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Abstract: A demand side management technique is deployed along with battery energy-storage
systems (BESS) to lower the electricity cost by mitigating the peak load of a building. Most
of the existing methods rely on manual operation of the BESS, or even an elaborate building
energy-management system resorting to a deterministic method that is susceptible to unforeseen
growth in demand. In this study, we propose a real-time optimal operating strategy for BESS based
on density demand forecast and stochastic optimization. This method takes into consideration
uncertainties in demand when accounting for an optimal BESS schedule, making it robust compared
to the deterministic case. The proposed method is verified and tested against existing algorithms.
Data obtained from a real site in South Korea is used for verification and testing. The results show
that the proposed method is effective, even for the cases where the forecasted demand deviates from
the observed demand.

Keywords: demand-side management; peak demand control; dynamic-interval density forecast;
stochastic optimization; dimension reduction; battery energy-storage system (BESS)

1. Introduction

Uneven energy consumption degrades power quality and translates into high energy cost.
Therefore, grid operators put much effort toward reducing peak demand through various methods,
such as financial incentives. This objective is known as demand-side management (DSM) [1]. DSM is
also deployed on the consumer side, to mitigate the peak, thereby lowering the electricity cost.

Building energy-management systems (BEMS) have been widely deployed for DSM using various
techniques such as price and incentive-based DR programs [2–4]. In recent years, most DSM techniques
resort to the use of battery energy storage systems (BESS) due to their benefits such as modularity
which enables them to be implemented for different application and purposes, and fast and high
power response as compared to traditional energy sources [5,6]. In most BESS use cases, the operation
of the BESS is determined manually. Even for an elaborate BESS, the operation strategy is intuitively
designed and mostly relies on a deterministic method.

In [7], the authors suggested a typical deterministic approach. A peaking interval is foretold
empirically, and the BESS is charged to its full capacity prior to this interval. The BESS is then evenly
discharged during the defined period. The wider the peaking interval, the higher the probability of
covering all possible peak occurrences becomes. However, the performance of the peak cut would
be less effective as the interval becomes wider due to the energy limit of the BESS. A narrow peaking
interval has a high probability of missing the peak, but the discharge effect of the BESS is much denser,
and thus the peak can be cut more deeply as long as the actual peak falls within the foretold interval.
In both cases, however, the peak cut performance is generally poor because the interval is fixed as that
determined during the offline analysis.
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Another prevalent method used by industrial energy consumers is to monitor demand and
discharge BESS at its full rate when a peak occurs. The advantage of this method is that the discharge
interval can be dynamically adjusted depending on the monitored demand value. Nevertheless, this
method could lead to an unintended result, as the amount of discharge energy might often be more
than necessary, causing an early depletion of the BESS. To tackle this problem, it is important to know
with some certainty when the peak will occur as well as its value. A demand forecast can alleviate this
problem [8–12].

Research has shown that BESS can effectively restrict the power demand from exceeding the
predetermined value and suppress the voltage imbalance factor within the recommended value [13–15].
The research in [16] aims to reduce the electricity cost based on time-of-use (TOU) charges and peak
power demand charges as issued by grid companies. The BESS is developed to reduce the peak
demand and, consequently, the electricity bill for customers. With the use of BESS, the stress of utility
companies can be reduced during high peak power demands.

The above works use a deterministic approach to DSM [12,16–20]. This is an inadequate
representation of real-life occurrences of demand. Electric power demands recorded under practical
applications are time-series data with uncertainties and are mostly correlated. A single point out of the
sample forecasts the future value of demand at a specific time based on historic data. On the other
hand, the density forecast gives a forecast at a certain probability value, because, in reality, it is difficult
to forecast the demand with certainty at a certain time in the future. Density forecast models are useful
not only in forecasting the future behaviour, but also in determining optimal operation and control
policies [21,22]. Most DSM approaches do not take into consideration the stochastic nature of demand.

The works in [23,24] considered uncertainties in demand; Ref [23] studies a stochastic solution for
stationary and mobile BESS considering uncertainties in demand and mobility. The approach does
not consider dynamic-interval forecast of demand and optimization to improve the accuracy of future
forecasts. Ref [24] deals with real-time forecast and control of HVAC for cost minimization and users’
thermal comfort but it is not focused on peak demand control using BESS.

This paper proposes a solution to DSM via an optimal BESS schedule that takes into consideration
uncertainties in demand. This papers’ contribution hinges on real-time density forecast and stochastic
peak control algorithm taking into consideration uncertainties in demand to lower the electricity
cost by mitigating the peak demand of a building. The approach employs dynamic-interval density
forecast (DIDF) to forecast the demand distribution profile, a day ahead, multiple times in a day
horizon. Although the method and subsequent accuracy of the forecast greatly affect the performance
of DSM, the specific method is beyond the scope of this study; the authors are preparing this topic for
a separate work. In this paper, only the concept and format of DIDF are presented for application to
the dynamic scheduling of a BESS. To this end, a dimension-reduction method, termed piecewise peak
approximation (PPA), is developed to reduce the dimension of the demand probability distribution
(DPD) obtained from DIDF for a faster computational time. The method captures the stochastic nature
of demand by using stochastic optimization [25] to provide a robust BESS schedule while satisfying
the technical constraint of maximizing BESS efficiency and life cycle. The proposed method is then
applied to an actual environment in South Korea to verify the performance.

The rest of this paper is organized as follows. Section 2 describes the proposed approach to DSM
via stochastic optimization. Section 3 discusses the problem formulation. Section 4 elaborates on a
case study and experimental evaluation of the proposed approach using data from a real site in South
Korea. Section 5 gives a discussion on the proposed approach as compared to a deterministic case
Finally, Section 6 provides a summary of this paper with spotlights on the main concepts, results
and conclusions.

2. Proposed Approach: DSM via Stochastic Optimization

This paper proposes a DSM solution made up of three modules: I. Dynamic-interval density
forecast module, II. Dimensionality Reduction module, III. Stochastic optimization module.
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2.1. Dynamic-Interval Density Forecast

A density forecast is generated a day in advance based on empirical data as a probability
distribution at each time instance in a day horizon. It is important to capture the uncertainties
in demand. Most day-ahead forecast algorithms forecast a single value for each time instance in a
day horizon, as shown in Figure 1a. The problem with this approach is that, in practical applications,
electric demand has uncertainties that need to be accounted for, as shown in Figure 1b. When a
deterministic forecast is used for DSM, it is expected that the forecasted demand will be equal to
observed demand. When this is the case, the resulting BESS scheduled after design optimization is able
to resolve the peak, as shown in Figure 2a. On the other hand, when the observed demand deviates
significantly from the forecasted demand, the BESS is unable to resolve the peak, as shown in Figure 2b.
Electric demand is a random variable that depends on many factors like weather, special events, and
socioeconomic factors. The density forecast provides a good description of the uncertainty associated
with a forecast; it provides a forecast of probability distribution of demand at each time instance in the
day horizon, as seen in Figure 3a. We refer to this as a demand probability distribution (DPD) profile.
The details of the forecast methods are out of the scope of this paper and this is to be considered in
another work of the authors.
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Figure 3. (a) Demand forecast as a probability distribution (DPD); (b) Demand distribution forecast
with confidence interval.

As depicted in Figure 3b, the probability distribution is generally narrow at the beginning of the
forecast stages and becomes wider as it gets farther from the current moment. This phenomenon calls
for re-forecasting to restore confidence in the forecast. In dynamic-interval forecasting, the forecast is
performed multiple times in a day horizon in order to restore confidence in the forecast. The notion is
to forecast at wider intervals during the demand off-peak period and narrow intervals during demand
peak periods. DIDF helps track the forecasted distribution with high accuracy because the confidence
interval of the forecast is improved in the next forecast interval.

2.2. Dimensionality Reduction Module

Because of the stochastic nature of the input data, many demand profile scenarios are possible.
For example, given demand distribution samples at 15-min intervals in a day horizon, there are
n = 96 sample points, where n is the number of demand distributions in a day horizon. The number
of possible demand profile scenarios that can arise from this setup is an, where a is the number
of samples in each demand distribution. If there are a = 5 samples in each demand distribution,
the number of possible demand profile scenarios can be evaluated as 596, which is not feasible for
real-time optimization even with a high-performance computer. A Monte Carlo simulation can be
used to select plausible scenarios to follow the original demand distribution for a representational
selection. However, the number of scenarios to select is a trade-off between accuracy and computational
complexity. In real-time applications, time is of the essence; therefore, using dense or high-dimensional
data will affect the execution time. From this perspective, it is prudent to perform dimensionality
reduction of the data with high fidelity.

2.2.1. Time-Of-Use (TOU) Partitioning

This paper proposes a method to reduce the dimension of DPD to improve the computational
time of the optimization algorithm.

To reduce the dimension of the DPD two conditions are satisfied:

1. Obtain the value of dimension reduction
2. Accurate TOU Pricing: the objective of the stochastic optimization is to minimize electric cost, the

electric cost in turn depends on TOU price which varies depending on the time of day. Figure 1
represents TOU policy of the Korean electric power company (KEPCO) which shows the different
periods (partitions) in a day horizon with different time of use prices. The price changes are
different depending on the day of the week and season [26]. Periods marked red have the highest
price tag, followed by the yellow periods, with the green periods having the lowest price tag.



Energies 2018, 11, 1166 5 of 14

Based on the first condition, DPD of n dimension is reduced to m dimension where n is the
original dimension of the DPD and m is the dimension to reduce n for a faster computational time
while maintaining an appreciable level of accuracy (m < n).

The constraint in the second condition is to ensure the reduce dimension ties in with given TOU
pricing interval for an accurate electric cost evaluation. To fulfill this, the minimum possible value that
m can take in order to satisfy the TOU constraint is defined as w. If m < w some demand values will
be misclassified into wrong TOU horizons during the reduction process, thereby attracting a wrong
TOU price. As such, m > w. As shown in Figure 4, a day horizon is partitioned into different pricing
periods. The number of pricing periods in a day horizon as a result of TOU is defined as f , different
days in a season have different pricing periods. From Figure 4 f can take on values of f = {1, 3, 7, 8}
depending on the day of the week and season. f = 1 represents the number of partitions for Sundays
in all seasons, f = 3 represents the number of partitions for Saturdays in all seasons, f = 7 represents
the number of partitions for weekdays in spring or fall, and f = 8 represents the number of partitions
for weekdays in winter or summer. Considering all days in every season, the maximum value that
f can take on should be the minimum values that m can take to satisfy the TOU pricing constraint
(i.e., w = 8). One caveat that needs to be taken care of is days where f < w = 8. When f < w = m or
f ≤ w < m a parameter c is introduced to pad f to make up to m. c can be evaluated using (1).

c =

{
w− f , f < w = m
m− f , f ≤ w < m

(1)
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Figure 4. KEPCO time-of-use (TOU) daily partitions.

2.2.2. Piecewise Peak Approximation

Given a probability distribution forecast of demand, referred to as DPD, X = {d1, d2, ..., dn}, where
di is the probability distribution forecasted at the i-th time instance, piecewise peak approximation
(PPA) is performed.

To proceed with PPA, a day horizon is divided into m partitions to following TOU. From Figure 5,
the red dashed line is the peak limit which is defined for each distribution in DPD. The peak propensity
(probability to exceed the peak limit) for each distribution in DPD is evaluated using (2). The reduction
is achieved by approximating all distributions found in a partition with the distribution having the
maximum peak propensity (3).

PP(di) =

{
PlP(di), di < Pl
PlP(di), di > Pl

(2)

Maximum peak propensity = ‖PP(di), PP(di), ...,PP(di)‖∞ (3)

where P(·) is the probability function, Pl is the peak limit.
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The most common measure of central tendency used for such approximations is the average,
as used in the deterministic case in [27,28]. This idea is also applicable in a stochastic case. However,
since the peaking value is of the essence, using the average of demand distributions that fall under
a partition could compromise the peak information. To carry the peaking feature, the distributions
in a partition are approximated as the distribution with the maximum peak propensity, as illustrated
in Figure 5a,b. The PPA produces a reduced demand probability distribution (RDPD) represented
as H =

{
< d̂1, r1 >,< d̂2, r2 >, ...,< d̂m, rm >

}
, where d̂k is the distribution with the maximum peak

propensity in the k-th partition, rk marks the beginning of the (k + 1)-th partition and end of the k-th
partition, with k = 1, 2, ..., m. rk corresponds to potential points where TOU pricing changes occur.
Preserving these price-change points during dimensionality reduction makes it convenient to apply
the right TOU price during optimization.
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Algorithm 1 describes the PPA process.

Algorithm 1. PPA (X).

begin
1. q = TOU_band(X)

2. c = (w− f )1{w = m}+ (m− f )1{m > w}
3. for i = 1 to c
4. Z = max_sub_divide(q)
5. Endfor
6. for each partition in Z,k
7. Hk = max_peak_propensity(Z(k), Z(k− 1), X)

8. rk = Z(k)
9. Endfor
end

2.3. Stochastic Optimization

Stochastic programming is an approach for modelling optimization problems that involve
uncertainty. Whereas deterministic optimization problems are formulated with known parameters,
real-world problems almost invariably include parameters which are unknown at the time a decision
should be made. When the parameters are uncertain but assumed to lie in some given set of possible
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values, one might seek a solution that is feasible for all possible parameter choices and optimizes a
given objective function [25].

Stochastic optimization approaches the demand side management (DSM) problem by optimizing
(minimizing) the total cost on average, min

x∈X
E[ f (D, x)], where x is the decision variable and D is demand

as a random variable. Stochastic optimization evaluates the best cost and controls the peak demand
for a given objective under demand uncertainties.

3. Problem Formulation

The objective of the proposed approach is to provide demand side management considering
demand uncertainties. The algorithm performs a probability distribution forecast at set intervals
using empirical data. The demand probability distribution (DPD) produce after the forecast is
dimensionally reduced for faster computation via piecewise peak approximation (PPA). The reduce
demand probability distribution (RDPD) is used as input to the stochastic optimization in conjunction
with energy tariff and parameter constraints which seeks a robust BESS schedule with a given objective
while satisfying BESS’s technical and efficiency constraints, as shown in Figure 6. The objective
function of the stochastic optimization is divided into two parts:

1. Energy Cost (TOU), which is computed at every time interval
2. Demand (Peak) Cost, which is evaluated at the end of every month
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3.1. Energy Cost

The energy cost represents the amount of energy used within a period multiplied by the TOU
energy price. In a distribution sense, the energy cost is the total expected demand multiplied by the
TOU energy price, which can be evaluated using (4).

CostTOU =
m

∑
k=1

gk × CTOU
k (4)

gk = E[d̂k + ek] (5)
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where d̂k is the k-th distribution in RDPD, ek is the BESS schedule provided at the k-th instance by the
optimization algorithm, CTOU

k is the TOU energy price at the k-th instance, gk is the expected demand
of the k-th distribution in RDPD, and CostTOU is the total expected cost of energy in a day.

3.2. Demand Cost

The demand cost is the maximum 15-min average power over a month multiplied by the demand
price. This is evaluated using (6). The demand cost and energy cost must be unified. Normally,
the demand cost is evaluated monthly, whereas the energy cost is calculated at a unit time interval.
Because of this difference in units, the demand cost needs to be evaluated correctly at unit time
intervals such that the accumulated demand cost over a month is equal to the monthly demand cost,
as expressed by (10). The unified daily demand cost can be evaluated using (11).

CostD = Dmax × CD (6)

Dmax =‖ Hmax
1 , Hmax

2 , ..., Hmax
q ‖∞ (7)

Hmax
l =‖ hl1, hl2, ..., hlm ‖∞ (8)

hlk =

 Pl × P(d̂lk + ek),
(

d̂lk + ek) < Pl

(d̂lk + ek)× P(d̂lk),
(

d̂lk + ek) > Pl
(9)

CostD =
q

∑
l=1
‖ {hlk}m

k=1 × CU ‖∞ ≡ Dmax × CD (10)

Costd =‖ {hlk}m
k=1 × CU ‖∞ (11)

CU =

(
CD

q

)/
m (12)

q =


28, Feb
29, Feb(leap year)
30, Sept, Apr, Jun, Nov
31, Otherwise

(13)

where CD is demand price for a month, Hmax
l is the maximum demand on the l-th day,Dmax is

maximum demand for a month, hlk is the peak demand distribution at instance k on the l-th day,
d̂lk is the demand distribution at an instance k in RDPD on l-th day, Pl is the peak demand limit,
P(.) is a probability function, CU is the unified demand price at any instance in a day, CostD is the
monthly demand cost, Costd is the unified daily demand cost, q is the number of days in a month,
with l = 1, 2, ..., q.

By KEPCO policy, the demand value used to evaluate demand cost is obtained using (9); thus,
if the current recorded demand is greater than the Pl, the recorded demand value is used in calculating
the cost. If the recorded demand is less than the Pl, the value of the Pl is used to compute the cost.
This is evaluated to achieve peak demand control.

3.3. Optimization

The objective function of the stochastic optimization is formulated as the ensemble of energy
cost and demand cost (EC) (14). The design optimization algorithm provides BESS control schedule
candidates at each iteration of the optimization process, ux = e1, e2, ..., em, based on conditions
established as constraints to the objective function, where ux is the x-th BESS control schedule, ek is
the BESS value scheduled at the kth instance in ux, x = 1, 2, ..., s, s is the number of iterations via the
optimization algorithm.
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For each ux, the ensemble of energy cost and demand cost is evaluated; this is evaluated as the
minimum of both parameters. This is repeated for each iteration of the BESS control sequences until
the one with the least cost on average is found. The objective function for the stochastic optimization
is formulated as (16).

EC = f (H, ux) (14)

f (H, ux) = min(
m

∑
k=1

CostTOU
k , Costd) (15)

argmin
ux

f (H, ux) (16)

An inequality constraint is imposed on the objective function such that the state of the charge
(SOC) of the BESS at the beginning of a day should be the same as that at the end of the day (17).
Furthermore, the SOC of the BESS should be in the range of socmax and socmin, thus maximum and
minimum SOC, respectively, as expressed by (18).

soc0 = soc f inal (17)

socmin ≤ sock ≤ socmax (18)

sock = sock−1 + ek
γ

SBESS
(19)

γ = e f f ch, γ =
1

e f f dch , (20)

where sock is the SOC at instance k; soc0 and soc f inal are the initial and final SOC, respectively, γ is the
efficiency of BESS, e f f ch and e f f dch are the charge and discharge efficiency, respectively, and SBESS is
the BESS capacity. The constraints guarantee that the optimization returns feasible solutions.

4. Case Study

In this section, the proposed approach is implemented with a case study and simulated for results.
For the case study, 2016 and 2017 data from a real-site in South Korean was obtained. The data is
recorded at an interval of 15 min in a day horizon, because of KEPCO’s policy of recording peak
demand in 15-min intervals. The 2016 data is used for the daily interval forecast for 2017. The 2017
forecast data is used to implement the DSM algorithm, and the observed data is used for testing and
for result analysis.

By convenience, a density forecast of 250 elements per each distribution is used. Dynamic-interval
density forecast (DIDF) is performed following TOU partitions in a day horizon to obtain demand
probability distribution (DPD). DPD of n dimensional space is reduced to m dimensional space which
is referred to as a reduced reduce demand probability distribution (RDPD) via PPA for stochastic
optimization. During peak times, the forecast is performed after every 15-min interval, whereas at
off-peak times, the forecast is made on the order of hour intervals, followed by 2 h, 3 h, etc., depending
on the size of the off-peak interval. Stochastic optimization is performed using RDPD. Particle-swarm
optimization (PSO) [29] with a swarm size of 500, inertia of 0.6, and desired accuracy of 1 × 10−10 is
used to implement the stochastic optimization procedure using the parameters in Table 1 at intervals
following DIDF. TOU pricing is based on data from KEPCO [26].

Table 1 shows the parameters used for the case study. The simulation was realized in MATLAB
2014 on an Intel i5 processor with 16 GB of RAM. On average, it takes 55 s to complete a single run of
the stochastic optimization.
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Table 1. Simulation parameters.

Parameters Symbols Symbols

Peak demand limit Pl 6610 kW
BESS capacity SBESS 500 kWh

BESS efficiency γ 90%
Initial SOC soc0 0.2

Maximum/Minimum SOC socmax/socmin 0.9/0.2
Number of sample points m 24

Number of distributions in a day n 96
Number of samples in a distribution a 250

Figures 7 and 8 present the results of the robust BESS schedule as applied to the expected demand.
The results also show a comparison of the expected demand under the BESS schedule as well as when
the BESS is absent. Each figure presents the expected demand, SOC of BESS, as well as the cost of
expected demand when the BESS schedule is applied and when it is not. At the beginning of the day,
BESS starts operation from the minimum SOC value, and the same value is maintained at the end
of the day. The optimal BESS schedule obtained after stochastic optimization is verified against the
most probable demand of the distribution. Figure 7a presents a stochastic optimization algorithm
considering only energy arbitrage. It can be observed that the BESS discharges heavily during the
critical TOU periods (peak times), indicated by the red band because the TOU price is high during this
period. As such, it discharges prior to charging to full capacity during the off-peak period, in which
TOU price is cheaper. Figure 7b shows the result where the algorithm considers only the peak demand
cost. Figure 8 presents the results where the algorithm considers both the peak demand cost and
energy arbitrage. In Figures 7b and 8, the BESS schedule discharges heavily during the peak periods
from 10 a.m. to 2 p.m. to resolve the demand peak exceeding the peak limit.
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Figure 8. DSM algorithm results considering energy arbitrage and peak demand control.

From Table 2, it can be observed that implementing the algorithm considering only energy
arbitrage cost performs poorly in terms of peak reduction, but it is the best in terms of cost reduction.
This is because it seeks only to reduce cost and not peak demand. With a previous peak value
of 1763 kW, the algorithm causes a new peak of 2072 kW, representing an 18% increment in peak.
In contrast, it provides the best yearly cost reduction of
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35,296,338 in 2017. When the algorithm
features only peak control, it is able to reduce the peak from 1763 kW to 1330 kW, which is a peak
reduction of 26% and a yearly cost reduction of
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An ensemble of energy arbitrage and peak control seeks to harness the benefit of the two

algorithms; as such, the results show a reduction of 1308 kW in peak, representing a 26% decrease and
a yearly cost reduction of
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Although implementing energy arbitrage alone provides the best energy cost, it also results in the

worst peak control. The peak control case also has a good peak demand reduction, but also the worst
yearly cost reduction. A combination of the two presents a compromise between these two factors to
achieve a better cost and the best cost reduction.

Table 2. Simulation results.

Parameter Value

Original Peak (Without BESS) 1763 kW

New Peak
(With BESS)

Energy arbitrage 2072 kW
Peak Control 1330 kW

Ensemble 1308 kW

Peak Reduction
Energy arbitrage −18%

Peak Control 25%
Ensemble 26%

Original Cost (Without BESS)
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5. Discussion

The proposed demand side management algorithm is compared with a deterministic optimization
(DO) method using a deterministic day ahead forecast which is predominantly proposed in other
research. The deterministic approach forecasts a day ahead demand profile which is used to evaluate
an optimal BESS schedule for the next day, as shown in Figure 9a.
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Figure 9. (a) Day ahead forecast and observed demand; (b) BESS schedule on forecasted demand using
deterministic optimization (DO).

Figure 9b shows the forecasted demand and the effect of the subsequent BESS schedule that was
generated from the optimization algorithm. From the figure, it can be observed that although the peak
demand is reduced, the reduction strictly follows the peak limit. The peak is reduced from 1518 kW to
1370 kW, representing a 9.8% reduction.

Figure 10a shows the results of the BESS schedule obtained from the optimization algorithm
as applied to the observed demand. It can be observed that the BESS schedule generated fails to
reduce the peak demand because of inaccuracies in the forecast as compared to the observed demand.
The BESS schedule rather increases the peak from 1563 kW to 1624 kW, representing a 3.8 increase in
peak demand.
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Figure 10b shows the results when the proposed real-time demand side management solution is
applied to the observed demand. It can be observed that the real time algorithms perform better, since
the dynamic interval density forecast reforecast the demand at set intervals to correct the deviation in
the forecast. This approach is able to reduce the peak demand from 1563 kW to 1236 kW representing
a 20.9% reduction.

6. Conclusions

This paper has proposed a DSM solution that incorporates a dynamic interval density forecast
with a piecewise peak approximation for stochastic optimization.

The DSM solution has been verified using demand data from a real industrial site in South Korea.
The results show that energy arbitrage alone cannot reduce the peak demand. In the case where
the algorithm implements only energy arbitrage, a peak increase of 18% was incurred. When the
algorithm implements an ensemble of energy arbitrage and peak demand cost, the peak demand is
reduced by 26%. Unlike the deterministic case, where the forecast is performed once in a day horizon,
the proposed solution performs the forecast at set intervals in a day horizon to restore confidence in
the forecast should it deviate. This ensures a much more accurate forecast and a robust BESS schedule.
For verification, the proposed demand side management algorithm is compared to a deterministic
algorithm; the proposed method achieves 20.9% in peak reduction while the deterministic case achieves
9.8%. This real-time algorithm is applicable to industrial or commercial settings.
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