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Abstract: Sensor fusion techniques have made a significant contribution to the success of the
recently emerging mobile applications era because a variety of mobile applications operate based on
multi-sensing information from the surrounding environment, such as navigation systems, fitness
trackers, interactive virtual reality games, etc. For these applications, the accuracy of sensing
information plays an important role to improve the user experience (UX) quality, especially with
gyroscopes and accelerometers. Therefore, in this paper, we proposed a novel mechanism to resolve
the gyro drift problem, which negatively affects the accuracy of orientation computations in the
indirect Kalman filter based sensor fusion. Our mechanism focuses on addressing the issues of
external feedback loops and non-gyro error elements contained in the state vectors of an indirect
Kalman filter. Moreover, the mechanism is implemented in the device-driver layer, providing
lower process latency and transparency capabilities for the upper applications. These advances
are relevant to millions of legacy applications since utilizing our mechanism does not require the
existing applications to be re-programmed. The experimental results show that the root mean square
errors (RMSE) before and after applying our mechanism are significantly reduced from 6.3× 10−1 to
5.3× 10−7, respectively.

Keywords: sensor fusion; indirect Kalman filter; accuracy improvement; gyro drift correction

1. Introduction

Currently, the mobile applications era is looking forwards to the next generation where a
virtual personal assistant (VPA) performs the central unified framework, which integrates separate
applications to provide humans with context-aware personalized information and facilities [1].
Cooperating with various advanced technologies, sensor fusion plays an important role in improving
the accuracy of multi-sensing information from the surrounding environment, which is a vital input
data for a VPA to correctly respond to the user’s requests or for the user experience features for
interactive relaxation applications, etc. [2]. By utilizing the Internet of Things (IoT) infrastructure, we
are able to interconnect with many kinds of sensors. However, within the human activities of daily
living (HADL) focus, accelerometer and gyroscope sensors are the most popular objects, which have
already been installed in billions of smartphones nowadays. Moreover, this progress is forecast to
continue for at least the next decade [3].

However, due to the rapid upgrading of smartphones, mobile applications are facing difficulties
in that the code requires modification to adapt to additional hardware components in new devices.
This problem negatively affects billions of existing smartphones in the world and millions of
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applications in the market stores [4]. For instance, the pedometer sensor was introduced in the
Google Nexus 5 (Google, San Francisco, CA, USA), Samsung Galaxy S5 (Samsung, Seoul, Korea), and
Apple iPhone 5S (Apple, Cupertino, CA, USA) generations. Therefore, step-count information provided
by the pedometer cannot be taken into account without modifications of their code. Moreover, even
if the developers try to modify and re-compile the code to utilize the sensor fusion technique for
upgrading their applications, another problem arises because the applications separately apply sensor
fusion using their own approach. This not only burdens the smartphone’s performance, but also
creates more latency in the processing time [5].

Although there are existing solutions which implemented sensor fusion in kernel space as well as
user space, typical implementations of Kalman-based sensor fusion require external feedback loops
between the components that are requesting and providing the services. Some solutions are installed
at firmware level according to different underlying hardware; as a consequence, they are inflexible and
inconvenient to be updated. On the other hand, the solutions implemented in the application level
often exhibit lower performance compared to kernel space solutions in many operating systems; even
worse, all deployed applications have to be re-programmed when the underlying hardware is changed
or updated. This is critical because there are billions of deployed applications nowadays.

Attempts to address these aforementioned problems have achieved significant success by
using some interesting approaches [6]. The existing solutions have applied a variety of theoretical
frameworks to build effective fusion algorithms for imperfect data (see Section 2 for more detail).
However, almost all approaches concentrate only on improving the accuracy and fusion calculating
performance without any consideration of implementation position or facilitation for developers,
which is very important in the emerging mobile applications era [7].

From this point of view, we have proposed a new solution that implements the well-known
Kalman filter for sensor fusion in the device-driver layer. The experimental results show that
our solution provides greater convenience, benefiting the developer by making the applications
independent of the underlying sensor hardware upgrade. A part of our work has been presented
at the third International workshop on smartphone applications and services, 2011 [8]. Based on
these achievements, we enhance the accuracy and processing performance by using a quaternion
based indirect Kalman filter and develop additional feedback components to correct the gyro
drift problem. The gyroscope and accelerometer values are pre-calculated before reaching the
corresponding applications.

Our main contributions in this paper are summarized as follows:

• We have proposed a new software architecture for sensor fusion driver utilizing the quaternion
based indirect Kalman filter in conjunction with additional feedback components for gyro drift
correction. These components do not only handle the external feedback loop issue between the
device driver and applications, but also cancel the non-gyro signal in the measured state vector.

• The developed sensor fusion driver abstracts underlying sensor hardware to provide an unified
framework for mobile applications. The multi-sensing information is facilitated without any
requirement of re-programming or modification in the existing applications. It supports backward
compatibility for the legacy applications as well.

• The implementation in the device driver layer provides greater performance up to 10 times from
538 to 5,347 samples per second, and lower latency in calculation time from 1.8579 ns to 0.18702 ns.
The duplication of sensor fusion process among applications is completely addressed.

The remainders of this paper are organized as follows. Section 2 classifies the related work of
different approaches into corresponding categories. Section 3 defines the problem statement and
our approach to resolve it. The proposed solution is described in Section 4. Section 5 shows the
experimental results and discussion. Conclusions are drawn in Section 6.
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2. Related Work

As mentioned above, in the scope of this paper, we are concerned about sensor fusion problems
that happen in smartphone environments where VPA applications are closely installed. Therefore, the
survey of related work has concentrated on existing solutions for imperfect data from multi-sensing
information. We classify the related works into two groups by systematical designs, including
centralized calculation and local calculation. In both groups, the existing solutions are also divided
into theoretical approaches: probabilistic, statistic, and artificial intelligence.

2.1. Systematical Designs

The partial-centralized and fully centralized calculation approaches are typical models that were
introduced in past decades. Based on the network architecture, within the clustering and tree-topology
models, the multi-sensing information might be roughly pre-filtered at the clustering head nodes or
the i-th level root nodes before reaching the centralized processing server [5,9,10]. The centralized
calculation approach provides the outstanding advantages of high performance, complex mathematical
solutions, social information sharing, unified IoT framework, etc. [11–13]. However, in some special
cases, e.g., VPA applications, it reveals limitations of response latency, assisted-information localization,
and personal data privacy.

In contrast, the local calculation approach is able to compensate for the above limitations.
However, due to its natural disadvantages, nowadays, local calculation models only play a
supplemental role in the centralized solution as a local agents [10,11,14]. The combination of two
approaches almost satisfies the HADL applications’ requirements.

2.2. Theoretical Approaches

Based on theoretical approaches, our taxonomy classifies the existing related work into
three categories, including a probabilistic method, statistical method, and artificial intelligence
application method.

Within the probabilistic methods, the probability distribution functions of multi-sensing data
are fused together using Bayesian analysis. The rationale of this method is that since the sensing
information from related sources has properties of concrete probability distributions, combinations
of this information will be able to better correct the imperfect data [4,6]. This approach is only
effective when the related data has well-known distributions and the environment’s conditions are
stable. One exceptional case of Bayesian analysis is the well-known Kalman filter and its variations.
The orientation correction and error reduction of the Kalman filter based sensor fusion technique
were significantly improved by a variety of research such as the effective solution proposed by
Van Der Merwe in [15]. Nowadays, the Kalman filter is one of the most popular fusion methods, which
is implemented in various sensing domains due to its simplicity and acceptable accuracy [16,17].

Applying the statistical method, the evidence of sensing data from multi sensors are collected
and analyzed during the processing time [4]. Using the Dempster-Shafer evidence accumulation rule,
the probability mass function is fused to recognize the properties of the data and predict the trend of
the next sensing value. The Depster-Shafer framework allows different information levels from multi
resources to be combined, depending on its weight factor [5,18]. It makes more flexible to reproduce
the desired sensing data. Besides that, the context-aware, semantic information matching [19], and
fuzzy reasoning methods [20,21] are also utilized to adjust the output data as required.

Recently, the artificial intelligence method is becoming popular in the information fusion field.
Almost proposed solutions are centralized models where the multi-sensing data is gathered into a
logical central processing server. The complex algorithms are performed using neural networks [22,23]
and machine learning techniques [24] for analyzing and combining sensing data to obtain the
desired information. Moreover, the emerging cloud-fog computing infrastructure also provides
better performance for artificial intelligence algorithms.
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3. Preliminaries

3.1. Problem Statement

Following the above survey, since the outstanding properties of the Kalman filter and its variations
are simplicity in implementation and acceptable accuracy for almost all HADL applications, nowadays,
these filters are the most popular sensor fusion methods and are widely integrated into personal
devices such as smartphones, smartwatchs, and wearable devices. The position at which the Kalman
filters are implemented is also an interesting topic inspiring researchers to pay attention. The dominant
strategies focus on the application layer (i.e., internal process of stand alone applications) and remote
processing (i.e., cloud and fog computing). The general architecture of legacy sensor fusion methods is
described in Figure 1. Whenever the application requests sensing information, it must simultaneously
contact multi sensors through separate corresponding drivers. The overhead in request and response
operations rapidly increases, proportionally to the number of related sensors. Besides that, the fusion
process is calculated in the application layer, which might cause significant latency and cannot be
acceptable by real-time applications.

Sensor fusion 

process

Gyroscope 

driver

Accelerometer 

driver

Gyroscope 

sensor

Accelerometer 

sensor

Physical layer

Driver layer

Application layer

Upper layers

Figure 1. Sensor fusion processes in the legacy methods.

The strategy to implement sensor fusion in the lower layer is even more challenging due to the
difference in protocols and interface standards among sensor components. For instance, within our
proposal, we intend to apply the indirect Kalman filter at the device driver level to obtain better
performance and lower latency and overhead, we are facing some challenges as follows:

• External feedback loop: There is a feedback loop between the modules of the filter. If the indirect
Kalman filter were directly applied, it would result in a feedback loop signal between the
applications and the device driver, which is not a desirable configuration. When the Kalman
filter is implemented in the device driver level, it would use Euler angle kinematics in calculation,
which is not linear. The orientation value is transformed to gyro value before coming out of
the Kalman filter, then it has to be converted to orientation value again inside the applications.
The repeated transformations may cause error accumulations because Euler angle kinematics is
not linear. Note that the feedback loop is outside of the Kalman filter.

• Non-gyro signal in the measured state vector: Within the original indirect Kalman filter, a non-gyro
signal always appears in the state vector after measurement. It is not hard to resolve this problem
in the desired applications, but it wastes more time.
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3.2. Our Approach

In the emerging mobile application era, especially focusing on the VPA framework, quick and
exact response capability is very important. Moreover, since the applications are implemented in
mobile and wearable devices, which have limited hardware resources and battery, the processing
overhead must also be considered. To satisfy these requirements, we utilized a driver-based
approach. Our proposed sensor fusion architecture was developed at the driver layer to provide
a unified framework where the measured sensing data is collected and processed before reaching the
upper applications.

Due to its popularity and simplicity, the indirect Kalman filter is integrated into the framework to
perform information fusing functions. In order to address the external feedback loop and non-gyro
signal in the measured state vector issues, we apply the quaternion based method on the indirect
Kalman filter incorporating additional modules to return the required gyro and accelerometer values
at the corresponding output interfaces.

4. Proposed Solution

4.1. Sensor Fusion Driver Architecture

Figure 2 shows our proposed sensor fusion driver architecture, which consists of a quaternion
based indirect Kalman filter and three additional modules named Tqn, Tqa, and Cq. The gyro interface
and accelerometer interface separately serve applications using their expected gyro and accelerometer
information, respectively.

Sensor fusion driver

Gyroscope

Accelerometer Kalman filter error estimator

Gyro error 

compesation I

Gyro error 

compesation II

Tqn

Tqa

Accel. app.Gyro app.

Cq

+

–
ˆ

m
q q

q̂

Ω + δΩ + DΩ Ω + DΩ

δΩ

DΩ

δq

Gyro interface Accel. interface

Figure 2. The proposed sensor fusion driver architecture.

In the figure, Ω, δΩ, and ∆Ω represent the angular velocity, gyro bias error, and gyro drift
rate noise, respectively, and qm is the measured value received from the accelerometer sensor.
The quaternion value q̂ is defined as

q̂ = q4 + q1i + q2 j + q3k (1)
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where i, j, and k are hyper-imaginary numbers, q4 represents the real part of the quaternion, which is
equal to

q4 = cos(θ/2) (2)

where θ is the angle of rotation [25].
Denote the measured value received from the gyro sensor by wm. The noise model of the gyro

sensor is derived as follows
wm = Ω + δΩ + ∆Ω (3)

The purposes of gyro error compensation modules I and II is to remove the δΩ and ∆Ω signals,
respectively. The error state vector x̂ of the indirect Kalman filter can be expressed as

x̂ =
[
δq1 δq2 δq3 δqx δqy δqz

]
(4)

where δq =
[
δq1 δq2 δq3

]
.

4.2. Gyro Drift Correction

We resolved the external feedback loop by deploying two additional modules, called Cq

and Tqa, into the system. The module Cq computes the orientation from a given gyro value and
the module Tqa transforms the orientation to the accelerometer value that is expected from the
accelerometer-assisted application.

For non-gyro signals in the measured state vector, we integrated an extra module called Tqn.
The role of Tqn is to convert the δq value, which includes elements other than the gyro error, to ∆Ω,
i.e., the gyro rate noise. The quaternion based indirect Kalman filter is utilized due to the linear
properties of quaternion kinematics [26]. In this way, the error accumulation during the repeated
transformation is significantly reduced.

The computation of the Cq module is based on an assumption that during a time interval
∆t = tk + 1 − tk, the angular velocity Ω = (Ωx, Ωy, Ωz) is stable. Therefore, we can consider the

zero-th order quaternion integration as a quaternion product [27] given by

q̂ =

[
Ω
|Ω| sin( |Ω|2 ∆t)

cos( |Ω|2 ∆t)

]
⊗ q̂k−1 (5)

The purpose of module Tqa is to transform the orientation into the accelerometer value. Tqa takes
the quaternion q̂ as an input and translates it into an Euler orientation. After that, the Euler orientation
is translated into an accelerometer value. The details for this transformation can be found in [25].

The transformation from δΩ to ∆Ω is performed in the module Tqa. From Equation (4), we can
derive δqk+1 as follows


δq1

δq2

δq3

δq4


k+1

=


δq4 −δq3 δq2 δq1

δq3 δq4 −δq1 δq2

−δq2 δq1 δq4 δq3

−δq1 −δq2 −δq3 δq4


k


∆Ωx
|∆Ω| sin( |∆Ω|

2 ∆t)
∆Ωy
|∆Ω| sin( |∆Ω|

2 ∆t)
∆Ωz
|∆Ω| sin( |∆Ω|

2 ∆t)

cos( |∆Ω|
2 ∆t)


k

(6)

where δq4 is approximated to unity since the incremental quaternion is assumed to be a very small
rotation. Calculating Equation (6), we derive

∆Ωx =
2 cos−1(γ4)

∆t
√

1− γ2
4

γ1 (7)
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∆Ωy =
2 cos−1(γ4)

∆t
√

1− γ2
4

γ2 (8)

∆Ωz =
2 cos−1(γ4)

∆t
√

1− γ2
4

γ3 (9)

where ∆Ωx, ∆Ωy, and ∆Ωz are the gyro rate noises on the X, Y, and Z axis, respectively. In the above
equation, the γ value can be computed as

γ1

γ2

γ3

γ4

 =


δq4 δq3 −δq2 δq1

−δq3 δq4 δq1 δq2

δq2 −δq3 δq4 δq3

−δq1 −δq2 −δq3 δq4


−1

k


δq1

δq2

δq3

δq4


k+1

(10)

5. Experimental Results and Discussions

5.1. Preparation

In order to evaluate the performance of our proposed solution, we have conducted experiments
with 41,500 samples measured by a pair consisting of a gyroscope sensor and an accelerometer sensor.
The evaluations are performed based on an Android mobile device whose specifications are described
in Table 1. The results are compared among the proposed approach, the legacy approach, and the
reference standard provided by an encoder [28]. The true orientation values were recorded by the
encoder, which can precisely capture orientations of the experimented object. A conceptual diagram of
the encoder is shown in Figure 3.

θ

Rotary encoder

Gyro sensor

Tilt sensor

Figure 3. The encoder for recording the true orientation value.
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Table 1. Specifications of the experimental mobile device.

Specification Value

CPU S5PV210 ARM-CORTEX A8 [1 GHz]
Memory 512M DDR SDRAM
Kernel Linux kernel 2.6.32 (Android OS)
Accelerometer sensor 3-axis accelerometer sensor
Gyroscope sensor 2-axis gyroscope sensor
Sampling frequency 100 Hz
Angle range (−90◦, 90◦)

5.2. Accuracy Evaluation

We assess the accuracy among the experimental approaches by calculating the root mean square
error (RMSE) as following

RMSE =

√
n

∑
i=1

|Vmi −Vti |2
n

(11)

where Vmi and Vti are the value measured by the sensor and the actual value of the Euler angle at the
i-th time, respectively, and n is the total number of sampled sensor data.

Figure 4a–c show the results of Euler pitch angle calculation by using a separate accelerometer
sensor, our proposed solution, and the encoder, respectively. The values and line graph shapes indicate
the equivalence between our proposed solution and the encoder. However, the result of the separate
accelerometer sensor is different, except the trend of the line graph. The reason is the accelerometer
sensor does not respond quickly to changes of the status during high speed motion. In this Figure 4b,
with our proposed solution, even though the angles are calculated by using the acceleration sensor,
the result can follow the progress measured by the encoder very well without any negative effects
resulting from the translational motion.

그림 5.5:가속도센서를통해구한피치각(기존방식)
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그림 5.6:엔코더로측정한기준각
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(c)

Figure 4. The Euler pitch angles calculated using a separate accelerometer sensor, our proposed solution,
and the encoder. (a) Separate accelerometer sensor; (b) Our proposed solution; (c) The encoder.

Under the same analysis as applied to the accelerometer sensor, Figure 5a–c show the results
of the Euler pitch angle calculation by using a separate gyroscope sensor, our proposed solution,
and the encoder, respectively. Unlike the accelerometer sensor, the separate gyroscope sensor can
follow the progress of angle changes. However, due to the shortcoming physical characteristics, the
gyroscope sensor has a gyro drift problem that distorts the shape of the graph over time (see Figure 5a).
On the other hand, with our proposed solution, the sensing information from the gyroscope sensor
and accelerometer sensor is fused to compensate for each other. As a result, the output value is
approximately the same as the value provided by the encoder (see Figure 5b,c).
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Figure 5. The Euler pitch angles calculated using a separate gyroscope sensor, our proposed solution,
and the encoder. (a) Separate gyroscope sensor; (b) Our proposed solution; (c) The encoder.

Figure 6 shows the calculated orientations comparison among the true value, our proposed
mechanism, and the sensor fusion device driver (SFDD) mechanism [8]. The X-axis represents the
time-lines at which the measurements were performed and the Y-axis represents the orientation values
in degrees. It is observed that the proposed method provides a more accurate estimation of the
orientation values than the results of the SFDD mechanism. As the recorded values are closer to each
end of the range of (−30◦, 30◦), the difference between our proposed mechanism and SFDD mechanism
becomes much clear. It is noteworthy that the gyro drift is almost corrected by the proposed method.
The RMSE of the SFDD mechanism and the proposed mechanism are decreased from 6.3× 10−1 to
5.3× 10−7, respectively.

30
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-10

-20

-30
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Time (s)

D
e
g
re

e

Encoder [28]
Our proposed mechanism

SFDD mechanism [8]

Figure 6. The comparison of calculated orientations among the true value, our proposed mechanism,
and the sensor fusion device driver (SFDD) mechanism.

The dependence of the calculated values on the angle range are summarized in Table 2.
The calculated values are compared with the reference standard values received by the encoder.

Table 2. Calculation bias of the sensing information by using difference methods.

Method Sensor (−30◦, 30◦) (−60◦, 60◦) (−90◦, 90◦)

Separate sensor Accelerometer 22.3546 21.9589 35.5267
Gyroscope 70.9580 72.6149 307.1894

Our proposed methods Accelerometer 0.04875 0.0537 0.2537
Gyroscope 1.8702 1.9309 8.6471

5.3. Performance Evaluation

To evaluate the performance of the proposed solution, we calculated the average processing
speed per sample over 4500 experimental data samples. The result shows that the proposed
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solution significantly increases the processing speed up to 10 times in comparison with the existing
application-based methods, from 1.8579 ns to 0.18702 ns, respectively. This improvement is achieved
by the movement of the fusion process from the application layer to the driver layer on the kernel
level. Generally, the sample rates provided by the Android API are 4 samples/s in normal mode
and 50 samples/s in fastest mode. The experiments show that the application-based method and our
proposed method are able to handle 538 and 5347 samples per second, respectively.

6. Conclusions

In this paper, we proposed a solution to implement the sensor fusion technique at the driver layer
of a mobile device. The quaternion based indirect Kalman filter and three additional modules are
integrated to provide better performance and accuracy of sensing information. The external feedback
loop and non-gyro error elements contained in the state vector issues are addressed before the required
sensing data is delivered to the desired corresponding applications. The experimental results show that
our proposed solution achieves better performance and accuracy. Moreover, any change in the device
driver does not negatively affect the upper applications. The applications do not need to modify their
code or be re-programmed and re-compiled to utilize the sensor fusion features. In the future research,
the proposed architecture will be expanded to interact with multiple sensors and be implemented
based on different devices’ hardware and operating systems.
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