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Abstract: In the quest for higher-performance shared data structures, weakening consistency
conditions and relaxing the sequential specifications of data types are two of the primary tools
available in the literature today. In this paper, we show that these two approaches are in many
cases different ways to specify the same sets of allowed concurrent behaviors of a given shared data
object. This equivalence allows us to use whichever description is clearer, simpler, or easier to achieve
equivalent guarantees. Specifically, for three common data type relaxations, we define consistency
conditions such that the combination of the new consistency condition and an unrelaxed type allows
the same behaviors as Linearizability and the relaxed version of the data type. Conversely, for the
consistency condition k-Atomicity, we define a new data type relaxation such that the behaviors
allowed by the relaxed version of a data type, combined with Linearizability, are the same as those
allowed by k-Atomicity and the original type. As an example of the possibilities opened by our new
equivalence, we use standard techniques from the literature on consistency conditions to prove that
the three data type relaxations we consider are not comparable to one another or to several similar
known conditions. Finally, we show a particular class of data types where one of our newly-defined
consistency conditions is comparable to, and stronger than, one of the known consistency conditions
we consider.

Keywords: distributed data structures; relaxations; consistency conditions

1. Introduction and Background

Shared data types are an essential abstraction in distributed computing, as they provide
a consistent interface for multiple processes to interact with shared data. Shared data access is
more complex than local access, as multiple processes can concurrently access and change the stored
values. Thus, a single process cannot assume that it will find the same value in the shared object as it
last put there, which makes it non-trivial to interpret the value found in a shared object. The value
of a shared object may also not be well-defined when another process is changing a stored value
at the same time one is trying to read the value. A data type specification provides guarantees on
the changes that other processes may make, and defines the states which a shared data object may
take on. These guarantees ease the effort programmers building distributed systems must spend
on coordinating different processes. In addition, by abstracting and efficiently implementing the
oft-repeated tasks of shared data access and manipulation, overall program efficiency can be increased.

It is thus important to provide the best possible guarantees on the behavior of data types under
concurrent access to shared data while maintaining the efficiency of those interfaces. The study of
consistency conditions considers what guarantees may be provided or required on the behavior of
shared data objects under concurrent access. The strongest consistency condition, Linearizability [1],
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requires that all operations on shared data appear to all processes as if they happened sequentially,
in an order respecting the order of operations which do not overlap in real time. This makes program
design and reasoning about program correctness relatively easy, as we are familiar with sequential
program design and analysis. However, Linearizability is generally expensive to implement, in terms
of computation and communication delays. For example, Attiya et al. [2] showed that it is impossible
to linearizably implement many common data types without expensive synchronization steps; Attiya
and Welch [3] showed that Linearizability is necessarily more expensive than sequential consistency;
Lipton and Sandberg [4] showed that requiring even a consistency weaker than Linearizability is
expensive; and Wang et al. [5] and Talmage and Welch [6] showed lower bounds on the worst-case and
amortized cost of certain operations under Linearizability. To avoid this cost, many weaker consistency
conditions have been proposed (see Viotti and Vukolic [7] for a review of consistency conditions
in the literature), allowing more concurrent executions while providing weaker guarantees on the
behavior of shared objects. Under these conditions, data types can be implemented more efficiently in
terms of operation response time than they can under Linearizability (e.g., [3]). Some work has been
done to explore classes of data types which, when implemented under a weak consistency condition,
give stronger behavioral guarantees than those of the consistency condition (e.g., [8]).

Another approach for increasing the efficiency of distributed data type implementations that has
recently gained popularity is to relax the sequential specification of the data type. Afek et al. [9] defined
a weak consistency condition in a manner similar to how we consider relaxations. Henzinger et al. [10]
formalized and generalized the notion of relaxations. Several papers have implemented a variety of
relaxed data types (e.g., [11]). By allowing some specific behaviors that were otherwise illegal, particularly
by allowing non-deterministic choices between possible behaviors, several papers have shown both
empirically and formally that it is possible to reduce the (amortized) implementation costs of data
types [6,10,12–14]. This does come at some cost to the computational strength of the implemented data
type [15,16]. Proposed applications for relaxed data types include relaxed sets as work-stealing queues
[17], counters that miss some increments but are statistically useful [9], and relaxed queues for webserver
request handling [18]. Data type relaxations are generally (to date) implemented under Linearizability,
so all new behaviors are specified sequentially. Sequential behaviors are often easier to understand,
and thus use correctly, than complex conditions on concurrent executions, which are hard to visualize.

In this paper, we explore the relation of these two different methods for improving the performance
of shared data type implementations. We show that the combination of Linearizability and three data
type relaxations common in the literature, k-Out-of-Order, k-Lateness, and k-Stuttering [10], can be
alternately defined as consistency conditions. That is, the set of concurrent executions which are
considered legal under Linearizability when working with the relaxed type is the same as the set
of concurrent executions which are legal under the new consistency condition and the original,
unrelaxed type. Conversely, we show, with the example of k-Atomicity, that some consistency
conditions can be separated into Linearizability and a sequential data type relaxation.

This partial equivalence means that for several common relaxations and consistency conditions,
the relaxation and consistency condition definitions are interchangeable. As an example of the
use of this interchangeability, we use ideas from the large body of work comparing the strengths
of different consistency conditions [7,19–21] to show that the consistency conditions equivalent to
k-Out-of-Order, k-Lateness, and k-Stuttering are distinct from similar previously known consistency
conditions. Despite this general distinction, for some particular data types, we show that k-Stuttering
is a strengthening of k-Atomicity.

A preliminary version of this work appeared as [22]. This paper extends that work by including
proofs and adding Section 7’s discussion of hybrid consistencies.



Algorithms 2018, 11, 61 3 of 18

2. Model

2.1. Data Types

An Abstract Data Type specifies an interface for interacting with data, and defines how a data object
instantiating that type will behave. Data type specifications consist of the possible operations which a
process may invoke and a set of sequences of operation invocation-response pairs, called instances,
which specify all possible return values an operation response may have, given a sequence of past
operations and an invocation. We here consider only objects with sequential specifications, as relaxation
of tasks without sequential specifications (see, e.g., [23,24]) has not been defined.

Definition 1. An Abstract Data Type consists of

1. A set OPS of operations and the sets args(OP) of valid arguments and rets(OP) of valid return values for
each OP ∈ OPS. An instance of an operation OP, denoted OP(arg, ret), contains the argument(s) arg
and the value(s) returned, ret. In a sequential environment, instances are indivisible, but we will consider
them as a distinct invocation and matching response in the distributed setting.

When either args(OP) or rets(OP) contains only a null value (⊥), we condense the notation to OP(arg)
or OP(ret), as appropriate.

2. A set L of sequences of operation instances, called legal sequences, which satisfies two properties:

(a) Prefix Closure: If a sequence ρ is in L, then every prefix of ρ is also in L.
(b) Completeness: If a sequence ρ is in L, then for every operation OP ∈ OPS and every argument

arg for OP, there is a response ret such that ρ.OP(arg, ret) is in L, where “.” represents
concatenation of sequences.

The intuitive notion of the state of a shared object is determined by the sequence of past operation
instances on that object. We say that two such, not necessarily equal, sequences π and ρ are equivalent,
denoted π ≡ ρ, if for any sequence σ where either π.σ or ρ.σ is legal, then ρ.σ or π.σ is also legal,
respectively. We classify operations by whether they change a shared object’s state, return information
about it, or both.

Definition 2. An operation OP of an abstract data type T is a mutator if there exists a legal sequence ρ of
instances of operations of T and an instance op of OP such that ρ 6≡ ρ.op. An operation OP is an accessor
if there exist legal sequences ρ, ρ′ of instances of operations of T and an instance aop of OP such that ρ.aop is
legal, but ρ′.aop is not legal.

An operation which is both an accessor and a mutator is a mixed operation. An operation which is a
mutator but not an accessor, or an accessor but not a mutator, is a pure mutator or accessor, respectively.

For example, in an RMW register, Read is a pure accessor, Write is a pure mutator, and
Read-Modi f y-Write is a mixed operation. In a FIFO queue augmented with Peek, Enqueue is a pure
mutator, Dequeue is a mixed operation, and Peek is a pure accessor. A data type does not need to have
all three kinds, as seen in a Read/Write register or classic queue without Peek.

Note that removing all instances of pure accessors from a sequence of operation instances π does
not change the state represented, so we denote this equivalent sequence containing only mutator
instances as π|m.

We next give two example definitions of classic data types we will use in this paper.

Definition 3 (Read/Write Register).

1. OPS = {Read, Write}, args(Read) = {⊥}, rets(Read) = Z,
args(Write) = Z, and rets(Write) = {⊥}.
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2. L is the set of all sequences in which every Write instance returns ⊥ and every Read instance returns the
argument of the last Write instance preceding it.

Definition 4 (FIFO Queue).

1. OPS = {Enqueue, Dequeue},
args(Enqueue) = Z, rets(Enqueue) = {⊥},
args(Dequeue) = {⊥}, and rets(Dequeue) = Z.

2. L is the set of all sequences in which every Enqueue instance returns ⊥ and every Dequeue instance
returns the argument of the first Enqueue instance whose argument has not yet been returned by a
Dequeue or ⊥ if no such Enqueue instance exists.

This requires that each Enqueue has a unique argument, but this is straightforward to achieve by,
e.g., applying logical timestamps to each Enqueue instance’s argument. In the rest of the paper we
assume that all operations invocations have unique arguments

2.2. Consistency Conditions

We consider an asynchronous, shared-memory model of computation among n processes. We split
operation instances into separate invocations and responses. Processes interact by invoking operations,
with arguments, on shared objects. Some time after an invocation, the object responds, giving the
process a return value. Computation takes the form of schedules. A schedule of a data type T is a
collection of sequences, one per process, of alternating invocations and responses of operations of T,
each occurring at some real time and with each response being of the same operation as the previous
invocation, so that they together form an instance of that operation. Each process’ sequence is either
infinite or ends in an operation response. In a schedule, we call two operation instances at different
processes overlapping if the real time of one instance’s invocation is between the real times of the
invocation and response of the other instance. Ordering non-overlapping instances by their start times
produces a partial order on all operation instances, called the schedule order.

Since data type specifications are inherently sequential, we need some way to relate a schedule of
a distributed system, which is inherently concurrent, to those specifications. A consistency condition
specifies what concurrent schedules are legal on a given data type.

Definition 5. A consistency condition C is a set of schedules defined to be legal on any data type T under C.

When discussing a consistency condition in conjunction with a particular data type, we implicitly
consider only the subset of schedules for that type. This definition overloads the term “legal” to refer
to schedules which correspond, by the consistency condition, to legal sequences on the given data type.
Equality of consistency conditions is set equality between sets of legal schedules [7].

As an example, we define Linearizability, which is used throughout the literature in combination
with relaxed data types, as it is the most intuitive consistency guarantee.

Definition 6 (Linearizability). A schedule E on a data type T is legal under Linearizability if there exists a
permutation Π of all operation instances in E such that: (1) if an instance op precedes another instance op′ in
the schedule order, then op precedes op′ in Π; and (2) Π is legal, according to the sequential specification of T.

Weaker consistency conditions may allow some reordering with respect to the schedule order.
For example, k-Atomicity for Read/Write registers, introduced in [25], allows Read operations to
get a “stale” value, possibly missing some updates which overlap or even immediately precede the
Read instance in the schedule order. This staleness is bounded by the constant k, ensuring that the
behavior is not arbitrary. In practice, the values “missed” can reflect Write instances which the process
invoking the Read has not yet heard about. That work gives probabilistic results showing that only
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requiring k-Atomicity can lead to implementations with higher proportions of operations which
succeed, meaning that processes do not need to retry as often, improving performance.

3. Relaxed Data Types

We here present definitions of several relaxations introduced in [10]. We restate these definitions
purely in terms of legal sequences of operation instances, where Henzinger et al. [10] combined
equivalence classes of such sequences to develop a state machine notation. Several authors [6,12–16]
used these and similar relaxations.

First, we consider the Out-of-Order relaxation. The definition of this relaxation does not
immediately appear to have anything to do with ordering, but when instantiated on operations
in ordered data structures such as Dequeue in queues and Pop in stacks, it causes those operations
to return an element up to k places out of order. One way to think about this is to imagine that by
deleting operation instances in the past, we are making the current instance act as if it is in a different
place in the permutation of all instances.

Definition 7 (k-Out-of-Order Relaxed ADT). Given any ADT T and an integer k ≥ 0, a k-Out-of-Order
relaxation of T, called T′, is defined as follows:

1. OPS(T′) = OPS(T)
2. A sequence Π of operation instances is legal in T′ if for every instance op where Π = π.op.ρ, there is

some sequence u.v.w, |v| ≤ k, which is a minimum-length sequence equivalent in T to π, and there exists
a sequence x, where

(a) u.w is legal in T and minimum-length among the set of sequences equivalent to it in T;
(b) u.w.op is legal in T; and
(c) i. u.w.op ≡ x.w and π.op ≡ x.v.w or

ii. u.w.op ≡ u.x and π.op ≡ u.v.x.

Intuitively, an instance op is allowed after some prefix π if some contiguous portion of the prefix
can be ignored. The relaxation does not want to consider past actions which have since been undone,
such as an overwritten write or removed element, so we replace π with a minimum-length sequence
equivalent to it (u.v.w). We then delete up to k consecutive mutator instances (v), making u.w.op legal
in the base type. Now, u.w.op being legal in T means that π.op is legal in a k-Out-of-Order relaxation T′

of an ADT T, but we need to specify what effect op had. We do this by saying that the set of sequences
legal in T′ after π.op is the same set as those legal after reinserting the deleted sequence of instances
(x.v.w or u.v.x, as appropriate). In this and other relaxations, we refer to T, the type from which the
relaxation is defined, as the base type.

Note that Henzinger et al. [10] defined the k-Out-of-Order relaxation to allow either deleting
(as above) or inserting up to k operation instances. We only allow deletions, as some operations could
have arbitrary behavior if we allowed arbitrary additions. For example, Dequeue on a relaxed queue
can return any value x, if we add Enqueue(x) to the beginning of the history. To avoid such problems,
we restrict our attention to Out-of-Order with respect to deleting past instances.

The next relaxation we consider is Lateness. This name comes because one way to view the relaxed
data type is that operations may act as out-of-order, each for any finite relaxation parameter, except that
each time an instance does not satisfy the specification of the base type, we increase a lateness counter.
That counter can never exceed k, and resets when an instance acts by the specification of the base type.
Thus, we can have instances arbitrarily far from the base type’s behavior, but are guaranteed that at
least one in every k consecutive instances behaves normally. For example, a relaxed Dequeue may
return and remove any element in the queue, as long as one in every k Dequeues returns the head.
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Definition 8 (k-Lateness Relaxed ADT). Given any ADT T and an integer k ≥ 1, a k-Lateness relaxation of
T, T′, is defined as follows:

1. OPS(T′) = OPS(T)
2. A sequence Π of operation instances is legal in T′ if for every instance op such that Π = π.op.ρ,

there exists l ≥ 0 such that π.op is legal by the semantics of an l-Out-of-Order relaxed T, and at least one
in every k consecutive mutator instances in Π|m must have l = 0.

Finally, we consider a relaxation with a different flavor. Instead of allowing operations to act
slightly incorrectly, this relaxation allows some mutator instances to have no effect on the state of
the shared object. That is, some mutators may “stutter” on the current object state, failing to change
it. Here, we only require that some fraction of mutator instances successfully change the object,
while others may fail to take effect. All instances must still return a value that is legal based on the
current state of the object. To do this, we track the subsequence of mutator instances in the schedule
that do not stutter. This subsequence, represented by π′i , is the history that determines the next
operation instance’s behavior. For example, a stuttering counter may hold the same value after up
to k consecutive increment() instances before increasing. Here, π′i consists only of those increment
instances which actually increased the counter’s value.

Definition 9 (k-Stuttering Relaxed ADT). Given any ADT T and an integer k ≥ 1, a k-Stuttering relaxation
of T, T′ is defined as follows:

1. OPS(T′) = OPS(T).
2. A sequence Π = op1.op2... of operation instances is legal in T′ if for every opi, with

Π = πi.opi.ρi, opi returns a value such that π′i .opi is legal in T, where π′i is a sequence of mutator
instances such that:

(a) π′1 = ε, the empty sequence;
(b) π′i ∈ {π′i−1, π′i−1.opi−1} for i > 1; and
(c) π′i includes at least one of every k consecutive mutators in πi.

4. Converting Relaxations to Consistency Conditions

Relaxing data types and weakening consistency conditions have so far been largely separate
methods of improving the performance of shared data types. In the next two sections, we show by
example that some relaxed data types under Linearizability can be equivalently defined as their base
types under weaker consistency conditions and vice versa.

The basic idea is to think of both consistency conditions and relaxations as functions. A consistency
condition reduces concurrent schedules to one or more sequences of operation instances, which can be
compared to the legal sequences of a given data type. We can view this as a function from the space
of possible concurrent schedules to the power set of possible operation instance sequences. A data
type relaxation takes a sequence of operation instances and transforms it to a sequence legal in the
base type. This is a function from the space of possible operation instance sequences to itself. Since the
codomain of consistency conditions is sets of elements of the domain of relaxations, we can compose
the two “functions”. The consistency condition can map a concurrent schedule to sequences that may
not be legal by the base type, but then we may transform them by the rules of a relaxation to be legal.
Thus, both collapsing concurrency and allowing some variance from the base set of legal sequences
can occur in the consistency condition.

Similarly, if a consistency condition requires a global ordering respecting the schedule order,
then adds other conditions, we show in Section 5 that we can split these conditions apart to have
Linearizability for the consistency condition and a relaxation of the original data type, while still
allowing the same set of concurrent schedules.
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We will start by defining several consistency conditions which are equivalent to the data type
relaxations introduced in Section 3. For each, the set of linearizable schedules legal for the relaxed
version of a data type is equal to the set of schedules legal for the original data type and the weaker
consistency condition. First, we discuss the Out-of-Order relaxation. This enables operations to return
values which are not legal by the specification of the base type T, but would be legal if a few other
instances had not occurred.

Definition 10 (OutofOrderCC(k)). A schedule of any ADT T satisfies OutofOrderCC(k), for an integer
k ≥ 0, if

1. There exists a permutation Π of all operation instances in the schedule, which respects the schedule order
of non-overlapping instances.

2. For every op ∈ Π, with Π = π.op.ρ, there is some sequence u.v.w, |v| ≤ k, which is a minimum-length
sequence equivalent in T to π, and there exists a sequence x, such that:

(a) u.w is legal in T and minimum-length among the set of sequences equivalent to it in T;
(b) u.w.op is legal in T; and
(c) i. u.w.op ≡ x.w and π.op ≡ x.v.w, or

ii. u.w.op ≡ u.x and π.op ≡ u.v.x.

Theorem 1. For any integer k ≥ 0, the set of schedules legal on a k-Out-of-Order relaxation of any ADT T
under Linearizability is the same as the set of schedules legal on T under OutofOrderCC(k).

We can similarly define consistency conditions LatenessCC(k) and StutteringCC(k) equivalent to
k-Lateness and k-Stuttering relaxed versions of a type T under Linearizability. By rolling the relaxation
into the consistency condition, it follows that the schedules legal on these relaxed data types under
Linearizability are those legal on the base type under a weaker consistency condition. Theorems 1, 2,
and 3 all hold by construction.

Definition 11 (LatenessCC(k)). A schedule of any ADT T satisfies LatenessCC(k), for an integer k ≥ 1, if

1. There exists a permutation Π of all operation instances in the schedule which respects the schedule order of
non-overlapping instances.

2. For every op ∈ Π, with Π = π.op.ρ, there exists l ≥ 0 such that π.op is legal by the semantics of an
l-Out-of-Order relaxed T, and at least one in every k consecutive mutator instances in Π must have l = 0.

Theorem 2. For any integer k ≥ 1, the set of schedules legal on a k-Lateness relaxation of any ADT T under
Linearizability is the same as the set of schedules legal on T under LatenessCC(k).

Definition 12 (StutteringCC(k)). A schedule of any ADT T satisfies StutteringCC(k), for an integer k ≥ 1, if

1. There exists a permutation Π = op1.op2... of all operation instances in the schedule, respecting the
schedule order of non-overlapping instances.

2. For every instance opi in Π, let Π = πi.opi.ρi. opi returns a value that such that π′i .opi is legal in T,
where π′i is a sequence of mutator instances such that:

(a) π′1 = ε;
(b) π′i ∈ {π′i−1, π′i−1.opi−1}, for i > 1; and
(c) π′i includes at least one of every k consecutive mutators in πi

Theorem 3. For any integer k ≥ 1, the set of schedules legal on a k-Stuttering relaxation of any ADT T under
Linearizability is the same as the set of schedules legal on T under StutteringCC(k).
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5. Consistency Condition to Relaxation

Thus far, we have shown that we can convert familiar relaxations to consistency conditions.
The interest in relaxed data types is largely founded on their ease of use and understanding, compared
to consistency conditions. Ideally, then, any consistency condition would be representable as a relaxed
data type. This does not seem to be true, at least for our current understanding of relaxed data types,
as relaxed data type specifications are sequential, while consistency conditions may be inherently
concurrent, either with certain operations only available to certain processes, or by allowing different
behavior in the presence of concurrency. Sequential specifications do not have any notion of processes
or concurrency, so such conditions cannot be represented as a sequential relaxation.

For example, sequential consistency requires that there exist a permutation of all operation
instances that is legal, and in which all instances invoked at a particular process appear in the order in
which they were invoked. Because a sequential specification does not know about multiple processes,
it is not well-defined for one to require or guarantee that all instances invoked at a single process have
some desired relation.

Despite this conclusion that the sets of relaxations and consistency conditions are not equivalent,
in this section we will show that at least one known consistency condition can be equivalently
expressed as relaxed data types. We consider a well-established consistency condition from the
literature, and define a generic data type relaxation equivalent to it.

k-Atomicity

Aiyer et al. defined k-Atomicity [25]. However, their definition only discusses registers and
has, to our knowledge, not been generalized to other types. Since we are interested in arbitrary
ADTs, we would like a more general definition. To do this, we generalize Reads to all pure accessors
and Writes to all pure mutators. It is not well-defined how mixed operations should behave under
k-Atomicity. They should be allowed to return a value as if they were out of order, but then the
mutations they cause could seemingly cause previous operation instances to be illegal. Given these
issues, we will limit our definition of k-Atomicity to data types which have only pure operations.

Definition 13 (k-Atomicity). A schedule E on a data type T with only pure operations is k-atomic, for k ≥ 0,
if there exists a permutation Π of all operation instances in E, respecting the schedule order of non-overlapping
instances, such that, for every accessor instance op, with Π = π.op.ρ, there exists a sequence π′ obtained by
removing up to k consecutive instances from the end of π|m such that π′.op is legal in T.

We can now split this condition into two pieces. The first is the core of Linearizability, that there
is an ordering of all operation instances in the schedule that respects the schedule order. The second
condition expands the set of legal sequences beyond the set of legal sequences specified by T.
The consistency condition requires that the sequence of all instances from the first part is in the
set defined by the second part. By moving the second part into the data type, relaxing the data
type specification, we are left with Linearizability for the consistency condition, and have the
desired equivalence.

Definition 14 (k-Atomic-Equiv Relaxed ADT). Given any ADT T with no mixed operations and k ≥ 0,
a k-Atomic-Equiv relaxation of T is defined as follows:

1. OPS(T′) = OPS(T).
2. LT ′ is the set of sequences Π, where for each accessor instance op, with Π = π.op.ρ, there exists a

sequence π′ such that π′.op is legal in T, where π′ is obtained by removing up to k consecutive instances
from the end of π|m.

Theorem 4. For k ≥ 0, the set of schedules legal on a k-Atomic-Equiv relaxation of any ADT T with no mixed
operations under Linearizability is the same as the set of schedules legal on T under k-Atomicity.
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Theorem 4 holds by construction.
Definition 14 is very similar to that of k-Out-of-Order, but they are not equivalent. Because it uses

minimal equivalent sequences, a k-Out-of-Order relaxed data type cannot return a value which has
been “deleted” from the data structure. For example, consider the following sequence:

Enqueue(1).Enqueue(2).Enqueue(3).Dequeue(1).Dequeue(x)

In a 2-Out-of-Order queue, x could be either 2 or 3. On the other hand, a k-Atomic type can return
historical values that have been deleted or overwritten, so if the sequence in the previous example
were executed on a 2-Atomic-Equiv queue, x could also be 1.

It is interesting to note that k-Regularity and k-Safety, other conditions from [25] very similar
to k-Atomicity which we define below, cannot be directly converted into relaxed data types. This is
because they allow operation instances to have different behaviors when they overlap with one
or more mutators than when they do not overlap with any mutators. A sequential specification
has no notion of concurrency, or overlapping operation instances, so cannot differentiate these two
possibilities. Recent work (e.g., [24,26,27]) has begun exploring the concept of tasks or objects which do
not have sequential specifications. These more general definitions may be able to represent consistency
conditions which sequential specifications cannot.

6. Placing New Consistency Conditions

We have shown that some data type relaxations can be expressed as consistency conditions.
We would like to know how these conditions compare to known consistency conditions. They neither
appear to be equivalent to any common consistency conditions, nor do any of our new consistency
conditions appear to be related to each other. In this section, we prove that these intuitions are correct.

Recall that consistency conditions are just sets of legal schedules [7]. Thus, to compare the strength
of different consistency conditions, we can compare the sets of schedules over all data types.

Definition 15. Given two consistency conditions C and D, we say that C is stronger than D, and D is weaker
than C, if for all data types T, every schedule legal under C and T is also legal under D and T. That is, the set of
legal schedules under C, for all data types, is a subset of the set of schedules legal under D.

If neither C is stronger than D nor D is stronger than C, we say C and D are incomparable. If C is
stronger than, but not equal to, D, we say that C is strictly stronger than D and D is strictly weaker than C.

Our conditions are in the “version staleness-based” family of consistency conditions in [7],
referring to the fact that they may return a stale version of the data which is missing some recent
updates, since these also have the requirements of Linearizability. Thus, we compare them to
k-Atomicity, k-Regularity, and k-Safety, which are also version staleness-based. It is trivial to show
that all of our conditions are weaker than Linearizability, since they start with the conditions of
Linearizability, then allow some sequences that Linearizability does not.

First, we define generalized versions of k-Regularity and k-Safety, as we did for k-Atomicity.
Because k-Regularity and k-Safety may behave exactly as k-Atomicity, we have the same restriction to
data types without mixed operations.

Definition 16 (k-Regularity). A schedule E on a data type T with no mixed operations is k-regular, for k ≥ 0,
if there exists a permutation Π of all operation instances in E, respecting the schedule order of non-overlapping
instances, such that for every instance op, Π = π.op.ρ,

1. if op is a mutator or overlaps with no mutator instances, π|m.op is legal by k-Atomicity; and
2. if op is an accessor overlapping with at least one other mutator, there exists a sequence π′ such that π′.op

is legal in T, where π′ is constructed either by deleting up to k instances from the end of π|m or by moving
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any subset of the mutator instances overlapping with op from after op in Π to before it and placing them
in some order.

Definition 17 (k-Safety). A schedule E on a data type T with no mixed operations is k-safe, for k ≥ 0, if there
exists a permutation Π of all operation instances in E, respecting the schedule order of non-overlapping instances,
such that for every instance op, Π = π.op.ρ,

1. if op is a mutator or overlaps with no mutator instances, π|m.op is legal by k-Atomicity; and
2. if op is an accessor overlapping with at least one other mutator, it may return any value in rets(OP).

First, we state the following theorem relating k-Atomicity, k-Regularity, and k-Safety. This theorem
is well established in the literature for registers, and directly generalizes for our new definitions.
The proof is by definition, showing each is a strict subset of the previous.

Theorem 5 ([7,25,28,29]). For all k ≥ 0, k-Safety is strictly weaker than k-Regularity which is strictly
weaker than k-Atomicity, which is strictly weaker than Linearizability, in the domain of data types with no
mixed operations.

Theorem 5 claims the following two statements for each pair of consistency conditions C and D,
with C claimed strictly weaker than D: First, for every data type T for which D is defined,
every schedule legal under D and T is legal under C and T. Second, there is some data type S for
which there is a schedule legal under C and S but not under D and S. The proof follows immediately
from the definitions, since linearizable behavior is legal under k-Atomicity, k-atomic behavior is legal
under k-Regularity, and k-regular behavior is legal under k-Safety.

We next show that none of the three new consistency conditions we have introduced are
comparable to any of these three previously known conditions. The naive approach to show that
one new consistency condition is incomparable to these three known conditions would require six
individual proofs, showing that the new condition neither contains nor is contained by each of the
three. We leverage Theorem 5 to reduce this to two steps for each of our consistency conditions:

1. If we can show that a consistency condition C does not contain (is not weaker than) k-Atomicity,
then we immediately know that C is not weaker than either k-Regularity or k-Safety. This follows
from the fact that, whatever element in k-Atomicity is not in C is also in the supersets k-Regularity
and k-Safety, showing that they are not contained in C.

2. Conversely, if k-Safety does not contain C, then neither k-Regularity nor k-Atomicity can contain
C. This is because k-Regularity and k-Atomicity are subsets of k-Safety, and thus also do not
contain any element which is not in k-Safety. Since k-Safety does not contain C, such an element
must exist in C. Thus, we know that C is not stronger than any of the three.

Thus, by Theorem 5, to show a consistency condition C is incomparable with all of k-Atomicity,
k-Regularity, and k-Safety, we choose a data type T and give a schedule which is legal on T under
k-Atomicity, but not on T under C, and a data type T′ and give a schedule which is legal on T′ under C
but not on T′ under k-Safety. The proof of Theorem 6 uses this structure.

Theorem 6. In the domain of data types which do not have mixed operations,

1. For all k, l ≥ 1, OutofOrderCC(k) is incomparable with any of l-Safety, l-Regularity, and l-Atomicity.
2. For all k ≥ 2 and l ≥ 1, LatenessCC(k) is incomparable with any of l-Safety, l-Regularity, and l-Atomicity.
3. For all k ≥ 2 and l ≥ 1, StutteringCC(k) is incomparable with any of l-Safety, l-Regularity,

and l-Atomicity.

Proof. Throughout this proof, when we use instances of Enqueue and Peek, we are referring to a
restricted FIFO queue data type, which has no Dequeue, since that is a mixed operation. Enqueue is
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a pure mutator, since it has no return value, and Peek is a pure accessor, since it does not change the
shared object.

1. OutofOrderCC(k):

• To show that OutofOrderCC(k) does not contain l-Atomicity, consider the following
sequential schedule of a register:

Write(1).Write(2).Read(1)

For every l ≥ 1, this schedule is legal under l-Atomicity, since the Read can ignore the
presence of the last preceding mutator instance, the Write(2). This schedule is not legal
under OutofOrderCC(k), for any k ≥ 1, as the minimal-length equivalent sequence to
Write(1).Write(2) is simple Write(2), and Read(1) is not legal after any sequence obtained
by deleting instances from this.

• To show that OutofOrderCC(k) is not contained in l-Safety, consider the following sequential
schedule of a restricted FIFO queue:

Enqueue(1).Enqueue(2).Peek(2)

This is legal under OutofOrderCC(k), for every k ≥ 1, as the prefix Enqueue(1).Enqueue(2)
is a minimal-length sequence equivalent to itself, and Peek(2) is legal after the sequence
Enqueue(2) obtained by removing one mutator instance. This schedule is not legal under
l-Safety, for any l ≥ 1, since none of the instances are concurrent, and Peek(2) is not legal
after any sequence obtained by deleting consecutive mutators from the end of the preceding
sequence. Thus, OutofOrderCC(k) is not a subset of l-Safety and is thus not stronger than
any of l-Safety, l-Regularity, and l-Atomicity.

2. LatenessCC(k):

• Consider this sequential schedule of a register:

Write(1).Write(2).Read(1)

This schedule is legal under l-Atomicity, for l ≥ 1, since the first two instances are legal in a
register, and the Read(1) is legal after the sequence obtained by ignoring the last previous
mutator. This schedule is not legal under LatenessCC(k), k ≥ 2, since the minimal-length
equivalent sequence of Write(1).Write(2) is Write(2), so Read(1) is not legal after any
sequence obtained by deleting instances from a minimal sequence equivalent to the sequence
of preceding instances.

• Consider the following sequential schedule of a restricted FIFO queue:

Enqueue(1).Enqueue(2).Peek(2)

This schedule is legal under LatenessCC(k), for k ≥ 2, since Enqueue(1).Enqueue(2) is legal
in a FIFO queue and Peek(2) is legal after the sequence Enqueue(2) obtained by removing one
instance, which is allowed because Enqueue(1).Enqueue(2) is a minimal-length equivalent
sequence of itself. This schedule is not legal under l-Safety, for any l ≥ 1, because Peek(2)
is not concurrent with any mutator and not legal after any sequence obtained by deleting
instances from the end of Enqueue(1).Enqueue(2).
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3. StutteringCC(k):

• Consider the following sequential schedule of a register:

Write(1).Write(2).Read(1).Read(2)

This schedule is legal under l-Atomicity, l ≥ 1, since the first Read instance may ignore the
last previous mutator, while the second Read may see it. For k ≥ 2, this schedule is not legal
under StutteringCC(k), as the first Read may only return 1 if Write(2) stuttered, but then no
succeeding Read can see the Write(2).

• Consider the following sequential schedule of a restricted FIFO queue:

Enqueue(1).Enqueue(2)...Enqueue(k− 1).Enqueue(k)...Enqueue(k + l).Peek(k)

This schedule is legal under StutteringCC(k), k ≥ 2 (Recall that StutteringCC(1) is merely
Linearizability), since the first k − 1 Enqueue instances may stutter, leaving Peek(k) legal
after the prefix Enqueue(k)...Enqueue(k + l). This schedule is not legal under l-Safety,
l ≥ 1, since the Peek is not concurrent with any mutator and ignoring up to l of the last
previous mutators will not allow Peek to return any value besides 1.

While our new consistency conditions are all incomparable to these similar existing conditions
in general, we observe that for some specific data types, they may not actually be distinct. We next
show that, for a certain class of data types, StutteringCC(k) is stronger than k-Atomicity. We actually
show that StutteringCC(k) is stronger than (k− 1)-Atomicity, a special case of, and thus stronger than,
k-Atomicity. This class of types contains those where all mutators are overwriters. An overwriter OP is
an operation such that every sequence π.op, op ∈ OP, is equivalent to the singleton sequence op [5,30].
This means that the set of next operation instances which result in a legal sequence is determined
entirely by the last previous mutator. In addition to a Read/Write register, this class includes other
data types whose mutators are all overwriters, but which have accessors that return only parts of
the state.

StutteringCC(k) and k-Atomicity both allow us to ignore some recent mutator instances.
The difference, which makes the two consistency conditions distinct, is that a stuttering instance
must be ignored by all subsequent operation instances, while in k-Atomicity, instances may be ignored
by some subsequent instances, but seen by others.

Theorem 7. If all mutators in a data type T, which has no mixed operations, are overwriters, then for all k ≥ 1,
StutteringCC(k) on T is stronger than (k− 1)-Atomicity on T.

Proof. We show that any schedule which is legal under StutteringCC(k) is also legal under
(k− 1)-Atomicity. Consider an arbitrary schedule E. Let Π be an ordering of all instances in E,
which respects the schedule partial order of non-overlapping instances, as specified by the definition of
StutteringCC(k). Let Π = op1.op2.... For each π′i specified by the definition of StutteringCC(k), let mi
be the last mutator instance in π′i . Because all mutators are overwriters, π′i ≡ mi. For each opi ∈ Π,
there cannot be more than (k− 1) mutator instances in Π strictly between mi and opi, by the definition
of π′i and mi. Thus, by deleting up to (k− 1) of the last previous mutator instances before opi in π,
mi will be the last mutator instance, and because it is a mutator, op1...mi ≡ mi ≡ π′i , so op1...opi is legal
under k-Atomicity. Thus, Π is legal under k-Atomicity.

Finally, we show that the three new consistency conditions corresponding to data type relaxations
we introduced in this paper are incomparable to one another. We no longer restrict the set of data types
considered, since these relaxations are defined for all data types.
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Theorem 8. Considered on all data types and for all k ≥ 1 and l, m ≥ 2, OutofOrderCC(k), LatenessCC(l),
and StutteringCC(m) are all incomparable to one another.

Proof. 1. First, we compare OutofOrderCC(k) and LatenessCC(l), showing that neither condition
contains the other.

• On a FIFO queue, the sequential schedule

Enqueue(1)...Enqueue(l + 2).Dequeue(2)...Dequeue(l + 2)

is legal under OutofOrderCC(k), because Enqueue(1)...Enqueue(l + 2) is legal in the base
type, and for each instance Dequeue(x), we can obtain a π′ such that π′.Dequeue(x) is legal
by deleting Enqueue(1) from the minimal-length equivalent sequence to the preceding
sequence, which consists of all Enqueue instances whose argument has not yet been
returned. The schedule is not legal under LatenessCC(l) because there are l consecutive
Dequeue(x) instances, for none of which is π′.Dequeue(x) legal in a FIFO queue, when π′

is a minimal-length equivalent sequence to the prior history, since all minimum-length
sequences equivalent to a prefix of this schedule start with Enqueue(1).

• On a FIFO queue, the sequential schedule

Enqueue(1)...Enqueue(k + 2).Dequeue(k + 2)

is legal under LatenessCC(l), but not under OutofOrderCC(k). In the base type,
the prefix Enqueue(1)...Enqueue(k + 2) is legal and of minimum length among equivalent
sequences. By deleting a finite number, k + 1, of consecutive mutators from the preceding
sequence, we have Enqueue(k + 2).Dequeue(k + 2) which is legal in the base type.
Under OutofOrderCC(k), the schedule is not legal, because deleting up to k consecutive
mutators from the prefix before the Dequeue instance yields a sequence ending in
Enqueue(x).Enqueue(k + 2), where 1 ≤ x ≤ k + 1, and appending Dequeue(k + 2) to such a
sequence cannot give a sequence legal in a FIFO queue.

2. Next, we compare OutofOrderCC(k) and StutteringCC(m):

• Consider the following sequential schedule of a FIFO queue:

Enqueue(1).Enqueue(2).Dequeue(2).Dequeue(1)

This schedule is legal under OutofOrderCC(k), since removing Enqueue(1), which is already
minimal-length, from the preceding sequence gives Enqueue(2).Dequeue(2), which is legal
in a FIFO queue. The prefix of the first three instances is then equivalent to Enqueue(1),
and Enqueue(1).Dequeue(1) is legal, so the entire sequence is legal. This schedule is not
legal under StutteringCC(m), because π′ for Dequeue(2) must not include Enqueue(1), so no
later π′ may include Enqueue(1) and 1 cannot be returned by a Dequeue. In other words,
Enqueue(1) stutters, having no effect, so the second Dequeue instance cannot return 1.

• Consider the following sequential schedule of a FIFO queue:

Enqueue(1).Dequeue(1).Dequeue(1)

This schedule is legal under StutteringCC(m), but not under OutofOrderCC(k).
In StutteringCC(m), π′ for the first Dequeue instance is Enqueue(1), leaving out no previous
instances. This Dequeue instance stutters, having no effect, so π′ for the second Dequeue is
Enqueue(1), and thus π′.Dequeue(1) is legal. For OutofOrderCC(k), the empty sequence ε is
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the minimal-length equivalent sequence of Enqueue(1).Dequeue(1) and, since ε.Dequeue(1)
is not legal in a FIFO queue, the original schedule is not legal.

3. Finally, compare LatenessCC(l) and StutteringCC(m):

• On a FIFO queue, the sequential schedule

Enqueue(1)...Enqueue(m + 2).Dequeue(m + 2)

is legal under LatenessCC(l) but not under StutteringCC(m). For StutteringCC(m), the π′

for the Dequeue instance must contain at least one of every m consecutive mutator instances
in the preceding sequence. This means that it must contain at least 1 Enqueue(x), where
x < m + 2, since there are m + 1 consecutive such instances. Thus, π′.Dequeue(m + 2) is not
legal, so this schedule is not legal under StutteringCC(m).

• The sequential schedule

Enqueue(1).Dequeue(1).Dequeue(1)

on a FIFO queue is legal under StutteringCC(m), as argued above, but is not legal under
LatenessCC(l). The second Dequeue instance must be legal after deleting a minimal-length
sequence equivalent to the prefix Enqueue(1).Dequeue(1). That is the empty sequence,
though, and ε.Dequeue(1) is not legal.

In each case, we have shown that the sets of schedules legal under each pair of consistency
conditions are not related by subset or superset, so the three consistency conditions are pairwise
incomparable.

7. Application: Hybrid Consistencies

One application of this work is in hybrid consistency conditions. Hybrid consistency conditions
are formed by placing the requirements of different consistency conditions on different operations of an
ADT, often by requiring “strong” behavior from some operations but only “weak” behavior from
others [31]. In general, hybrid consistencies allow implementations where some operations,
whose behavior is perhaps less critical, run faster, while we can require some operations to behave more
strictly, even if this reduces their performance. When comprised of consistency conditions which can
be expressed as relaxations, these specifications of different per-operation behaviors are very natural
to express in the data type specification. Such per-operation relaxations have been used in several
works in the literature (e.g., Talmage and Welch [6], Henzinger et al. [10], Wimmer et al. [14], Shavit and
Taubenfeld [15]), although not explicitly described as hybrid consistency conditions. As a sequential
description, which is potentially more intuitive, moving to data type relaxations could greatly reduce
the complexity of programming with hybrid consistencies.

We will briefly describe two different data types under hybrid consistency conditions and show
how they are naturally expressed as data types with only some operations relaxed.

First, consider a read/write register where some Write instances are strong and must respect each
other’s real-time order, but some are weak and may be reordered among other weak operations. As a
hybrid consistency condition, this could be expressed with a flag on the Write operation, distinguishing
Writes from Writew, which gives the following consistency condition:

Definition 18 (Consistency Condition for Register with Strong and Weak Writes). A concurrent schedule
is legal if there is a permutation Π of all instances in the schedule such that

1. Each Read instance returns the argument of the previous Write instance in Π or ⊥ if there is none.
2. If op1 and op2 are instances in Π where op1 precedes op2 in the schedule order and either at least one is a

Writes instance or both are Read instances, then op1 precedes op2 in Π.
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As in Section 5, we can equivalently express this consistency condition as the following relaxation
of a register. This is not technically a relaxation of a simple Read/Write register, since we need
two different Write operations, but arguably the differentiation between types of Write instances
in the consistency condition is already expressing two different operations. The equivalence holds
by construction.

Definition 19 (Register with Strong and Weak Writes).

1. OPS = {Read, Writes, Writew}
2. L is the set of all sequences of instances of operations in OPS such that each Read instance rop returns

the argument of any Write instance wop (Writes or Writew) starting with the latest preceding Writes

(or ⊥ if there is no preceding Writes) up to and not including the next Writes, such that no previous Read
returned the argument of a Write instance later than wop.

Another example, which does not add new operations to the data type, is a FIFO queue where
the Enqueue and Dequeue operations are strict, so that removing elements exactly follows insertion
order, but the Peek operation is relaxed to speed up attempts to just read the structure.

Definition 20 (Hybrid Consistency for Queues with Weak Peek). A concurrent schedule is legal if there is
a permutation Π of all instances in the schedule which respects the schedule partial order of non-overlapping
instances where

1. Π|{Enqueue,Dequeue} is legal by the specification of a FIFO queue and
2. Each Peek instance op with Π = π.op.ρ returns a value such that π′.op is legal, where π′ is obtained

by deleting a contiguous sequence of up to k instances from a minimal-length sequence equivalent to π.
That is, op returns one of the k oldest elements currently in the queue and may return ⊥ if there are fewer
than k elements currently in the queue.

Exactly as with the Out-of-Order consistency condition, we can express this as a relaxation,
but, in this case, we only need to relax the Peek operation, not all operations.

Definition 21 (Augmented FIFO Queue with Relaxed Peek).

1. OPS = {Enqueue, Dequeue, Peek}
2. L is the set of all sequences of instances of operations in OPS such that each Dequeue instance returns the

argument of the first Enqueue instance whose argument has not previously been returned by a Dequeue
instance or ⊥ if none exists. Each Peek instance returns the argument of one of the first k Enqueue
instances whose arguments have not been returned by a previous Dequeue instance or possibly ⊥ if there
are fewer than k such Enqueue instances.

By construction, this relaxation is equivalent, under Linearizability, to an unrelaxed queue under
the previous consistency condition.

In both of these cases, hybrid consistency is arguably attempting to express something that
is probably more naturally expressed as a relaxation of certain operations. In fact, the queue with
relaxed Peek has appeared in the relaxed data type literature [15,16] already. It seems intuitive that
per-operation conditions like these hybrid consistencies are easier as relaxations of operations of
the underlying data type. We are still limited in expressing them as such by the fact that we cannot
currently express all consistency conditions as relaxations, but this provides both incentive and possible
insight for extending the equivalence between the two models.

8. Conclusions and Future Work

In exploring the relation between relaxations for abstract data types and consistency conditions,
we have shown that, in several cases, the ideas in each may be expressed equivalently by the other.
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Specifically, we showed that the k-Out-of-Order, k-Lateness, and k-Stuttering relaxations may be
equivalently expressed as consistency conditions and that the consistency condition k-Atomicity can
be equivalently expressed as a relaxation. For each of these, we define the equivalent consistency
condition or relaxation. We then explore how the newly-defined consistency conditions fit into the
space of consistency conditions, related by the conditions’ strength, by showing that they are distinct
from several previously-known similar conditions.

In the future, we need to define or quantify the spaces of possible data type relaxations and
consistency conditions. This would allow more general conclusions about the relation of the two fields.
For example, it seems that every data type relaxation can be expressed as a consistency condition,
while only some consistency conditions can be expressed as relaxations. If we could define the space
of possible relaxations, we could formally show that the space of relaxations would be a subset of
the space of consistency conditions. There is also the question of relaxing tasks and other distributed
problems and data operations which cannot be sequentially specified. Such relaxations are not yet
defined, but could lead to broader equivalences with consistency conditions.

In this paper, we did not consider relaxing particular operations in a data type. It is possible,
and common in the literature [6,10], to relax the behavior of certain operations, while requiring that
others behave as in the base type. In the case of per-operation relaxations, our result in Section 6
regarding data types where all mutators are overwriters would extend to all data types where all
overwriting operations were k-Stuttering relaxed, greatly increasing their scope.

Finally, it is not obvious how the complexity of implementations of shared data types would
depend on which of the two approaches we use. Past work has improved efficiency by relaxing data
types, so this work may enable us to more easily compare the complexity of consistency conditions,
known and new, perhaps enabling us to distinguish incomparable conditions by performance.
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