Di is the increased loss
of airport of the canceled ith flight (8 h), Ei is the increased loss of airport of the canceled ith flight
(8 h), Hi is the recovery cost of each passenger of the ith flight (including compensation, resettlement
fees, transfer fees and so on), TDmax is the maximum delay time, Ti is the number of passengers of
the ith flight, Pi is the price of the ith flight, w1, w2 and w3 are the weights of passengers, airport and
airline. gi is delay cost of the ith flight in unit time (70 for large flight, 50 for medium flight and 30 for
small flight).

In the gate reassignment model, xij, zdi and yi are 0–1 variables, which are defined as follows.

xij =

{
1 The ith flight is reassigned to the jth gate
0 Otherwise

zdi =

{
1 The ith flight is assigned to the planned gate
0 Otherwise

yi =

{
1 The ith flight is canceled
0 Otherwise

The constructed objective function can better ensure the planned gate assignment, least reassign
the gates, reduce unnecessary trouble for passengers and staff, and meet the needs of real-time operation
of the airport. This objective function is alsothe first satisfied target function in real-time assignment.

3.2. Linearize the Gate Reassignment Model

Set the weighting factor of v1 (0 ≤ v1 ≤ 1) and v2 (0 ≤ v2 ≤ 1). Suppose the objective function

is Z =
2
∑

q=1
vqFq. For the two different objective functions of F1 and F2, the values of actual objective

function of F1 and F2 are not easily determined, and the difference between the value of actual objective
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function of F1 and the value of actual objective function of F2 could be very huge. Therefore, it is
difficult to obtain the satisfied optimal solution by simply adjusting the weighting factors. In this
paper, the objective functions of F1 and F2 are linearized as follow.

Fmax1 = max{|F1|} and Fmax1 6= 0 (6)

Fmax2 = max{|F2|}and Fmax2 6= 0 (7)

Z′ =
2

∑
q=1

vqFq/Fmaxq (8)

In the actual process, it is difficult to simply determine the Fmax1 and Fmax2. Therefore, for
the values of the Fmax1 and Fmax2, it is necessary to select a set of empirical values, and finally
the objective function eventually linearized as follow.

Z′ =
v1

Fmax1
× F1 +

v2

Fmax2
× F2 (9)

4. Two Stages Hybrid Algorithm

4.1. GA

Genetic algorithms (GA) [3] is a class of population-based stochastic search techniques that solves
problems by imitating processes observed during natural evolution. It is based on the principle
of the survival and reproduction of the fitness. GA continually exploits new and better solutions
without any pre-assumptions, such as continuity and unimodality. GA is provided as the parallel
iterative algorithm with a certain learning ability, which repeats evaluation, selection, crossover,
and mutation after initialization until the stopping criteria are reached. It has been widely applied to
many complex optimization problems, such as function optimization, multi-objective optimization,
traveling salesmen problem, and so on. GA shows its merits for optimization problems; especially as it
is propitious to the problems of multiple optimum solutions. A real-coded GA is a genetic algorithm
representation that uses a vector of floating-point numbers instead of 0’s and 1’s for implementing
chromosome encoding. With some modifications of the genetic operators, the real-coded GA has a
better performance than the binary-coded GA for traveling salesman problem. The crossover operator
of a real-coded GA is performed by the borrowing concept of convex combination. Searching process
of the GA is shown in Figure 1.
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4.2. ACO Algorithm

ACO algorithm was proposed by Dorigo [4]. It is a metaheuristic that is inspired by the behavior
of real ants in search of the shortest path to food sources. Ants tend to choose the paths marked
by the strongest pheromone concentration. The ACO algorithm is an essential system that is based
on agents that simulate the natural behavior of ants, including the mechanisms of cooperation and
adaptation. It simulates the techniques that are employed by real ants to rapidly establish the shortest
route from a food source to their nest and vice versa without the use of visual information. The ACO
algorithm consists of a number of cycles (iterations) of solution. In each iteration, a number of
ants construct complete solutions by using heuristic information and the collected experiences of
previous population of ants. These collected experiences are represented by using the pheromone trail,
which is deposited on the constituent elements of a solution. The pheromone can be deposited on
the components and/or the connections used in a solution depending on solving problem. The flow of
ACO algorithm is illustrated in Figure 2.
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Ants are insects that live together. Since they are blind animals, they find the shortest path from
nest to food with the aid of pheromone. The pheromone is the chemical material that is deposited by
ants, which serves as the critical communication media among ants, thereby guiding the determination
of the next movement [29]. On the other hand, ants find the shortest path based on intensity of
pheromone that is deposited on different paths. Generally, the intensity of pheromone and the length
of the path are used to simulate the ant system. Initially, n ants are randomly placed on m nodes.
Then, in each construction step, each ant moves to a node it has not yet visited based on a probabilistic
decision. When it completes a tour, it lays a substance called pheromone trail on the edges. In the ACO
algorithm, we define a list of nodes that the kth ant cannot choose as the next node. This list is called
Tabuk, which includes all of the customer nodes that have been visited by the kth ant until the current
state in addition to all of the depots except the one that the current tour has been started from. Assume
that there are n cities and m ants, at the same time assuming that the initial intensity of pheromone
on each edge is set to a very small non-zero positive constant, τ0. In each cycle, each ant starts at a
stochastic chosen city, and then visits the other cities once and only once according to the transition
rule based on the initial intensity of pheromone. When the ants complete the routes of one cycle,
the length of one cycle will be computed. Then, the intensity of pheromone will be updated by using
the pheromone update rule. The procedure of pheromone update rule is shown as follows:
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(1) The transition rule

In the route, the kth ant starts from city r, the next city s is selected among the unvisited cities
memorized in Jk

r according to the following formula:

s = arg
u∈Jk

r

max[τi(r, u)α · η(r, u)β]if q ≤ q0 (Exploitation) (10)

To visit the next city s with the probability pk(r, s),

pk(r, s) =


τ(r, s)α · η(r, s)β

∑
u∈Jk

r

τ(r, u)α · η(r, u)β
if s ∈ Jk

r

0 otherwise

if q > q0 (Bias Exploitation) (11)

In two formulas, pk(r, s) is the transition probability, τ(r, u) is the intensity of pheromone between
city r and city u in the ith group, η(r, u) is the length of the path from city r to city u, Jk

r is the set of
unvisited cities of the kth ant in the ith group, the parameter α and β are the control parameters, q is a
uniform probability [0, 1].

(2) The pheromone update rule

In order to improve the solution, the pheromone trails must be updated. Trail updating includes
local updating and global updating. The local trail updating formula is given by:

τ(r, u) = (1− ρ)τ(r, s) +
m

∑
k=1

∆τk(r, s) (12)

In the formula (11), ρ (0 < ρ < 1) is the pheromone trial evaporating rate. ∆τk(r, s) is the amount
of pheromone trail added to the edge(r,s) by ant k between time t and t + ∆t in the tour. It is given by:

∆τk(r, s) =


Q

∑ Lk
(r, s) ∈ πk

0 otherwise
(13)

where Q is a constant parameter, Lk is the distance of the sequence πk toured by ant in ∆t.

4.3. Two Stages Hybrid Algorithm

4.3.1. The Idea of Two Stages Hybrid Algorithm

Genetic algorithm (GA) is an adaptive random search method that is based on natural selection
and genetic theory. It recombines feasible solutions in the multidimensional space to improve
the trajectory or tendency of the solution by maintaining a set of feasible solutions for reaching
the optimal solution. The GA has the advantages of global optimization, strong robustness, and overall
optimization for solving complex problems, but it has poor performance for solving large-scale or
large scale multivariable solution tasks. ACO has the characteristics of distributed computing and
positive feedback mechanism, shows strong robustness and heuristic search, and takes on the higher
efficiency for solving combinatorial optimization problems. But it contains a longer calculation time,
slow convergence speed, and it is easy to fall into local optimum. The uniform distribution of initial
pheromone causes the blindness of initial pheromone distribution and a slow convergence in the early
stage. Therefore, in order to comprehensively use the respective characteristics of GA and ACO
algorithm and realize the complementary advantages and increase the value of information, a two
stage hybrid(GAOTWSH) algorithm based on GA and the ACO algorithm is proposed to solve the gate
reassignment problem for flight delays. The whole process of GAOTWSH algorithm is divided into
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two stages. In the first stage, the basic GA is improved to propose an adaptive GA in order to improve
the solving range of GA. The evolution rate of each iteration of the adaptive GA is set in order to
avoid still iterate and waste a lot of time when the adaptive GA is reduced over a period of time.
The advantage of the adaptive GA is used to solve the gate reassignment problem for flight delays
and obtain a sub-optimal solution after a certain number of iterations are executed (called rough
search). In the second stage, the obtained sub-optimal solution is used to adjust the initial distribution
of pheromone of ACO algorithm in order to improve the searching speed. Then, the advantages of
the parallelism, positive feed back, and high precision solution of ACO algorithm are used for the gate
reassignment problem for flight delays in order to complete the solving of the gate reassignment
problem for the whole flight delays (called fine search). Therefore, in solving the gate reassignment
problem of flight delays, the time efficiency of the proposed GAOTWSH algorithm is better than
the ACO algorithm, and the accuracy and efficiency of the proposed GAOTWSH algorithm are better
than the GA. It can be said that the proposed GAOTWSH algorithm is a complementary algorithm.
The fundamental purpose of the proposed GAOTWSH algorithm is to let the GA and ACO algorithms
overcome their weaknesses and to fully use the respective advantages and characteristics for improving
the convergence speed and the accuracy in the process of solving the gate reassignment problem.
The goal is to reduce the airport losses, minimize passenger losses and disappointments and fuel
consumption of airlines, and to obtain the best gate reassignment results.

4.3.2. The Flow of the Proposed GAOTWSH Algorithm

According to the idea of two stage hybrid algorithm, the flow of the proposed GAOTWSH
algorithm based GA and ACO algorithm is shown Figure 3.

Symmetry 2017, 9, 258  9 of 17 

 

algorithm is proposed to solve the gate reassignment problem for flight delays. The whole process 
of GAOTWSH algorithm is divided into two stages. In the first stage, the basic GA is improved to 
propose an adaptive GA in order to improve the solving range of GA. The evolution rate of each 
iteration of the adaptive GA is set in order to avoid still iterate and waste a lot of time when the 
adaptive GA is reduced over a period of time. The advantage of the adaptive GA is used to solve 
the gate reassignment problem for flight delays and obtain a sub-optimal solution after a certain 
number of iterations are executed (called rough search). In the second stage, the obtained 
sub-optimal solution is used to adjust the initial distribution of pheromone of ACO algorithm in 
order to improve the searching speed. Then, the advantages of the parallelism, positive feed back, 
and high precision solution of ACO algorithm are used for the gate reassignment problem for flight 
delays in order to complete the solving of the gate reassignment problem for the whole flight delays 
(called fine search). Therefore, in solving the gate reassignment problem of flight delays, the time 
efficiency of the proposed GAOTWSH algorithm is better than the ACO algorithm, and the 
accuracy and efficiency of the proposed GAOTWSH algorithm are better than the GA. It can be said 
that the proposed GAOTWSH algorithm is a complementary algorithm. The fundamental purpose 
of the proposed GAOTWSH algorithm is to let the GA and ACO algorithms overcome their 
weaknesses and to fully use the respective advantages and characteristics for improving the 
convergence speed and the accuracy in the process of solving the gate reassignment problem. The 
goal is to reduce the airport losses, minimize passenger losses and disappointments and fuel 
consumption of airlines, and to obtain the best gate reassignment results. 

4.3.2. The Flow of the Proposed GAOTWSH Algorithm 

According to the idea of two stage hybrid algorithm, the flow of the proposed GAOTWSH 
algorithm based GA and ACO algorithm is shown Figure 3. 

 

Figure 3. The flow of the new two-stage hybrid algorithm based on the GA and ACO (GAOTWSH) 
algorithm. 

4.3.3. The Steps of the Proposed GAOTWSH Algorithm 

According to the idea of two stage hybrid algorithm, the steps of the proposed GAOTWSH 
algorithm based GA and ACO algorithm is described as follows. 

Figure 3. The flow of the new two-stage hybrid algorithm based on the GA and ACO
(GAOTWSH) algorithm.

4.3.3. The Steps of the Proposed GAOTWSH Algorithm

According to the idea of two stage hybrid algorithm, the steps of the proposed GAOTWSH
algorithm based GA and ACO algorithm is described as follows.

Step 1. Read flight information and initialize the parameters of GA.
Step 2. The initial solution is randomly generated. The selection factor, crossover factor and mutation

factor are obtained according to the elitist strategy and the offline ranking selection method.
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Step 3. Implement selection operation, crossover operation and mutation operation.
Step 4. Determine whether the three successive generations are less than the evolution rate,

and the number of iterations is larger than the maximum iterations. If the three successive
generations are less than the evolution rate and the number of iterations is larger than
the maximum iterations, then continue Step 5. Otherwise go to Step 3.

Step 5. The several optimization solutions are generated by suing adaptive GA, then the optimization
solutions are used to initialize the initial pheromone concentration of ACO algorithm.

Step 6. The parameters of ACO algorithm are initialized. The number of gates and sub-populations
and ants are set according to the number of flight delays. The unvisited nodes are filled in
the Tabuk table.

Step 7. The optimal solutions of ants are searched by using ACO algorithm.
Step 8. The pheromone concentrations of the ACO algorithm are updated, and the Tabuk table

is cleaned.
Step 9. Determine whether the number of iterations reaches the maximum number of iterations.

If the number of iterations reaches the maximum number of iterations, the continue Step 10.
Otherwise go to Step 7.

Step 10. Obtain the optimal solution and the optimal scheme of the gate reassignment.

5. Case Analysis

5.1. Experimental Data and Environment

A domestic airport is selected as study case in this paper. 100 available gates for 500 flights are
used to test and simulate. The pre-assigned flight schedule came from the actual assigned schedule
under the normal landing condition, and there are the total of 147 delayed flights according to the flight
timetable. The information of flights is shown in Table 1. The 100 available gates include 60 boarding
gates and 40 remote boarding gates. These remote boarding gates are large gates. The 60 boarding
gates include 36 large gates, 22 medium gates and two small gates. The information of gates is shown
in Table 2.

Table 1. The information of flights.

Code Price Passengers Type
Planed
Arrival
Time

Planed
Departure

Time

Actual
Arrival
Time

Actual
Departure

Time

Delayed
Time
(m)

Pre-Assigned
Gate

1 3565 256 Medium 2015-7-26
6:00:00

2015-7-26
8:20:00

2015-7-26
6:00:00

2015-7-26
8:20:00 - 19

2 3058 606 Large 2015-7-26
6:00:00

2015-7-26
14:30:00

2015-7-26
6:00:00

2015-7-26
14:30:00 - 54

3 2483 298 Medium 2015-7-26
6:20:00

2015-7-26
8:00:00

2015-7-26
6:20:00

2015-7-26
8:00:00 - 17

4 1173 378 Large 2015-7-26
6:55:00

2015-7-26
9:10:00

2015-7-26
6:55:00

2015-7-26
9:10:00 - 21

5 1248 298 Medium 2015-7-26
7:50:00

2015-7-27
2:50:00

2015-7-26
7:50:00

2015-7-27
2:50:00 - 1

6 3022 606 Large 2015-7-26
7:55:00

2015-7-26
9:50:00

2015-7-26
7:55:00

2015-7-26
9:50:00 - 34

7 2249 378 Large 2015-7-26
8:15:00

2015-7-27
3:00:00

2015-7-26
8:45:00

2015-7-27
3:00:00 30 53

8 974 312 Large 2015-7-26
8:20:00

2015-7-26
9:20:00

2015-7-26
8:20:00

2015-7-26
9:20:00 - 37

9 3079 362 Large 2015-7-26
8:25:00

2015-7-26
10:05:00

2015-7-26
9:00:00

2015-7-26
10:05:00 35 93

10 1248 98 Small 2015-7-26
9:10:00

2015-7-26
10:10:00

2015-7-26
9:10:00

2015-7-26
10:10:00 - 55

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

500 1421 378 Large 2015-7-26
23:55:00

2015-7-27
9:10:00

2015-7-26
23:55:00

2015-7-27
9:10:00 - 27
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Table 2. The information of gates.

Code Type Attribute Started Time Closed Time

1 Large Boarding 2015-7-26 6:00 2015-7-26 23:59
2 Medium Boarding 2015-7-26 6:00 2015-7-26 23:59
3 Large Boarding 2015-7-26 6:00 2015-7-26 23:59
4 Large Boarding 2015-7-26 6:00 2015-7-26 23:59
5 Large Boarding 2015-7-26 6:00 2015-7-26 23:59
6 Large Boarding 2015-7-26 6:00: 2015-7-26 23:59
7 Large Boarding 2015-7-26 6:00 2015-7-26 23:59
8 Medium Boarding 2015-7-26 6:00 2015-7-26 23:59
9 Medium Boarding 2015-7-26 6:00 2015-7-26 23:59
10 Large Boarding 2015-7-26 6:00 2015-7-26 23:59

..
.

..
.

..
.

..
.

..
.

60 Medium Boarding 2015-7-26 6:00 015-7-26 23:59
61 Large Remote 2015-7-26 6:00 015-7-26 23:59

..
.

..
.

..
.

..
.

..
.

100 Large Remote 2015-7-26 6:00 015-7-26 23:59

The experiment environment is the Intel Core i3-4005U, 1.70 GHz, 12.0 GB RAM, Wind 10,
and Matlab 2014a (MathWorks Company, Natick, MA, USA). In order to demonstrate the optimization
performance of the proposed GAOTWSH algorithm, the GA and ACO algorithm are selected to
solve the constructed gate reassignment model. The initial parameters of the GA, ACO algorithm,
and GAOTWSH algorithm are selected after thorough testing. In the simulation experiments,
the alternative values were tested and modified for some functions in order to obtain the most
reasonable initial values of these parameters. These selected values of the parameters take on
the optimal solution and the most reasonable running time of these algorithms to efficiently complete
the problem solving. So the selected values of these parameters are described in Table 3.

Table 3. Parameters of the three algorithms.

Parameters GA ACO NGASAH

Population size (m1) 100 - 100
Ants (m2) - 100 100

Iteration time (Tmax) 100 100 100
Initial crossover probability (pc) 0.90 - 0.90
Initial mutation probability (pm) 0.05 - 0.05

Pheromone factor (α) - 2.0 2.0
Heuristic factor (β) - 4.0 4.0

Initial concentration τij - 1.5 1.5
Evaporation coefficient (ρ) - 0.80 0.80

Pheromone amount (Q) - 100 120

5.2. Experimental Results

Suppose that a minimum interval time T = 5 min between two consecutive flights to the same
gate is required to avoid conflict. The experiments were carried out for 30 consecutive simulation to
solve the constructed gate reassignment model for flight delays. Random 10 times simulation results
are selected to study and analyze in here. For 500 irregular flights, the gate reassignment results are
shown in Table 4.
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Table 4. The gate reassignment results.

Gate Total Number Gate Total Number Gate Total Number Gate Total Number
1 4 16 8 31 4 46 7
2 2 17 8 32 5 47 8
3 11 18 9 33 3 48 6
4 13 19 11 34 6 49 5
5 9 20 5 35 3 50 8
6 9 21 12 36 8 51 6
7 15 22 12 37 7 52 2
8 3 23 3 38 4 53 7
9 3 24 9 39 7 54 11

10 9 25 11 40 6 55 3
11 17 26 3 41 4 56 7
12 10 27 9 42 4 57 4
13 12 28 3 43 5 58 2
14 9 29 4 44 9 59 10
15 6 30 6 45 4 60 9

As can be seen from Table 4, for 60 boarding gates, 40 remote boarding gates and 500 flights,
there are 419 flights, which are assigned to 60 gates, there are 54 flights, which are assigned to
the apron and there are only 27 flights that are canceled. The reassigned rate for 500 flights is
94.6% and the canceled rate for 500 flights is only 5.4%. The gate reassignment result based on
the constructed mathematical model using the proposed GAOTWSH algorithm does not appear idle
gates, and the reassigned flights for each gate are relative uniformity. As is known from Table 4,
the constructed mathematical model of gate reassignment based on the objectives of the loss of
passengers, airport operating and airlines, and the most important index of disturbance value is
reasonable and effective. The proposed GAOTWSH algorithm can effectively solve the constructed
mathematical model of gate reassignment problem. The proposed GAOTWSH algorithm has better
optimization performance in solving the mathematical model of complex problem.

5.3. Result Comparison and Analysis

In order to demonstrate the optimization performance of the proposed GAOTWSH algorithm,
the GA and ACO algorithm are selected to solve the constructed gate reassignment model.
The comparison result for solving the constructed objective function is shown in Table 5 and Figure 4.
The comparison result of running time for solving the constructed objective function is shown in
Table 6 and Figure 5. The process of iteration for solving the constructed objective function is shown in
Figure 6.

Table 5. The comparison result for solving the constructed objective function.

Methods Index 1 2 3 4 5 6 7 8 9 10 AVG

GA

Iteration 71 71 60 49 61 72 70 66 72 71 66.3

Optimal
value 1.885 1.904 1.881 1.907 1.925 1.901 1.895 1.873 1.873 1.923 1.896

ACO

Iteration 128 187 180 156 98 175 120 117 137 182 148

Optimal
value 1.431 1.459 1.476 1.467 1.444 1.434 1.477 1.485 1.489 1.467 1.431

GAOTWSH

Iteration 155 137 182 89 183 110 98 163 163 153 143.3

Optimal
value 1.164 1.191 1.175 1.199 1.179 1.185 1.192 1.187 1.207 1.201 1.188
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Table 6. The comparison result of running time.

Methods 1 2 3 4 5 6 7 8 9 10 AVG

GA 134.3 129.2 127.6 126.8 127.2 127.2 128.7 128.1 127.2 126.3 128.3
ACO 164.6 166.3 164.2 174.1 162.4 162.2 163.3 169.2 162.8 164.8 165.4

GAOTWSH 183.6 175.1 175.6 171.1 176.1 172.4 168.9 172.3 169.1 169.8 173.4
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As can be seen from Tables 5 and 6, Figures 4–6, the optimal value and the average optimal
value of the objective function is 1.873 and 1.896, and the least running time and average running
time is 126.3 s and 128.3 s by using the GA, respectively. The optimal value and the average optimal
value of the objective function is 1.431 and 1.463, and the least running time and average running
time is 162.2 s and 165.4 s by using the proposed ACO algorithm, respectively. The optimal value
and the average optimal value of the objective function is 1.164 and 1.188, and the least running
time and average running time is 168.9 s and 173.4 s, by using the proposed GAOTWSH algorithm,
respectively. As is known from Tables 5 and 6, Figures 4–6, the optimal value and the average optimal
value of the objective function by using the proposed GAOTWSH algorithm are the least optimization
value than the optimal values and the average optimal values of the objective function by using
the GA and ACO algorithms. The experiment results show that the proposed GAOTWSH algorithm
can obtain the least optimization value; it has better optimization performance in solving the gate
reassignment problem. But, the least running time and average running time by using GA is the least
time. The proposed GAOTWSH algorithm need more time to solve the gate reassignment problem
due to two hybrids running.

In order to further analyze the optimization performance of the proposed GAOTWSH algorithm,
the objective function of the loss of passengers, airport operating and airlines, and the objective
function of the disturbance value of the gate reassignment for delayed flights are, respectively, selected
to study and analyze here. The comparison result of the disturbance value is shown in Table 7 and
Figure 7, the comparison result of the loss of passengers, airport operating, and airlines is shown in
Table 8 and Figure 8.

Table 7. The comparison result of the disturbance value.

Methods 1 2 3 4 5 6 7 8 9 10 AVG

GA 460 460 462 462 474 465 473 462 461 465 464.4
ACO 344 345 344 355 349 344 351 346 345 347 347

GAOTWSH 204 213 215 219 219 207 214 220 216 219 214.6

Table 8. The comparison result of the loss of passengers, airport operating and airlines.

Time 1 2 3 4 5 6 7 8 9 10 Average

GA 3.849 3.848 3.839 3.785 3.891 3.881 3.796 3.859 3.833 3.715 3.829
ACO 3.046 3.046 3.046 3.046 3.046 3.046 3.046 3.046 3.046 3.046 3.046

GAOTWSH 3.072 3.017 3.072 3.018 3.072 3.072 3.016 3.015 3.072 3.072 3.050
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