
  information

Article

Arabic Handwritten Digit Recognition Based on
Restricted Boltzmann Machine and Convolutional
Neural Networks

Ali A. Alani

Department of Computer Science, College of Science, University of Diyala, Diyala 32001, Iraq;
alialani@sciences.uodiyala.edu.iq; Tel.: +96-077-219-87060

Received: 14 August 2017; Accepted: 8 November 2017; Published: 9 November 2017

Abstract: Handwritten digit recognition is an open problem in computer vision and pattern recognition,
and solving this problem has elicited increasing interest. The main challenge of this problem is the
design of an efficient method that can recognize the handwritten digits that are submitted by the user
via digital devices. Numerous studies have been proposed in the past and in recent years to improve
handwritten digit recognition in various languages. Research on handwritten digit recognition in
Arabic is limited. At present, deep learning algorithms are extremely popular in computer vision and
are used to solve and address important problems, such as image classification, natural language
processing, and speech recognition, to provide computers with sensory capabilities that reach the
ability of humans. In this study, we propose a new approach for Arabic handwritten digit recognition
by use of restricted Boltzmann machine (RBM) and convolutional neural network (CNN) deep
learning algorithms. In particular, we propose an Arabic handwritten digit recognition approach
that works in two phases. First, we use the RBM, which is a deep learning technique that can extract
highly useful features from raw data, and which has been utilized in several classification problems
as a feature extraction technique in the feature extraction phase. Then, the extracted features are fed
to an efficient CNN architecture with a deep supervised learning architecture for the training and
testing process. In the experiment, we used the CMATERDB 3.3.1 Arabic handwritten digit dataset
for training and testing the proposed method. Experimental results show that the proposed method
significantly improves the accuracy rate, with accuracy reaching 98.59%. Finally, comparison of our
results with those of other studies on the CMATERDB 3.3.1 Arabic handwritten digit dataset shows
that our approach achieves the highest accuracy rate.

Keywords: handwritten digit recognition; Arabic digit; restricted Boltzmann machine; deep learning;
convolutional neural network

1. Introduction

Handwritten digit recognition is a challenging problem in computer vision and pattern recognition;
this problem has been studied intensively for many years, and numerous techniques and methods, such as
K nearest neighbors (KNNs) [1], support vector machines (SVMs) [2], neural networks (NNs) [3],
and convolutional NNs (CNNs) [2,4] have been proposed. Reasonable results have been obtained
using datasets with different languages.

Arabic is the main language in the Middle East and the North of Africa, and is spoken widely
in many other countries. Statistically, Arabic is one of the top five spoken languages in the present
world [5,6]. Arabic numbers are widely important in the regions that write in Arabic. Digit handwritten
recognition has received much attention recently because of its wide applications in different fields,
such as criminal evidence, office computerization, check verification, and data entry applications.
The wide use of those numbers makes the recognition process of these numbers an important field of
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interest [1]. However, most research has been focused on English digits related to the English language
and some other European languages; apparently, English handwriting datasets are widely available,
and significant results have been achieved [2,7]. By contrast, little work has been proposed for Arabic
handwriting digit recognition due to the complexity of the Arabic language and the lack of public
Arabic handwriting digit datasets. Arabic handwritten digit recognition suffers from many challenges,
such as writing style, size, shape, and slant variations, as well as image noise, thereby leading to
changes in numeral topology [8].To address these challenges, we consider a solution that focuses on
the design of an efficient method that can recognize Arabic handwritten digits that are submitted by
users via digital devices.

Three main techniques—namely, preprocessing, feature extraction, and classification [7]—are usually
used to design an efficient method in pattern recognition. Preprocessing is used to enhance data quality
and extract the relevant textual parts and prepare for the recognition process. The main objectives
of preprocessing are dimensional reduction, feature extraction, and compression in the amount of
information to be retained, among others [9]. The output of the preprocessing produces clean data
that can be used directly and efficiently in the feature extraction stage. Meanwhile, feature extraction
is the main key factor that affects the success of any recognition method. However, traditional
hand-designed feature extraction techniques are tedious and time consuming, and cannot process
raw images, in comparison to automatic feature extraction methods by which useful features can
be retrieved directly from images. Szarvas, et al. [10] showed that the CNN–SVM combination
exhibits good performance in pedestrian detection by use of the automatically optimized features
learned by the CNN. Mori et al. [11] used the time domain encoding schemes by modules with
different parts of images to train the convolutional spiking NN. In their method, the output of
each layer is fed as features to the SVM and 100% face recognition accuracy is obtained on the
600 images of 20 people. Furthermore, the authors in [12] presented an automatic feature extraction
method based on CNN. By using the trainable feature extractor plus affine distortions and elastic
distortions, the proposed method obtains low error rates of 0.54% and 0.56% for the handwritten digit
recognition problem. Therefore, the feature extraction techniques consider the most important steps to
increase classification performance; several feature extraction methods are available in [13–18].

The final step in handwritten digit recognition application is image classification, which is a
branch of computer vision, and has been extensively applied in many real-world contexts, such as
handwriting image classification [1,19], facial recognition [20], remote sensing [21], and hyperspectral
image [22]. Image classification aims to classify sets of images into specified classes. Two types
of classification methods in computer vision—namely, the appearance-based method and the
feature-based method—are used to classify images. The most commonly used method in literature
is the feature-based method, which extracts features from the images and then uses these features
directly to improve the classification results [23]. In recent years, finding an effective algorithm
for feature extraction has become an important issue in object recognition and image classification.
Recent developments in graphic processing unit (GPU) technology and artificial intelligence, such as
deep learning algorithms, present promising results in image classification and feature extraction.
Therefore, in this study, we emphasize the use of deep learning algorithms for the handwritten digit
recognition context.

Deep learning algorithms comprise a subset of machine learning techniques that use
multiple levels of distributed representations to learn high-level abstractions in data. At present,
numerous traditional artificial intelligence problems, such as semantic parsing, transfer learning,
and natural language processing [2,5,24], have been solved using deep learning algorithm techniques.
The main properties of deep learning methods are that they learn the effect and perform high-level
feature extraction by use of the deep architectures in an unsupervised manner without considering
the label data [25]. To achieve this goal, layers of network are arranged hierarchically to form
a deep architecture. Each layer in the network learns a new representation from its previous
layer with the goal of modeling different explanatory factors of variation behind the data [26].
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Deep learning algorithms, such as the restricted Boltzmann machine (RBM), involve a powerful
feature learning technique using hierarchical deep architectures in an unsupervised manner. RBM is a
generative algorithm with a high capability to extract discriminative features from complex datasets in
an unsupervised manner, and has been applied in numerous learning domains, including text, speech,
and images [27]. CNN is a multilayer NN that can be viewed as the combination of an automatic
feature extractor and a trainable classifier. The past few years have borne witness to the increasing
popularity of CNN in many different domains such as image classification [28,29] and object and face
detection [20,30] over many benchmark datasets.

Numerous digit handwritten recognition methods based on different feature extraction and
classifier techniques have been developed. In the last few years, the Latin digit recognition problem has
been extensively researched, and a novel CNN–SVM model for handwritten Latin digit recognition was
proposed in [2]. The proposed model uses the power of the CNN algorithm to extract the features from
the images, and these features are fed to the SVM to generate the predictions. Furthermore, the authors
in this work used non-saturating neurons with the efficient GPU implementation of the convolution
operation to reduce overfitting in fully connected layers. Ouafae et al. [31] presented a new handwritten
digit recognition system using characteristic loci (CL). In their method, each numeral image is
divided into four portions, and then the CL is derived from each portion of the image. This work
adopted two types of classifiers in the classification stage: multilayer perception and KNN classifiers.
Nibaran Das et al. [5] presented a handwritten digit recognition technique using a novel method
that utilizes an MLP in which a set of 88 features is used. The feature set is divided into 72 shadow
features and 16 octant features. The authors in [4] proposed a CNN deep learning algorithm that
uses an appropriate activation function and a regularization layer for Arabic handwritten digit
recognition, thereby resulting in significantly improved accuracy compared to that of existing Arabic
digit recognition methods. The authors in [32] proposed a handwritten digit recognition method
using the perceptual shape decomposition (PSD) algorithm. The proposed approach represents the
deformed digits with four salient visual primitives—namely, closure, smooth curve, protrusion,
and straight segment—by defining a set of external symmetry axes. The primitives are derived using
an efficient set of external symmetry axes based on parallel external chords. The performance of
the proposed recognition system was evaluated on five-digit datasets that involve the CMATERDB
3.3.1 Arabic digit dataset. The recognition accuracy on Arabic CMATERDB 3.3.1 was found to be 97.96.
Finally, the authors in [33] presented and compared the RBM model along with SVM and sparse
RBM-SVM using the MNIST dataset, and the results were 96.9 and 97.5, respectively. The classification
results showed the advantage of RBM models compared with other variants and that all RBM methods
perform well in terms of classification accuracy.

The main challenges in the handwritten recognition process are the distortions and enormous
variability patterns. Therefore, any successful recognition system and image classification require an
active and accurate feature extraction technique that can provide distinct features that can be used
to distinguish between different numeral handwritten images effectively. Furthermore, an accurate
classifier is required to compute the exact distance between the feature vectors of the test and dataset
numeral handwritten images. However, most previously proposed methods select only a small
number of features as the input, and thus produce insufficient information for correctly predicting
the object in the classification process. By contrast, a large number of input features will cause the
generalization performance of the model to deteriorate, owing to the problems of dimensionality
and increased run time for the training process. Hence, we propose the hybrid RBM–CNN model
to address the aforementioned problems, and to introduce a novel method that uses strong feature
extraction techniques. In our proposed method, we use the RBM deep learning algorithm, a popular
feature extraction technique, to learn and extract features that are optimized and used for classification.
Then, the extracted features are fed to the CNN after reshaping for classification. The performance of
the proposed method is evaluated using the CMATERDB 3.3.1 Arabic handwritten digit dataset [32,34].
The rest of this article is structured as follows. Section 2 presents the proposed method and provides
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the basic concept for the used algorithms. Section 3 presents the analysis of the experiment results.
Section 4 discusses the results of the proposed method with a relevant literature comparison. Section 5
elaborates the conclusion of the study with a summary.

2. The Proposed Method

In this section, the proposed method is described in detail, in which two deep learning algorithms
are used for feature extraction and classification. First, features are extracted using the RBM deep
learning algorithm. Then, the extracted futures are fed to the CNN deep learning algorithm for
the classification. The two algorithms are described below. Figure 1 presents the block diagram of the
proposed method.
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Figure 1. Data flow of the proposed method.

2.1. Restricted Boltzmann Machines

Previous research has used the RBM deep learning algorithm as a feature extraction method,
as proposed by Hinton in [27]. RBMs present a high capability for feature extraction and representation;
empirical research has proved that using the extracted features from the RBM algorithm instead of
the raw data results in significant improvements in different machine learning applications, such as
color image classification [35], speech and object recognition [36]. The RBM deep learning algorithm
is designed to extract the discriminative features from large and complex datasets by introducing
hidden units in an unsupervised manner. RBM is a probabilistic network that learns the probability
distribution of its inputs v and a hidden representation h. Figure 2 illustrates the standard RBM
algorithm with two layers [37]. The main advantage of the RBM algorithm is that all hidden and
visible units are independent, meaning that no connections occur between units in the same layer.
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Figure 2. Restricted Boltzmann machine.

RBMs are built by executing a Monte Carlo Markov chain to converge and using the Gibbs
sampling method as the transition operator of the chain. Furthermore, RBM can model correlations of
the data by use of fast learning algorithms, such as contrastive divergence [38,39]. RBM is controlled
by the set of weights and biases across its layers. We suppose that the RBM contains n and m
visible and hidden units, the θ parameter contains weight matrix w (m × n), the visible layer bias is
a = a1, a2, . . . , am, and hidden layer bias is b = b1, b2, . . . , bn. Then, the three vectors will determine
how the network will represent the input n dimension samples into m dimension features, and these
can be defined as a long vector θ = (W, a, b), E(v, h); that is, the energy function. This energy function is
defined by θ = (W, a, b); for a set of certain vectors (v, h), the energy function is defined as follows [38]:



Information 2017, 8, 142 5 of 13

E(v, h |Θ) =
1
2
(vT wh + bT v + cT h). (1)

The partition function, also called the normalizing factor Z(Θ), is defined as

Z(w) = ∑x Exp[−E(x|Θ) ]. (2)

The probability function is defined as

p(v, h |Θ) =
1

Z(Θ)
Exp {−E(v, h |Θ)}. (3)

The visible layer conditional probability is given as follows:

p(vi = 1|h) = sigm(bi + wi .h). (4)

The hidden layer conditional probability is defined as

p(hj = 1|v) = sigm(cj + wj .v), (5)

where sigm function is defined as

sigm (x) =
1

1 + exp (−x)
. (6)

The objective of the RBM algorithm is to rebuild the inputs as accurately as possible.
Throughout the forward stage, the input is changed on the basis of the weights and biases, and is then
used to activate the hidden layer. In the next stage, the activations from the hidden layer are changed on
the basis of the weights and biases and are then sent back to the input layer for activation. At this stage,
the input layer seeks the modified activations as an input reconstruction and then uses this input to
compare with the original input [40]. Therefore, in our proposed method, we use the advantages of
RBM to extract useful features from raw data. The results are presented in Figure 3. The RBM model
takes the entire input image with dimensions of 32 × 32 in a single one-dimensional array. The RBM
was trained by unsupervised pre-training using contrastive divergence learning. Considering that
RBMs only take a one-dimensional array as input, all two-dimensional matrices with pixel values
were reshaped to one-dimensional arrays. We trained the RBM with 1024 visible input units
(which correspond to all the pixels in a 32 × 32 picture) and 784 hidden output units (which correspond
to all the elements in a 28× 28 feature map). We used mini batches of size 200 with a fixed learning rate
of 0.1 for 100 iterations. The corresponding reshaping was also performed on the output of the RBM;
the one-dimensional output arrays are reshaped into two-dimensional matrices.
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2.2. Convolutional Neural Network

As a particular deep learning technique, CNNs have attained success in image classification
problems [41–43]. Three main types of layers are used to build CNN architectures;
namely, convolutional layer, sub-sampling or pooling layer, and fully connected layer. Normally, a full
CNN architecture is obtained by stacking several of the above-mentioned layers. The first layer is a
convolutional layer with size [W × H × D], where W represents the width, H represents the height
of the input images, and D denotes the dimension of input. In practice, W and H are typically equal
(squared image) in image classification applications, and D represents the number of channels of input
image (i.e., D = 3 for RGB images or D = 1 to represent black and white images). Each layer contains K
filters (kernels) of size [F × F × Q], where F (the receptive field) should be less than W; these filters are
of sizes such as 2 × 2 or 5 × 5, and Q in the first convolutional layer represents the number of channels
of the input image. In other layers, Q equals the number of filters of the previous layer. In this layer,
weights are shared across neurons, thereby leading the filter to learn frequent patterns that occur in
any part of the image. Each filter is convolved with the input volume to produce a feature map with a
size of W − F + 1; each convolutional layer produces a total of K feature maps of that size [44].

The second layer is a sub-sampling or pooling layer; a common practice in CNN network
architecture is inserting a pooling (sub-sampling) layer between two successive convolutional layers.
The objective of this layer is to progressively reduce the spatial size of the representation. Thus, such a
process will reduce the number of parameters and computations that are required by the network and
helps in the overfitting control. The pooling units can perform other functions, such as L2-norm or
average pooling. The final layer is a fully connected layer. In this layer, neurons are connected with all
activation units in the previous layer, and their activations are computed using a matrix multiplication.
This process is followed by a bias offset. This type of layer is standard in a regular NN. This layer holds
the net output, such as probability distributions over classes [45,46]. In practice, a parameter-sharing
CNN significantly reduces the number of parameters, thereby making the CNN easier to train
compared to the traditional fully connected NNs. In summary, a CNN consists of multiple trainable
layers stacked on top of each other, followed by a supervised classifier. A set of arrays called feature
maps represent the input and output of each stage. In our proposed CNN algorithm, we use the
structure as detailed below. The first layer is a convolutional layer that contains 32 feature maps,
each with a kernel size of 5 × 5 pixels and a ReLU activation function, which takes images with
32 × 32 pixel values. This layer represents our CNN input layer. Next, we define a MaxPooling
layer that uses the maximum value; this layer is configured with a pool size of 2 × 2. The next layer
is a regularization layer, which is also called Dropout. It is configured to randomly exclude 0.2 of
neurons to reduce overfitting. The following hidden layer is another convolutional layer that also
contains 32 feature maps, each with a kernel size of 3 × 3 pixels. Furthermore, this layer uses a ReLU
activation function. This layer is followed by another pooling layer that is the same as the previous
pooling layer. Afterward, we obtain a layer called Flatten, which converts the two-dimensional matrix
data to a vector, thereby allowing the final output to be processed by standard fully connected layers
to obtain our next layer. The first fully connected layer contains 128 neurons with the ReLU activation
function. Finally, we end the CNN structure with the output layer, which contains 10 neurons for
the 10 classes with a Softmax activation function to present the final classification result. Figure 4
represents our proposed CNN method, and Table 1 presents the parameters of the CNN method.
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Table 1. CNN Parameters setup.

Layers Layers Operation Feature Maps No. Feature Maps Size Window SIZE Parameters No.

C1 Convolution 32 24 × 24 5 × 5 832
S1 Max-pooling 32 12 × 12 2 × 2 0
D Dropout layer 32 12 × 12 2 × 2 0
C2 Convolution 32 10 × 10 3 × 3 9248
S2 Max-pooling 32 5 × 5 2 × 2 0
FC Flatten layer 800 N/A N/A 0
FC Fully connected 128 1 × 1 N/A 102,528
FC Output layer 10 1 × 1 N/A 1290

3. Experimental Results

The proposed RBM–CNN method is trained and tested against the CMATERDB 3.3.1 Arabic
handwritten digit dataset. RBM–CNN is also trained for 100 epochs with a batch training size of 70%.
The Adam optimizer is used as the optimizing function. Experimental models are implemented in
Python programming languages with Theano and Keras Library. Figure 5 shows the structure of our
proposed model.
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3.1. Dataset Description

Our proposed method is trained and tested on the CMATERDB 3.3.1 Arabic handwritten digit
dataset [34], see Table 2. The CMATERDB 3.3.1 dataset was developed by researchers at the Jadavpur
University, and is collected from three different sources; namely, class notes of students from different
age groups, handwritten manuscripts of popular magazines, and a preformatted data sheet especially
designed for collection of handwriting samples [32]. These documents were digitized using HP
F380 flatbed scanner at 300 dpi. Each digit contains 300 images of 32 × 32 pixels. A few sample
images from the database are shown in Figure 5. No visible noise was found through visual inspection.
However, variability in writing style was observed as a result of the high user dependency. We divided
the dataset into 70% for the training and 30% for the testing process. The images were prepossessed
to convert them into grayscale values. Then, the images were inverted to enhance their features.
Furthermore, all the images were normalized to reduce the computation process.
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Table 2. Dataset description.

Dimension No. of Image

Dataset Classes Width Height Depth Dataset Training Test

CMATERDB 3.3.1 10 32 32 1 3000 70% 30%

3.2. Evaluation Measures

In evaluating the proposed method against previously proposed methods, the Recall, Precision,
and F1 measure metrics are applied as benchmarks for performance. These metrics are applied to class
(i.e., label to be predicted) of the dataset that contains 10 classes. The parameters used to compute
the final evaluation are (1) True Positive (TP), which represents the total number of images that
can be correctly labeled as belonging to a class x; (2) False Positive (FP), which represents the total
number of images that have been incorrectly labeled as belonging to a class x; (3) False Negative (FN),
which represents the total number of images that have been incorrectly labeled as not belonging to
a class x; and finally, (4) True Negative (TN), which represents the total number of images that have
been correctly labeled as not belonging to a class x.

1. Precision (P), also called the positive predictive value, is the fraction of images that are correctly
classified over the total number of images classified.

Precision (P) =
TP

TP + FP
(7)

2. Recall (R) is the fraction of correctly classified images over the total number of images that belong
to class x.

Recall (R) =
TP

TP + FN
(8)

3. F1 combines Recall and Precision; the value of the F1 measure becomes high if and only if the
values of Precision and Recall are high (Table 3). The F1 formula can be denoted as follows:

F1 =
2 Precision . Recall
Precision + Recall

. (9)

Table 3. Computed values of Precision and Recall.

Relevant Non-Relevant

Retrieved TP FP
Not-Retrieved FN TN

4. Comparison Results and Discussion

RBM is a type of machine learning technique for learning features from training data. We used
the training set from the CMATERDB 3.3.1 dataset to learn features from training data and test our
model in testing data. In our experiment, we fed the features learned by RBM into the CNN deep
learning algorithm, which worked as the feature extraction and classification method. The results of
the proposed RBM–CNN method are shown in Table 4.

Table 4. Classification result on the CMATERDB 3.3.1 dataset using RBM-CNN.

Evaluation Measures

Proposed Method Precision Recall F1 Score Accuracy

RBM-CNN 0.98 0.98 0.98 98.59
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Comparison results of the proposed method and state-of-the-art methods on the CMATERDB
3.3.1 dataset are listed in Table 5. We selected the best recognition results generated by related
learning algorithms applied on the CMATERDB 3.3.1 training data. From the said table, the highest
accuracy rates using the CMATERDB 3.3.1 dataset can be seen to be 97.4% using CNN [4].
However, a significant achievement is made by our proposed method using the RBM deep learning
algorithm for feature extraction and the CNN deep learning algorithm for classification. Specifically,
the highest accuracy rate of the proposed method reached 98.59%, which is higher than the results
for the state-of-the-art methods. These findings demonstrate that feature extraction and dimension
reduction via RBM can improve the generalization performance of CNN. As shown in Figure 6a,
the proposed approach obtains the best recognition rate on the CMATERDB test set. Figure 6b presents
the training error rate of our proposed model.

Table 5. Performance comparison of the proposed and related methods described in [4,33].

Author Techniques Accuracy

Ashiquzzaman and Tushar [4] CNN 97.4
X. Guo et al. [33] RBM-SVM 96.9
X. Guo et al. [33] Sparse RBM-SVM 97.5

Our approach RBM-CNN 98.59

CNN is a sequence of layers, and every layer of a CNN architecture transforms one volume of
activations to another through a differential function. In our CNN architecture, we use three main types
of layers—Convolutional Layer, Pooling Layer (Max-pooling), and Fully Connected Layer—to control
the overfitting process. We added a dropout layer with 20%, and our proposed CNN architecture and
parameters are described in Section 2.2. In Table 6, we also compare our proposed CNN architecture
with the CNN architecture described in [4].
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Table 6. Our CNN proposed architecture compare with CNN architecture proposed in [4].

Our CNN Proposed Architecture CNN Architecture as Proposed in [4]

Layers Operation Feature Maps No. Window Size Layers Operation Feature Maps No. Window Size

Convolution 32 5 × 5 Convolution 30 5 × 5
Max-pooling 32 2 × 2 Max-pooling 30 2 × 2

Dropout layer 20% Convolution 15 3 × 3
Convolution 32 3 × 3 Max-pooling 15 2 × 2
Max-pooling 32 2 × 2 Dropout layer 25%
Flatten layer 800 N/A Flatten layer - N/A

Fully connected 128 N/A
Fully connected 128 N/A
Dropout layer 50%

Output layer 10 N/A Output layer 10 N/A

The computational disadvantage of the RBM-SVM, Sparse RBM-SVM and CNN against the proposed
RBM–CNN is that RBM–CNN uses the RBM deep learning algorithm in its first stage to detect the
features of images in a highly robust manner. Then, the CNN model is trained over the extracted features,
and can easily detect the image class accurately, thereby exhibiting superior performance to RBM-SVM,
Sparse RBM-SVM and CNN in classic image recognition problems. In our experiment, we demonstrate
that the performance of our proposed RBM–CNN method enhances the accuracy in digit recognition,
with an accuracy of 98.59%, which is the highest recorded accuracy for the CMATERDB 3.3.1 Arabic
handwritten digit dataset. The confusion matrix of RBM–CNN trained with 100 epochs is shown in
Figure 7. The overall classification performance is highly promising.Information 2017, 8, 142  10 of 12 
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5. Conclusions

In this study, the RBM–CNN deep learning method is used to handle the problem of Arabic
handwritten digit recognition. This method is applied to the CMATERDB 3.3.1 dataset. In our
proposed model, the first algorithm is RBM that is used for feature extraction, and then the extracted
features are fed into the CNN for the classification process. Experimental results show that the proposed
method outperforms existing digit recognition methods with Arabic context in terms of accuracy rate.
Our proposed method achieves 98.59% accuracy, which is higher than that of the methods discussed
in [4,5,32,33]. This value is the highest recorded accuracy for the dataset used in the experiment.
In future work, the performance of combination of different RBMs and CNNs on other benchmarking
datasets should be fully explored with more than one RBM depend on the images size.
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