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Abstract: Microwave photonic (MWP) systems exploit the advantages of photonics, especially with
regards to ultrabroad bandwidth and adaptability, features that are significantly more challenging to
obtain in the electronic domain. Thus, MWP systems can be used to realize a number of microwave
signal processing functions including, amongst others, waveform generation and radio-frequency
spectrum analysis (RFSA). In this paper, we review recent results on fiber and integrated approaches
for simultaneous generation of multiple chirped microwave waveforms as well as multi-channel
RFSA of ultrahigh repetition optical rate pulse trains.
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chirped microwave signals; fiber Bragg gratings; RF spectrum measurement; silicon photonics

1. Introduction

Microwave photonics (MWP) unites the disciplines of microwave engineering with
optoelectronics, and focuses on the use of photonic techniques and technologies to generate, process,
and analyze/characterize microwave signals or to obtain radio-frequency (RF) characteristics of optical
signals [1–3]. Photonics provides ultrabroad bandwidth and supports parallelization and adaptiveness
(e.g., to achieve reconfiguration and tuning); thus, MWP enables a number of important functions
in microwave systems that are either too complex or not possible to implement with conventional
electronic approaches. Over the years, applications of MWP have evolved to include, amongst others,
communications (e.g., to support the interface of wireless and optical communications, as well as
for emerging 5G communications and the Internet of Things), sensing (e.g., to enhance resolution
and increase the interrogation speed of conventional fiber optic sensor systems), and instrumentation
(e.g., wideband signal characterization). To support these various applications, numerous functions
are required, such as photonic generation of arbitrary waveforms, e.g., microwave, millimeter wave,
and THz signals [4,5]; photonic processing of microwave signals, e.g., filtering, time delay, and phase
shifting [6–8]; and photonic characterization of microwave signals, e.g., spectrum analysis and
instantaneous frequency measurement (IFM) [9,10].

Chirped microwave waveforms have been used widely in various applications, especially
radar systems [11]. Photonic generation of chirped microwave waveforms offers the possibility
to obtain central frequencies of tens to hundreds of GHz as well as significant RF chirp rates,
thereby supporting tens of GHz of bandwidth [4,5]. Photonic approaches also provide increased
flexibility, especially in terms of tuning the central frequency and/or RF chirp rate of the waveforms.
Such features and capabilities are not generally possible or have limitations with electronics. A variety
of photonic approaches have been explored for RF arbitrary waveform generation and, in particular,
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chirped microwave waveforms. Most implementations demonstrated to date are capable of only
generating a single waveform at a time, i.e., of a specific central frequency or RF chirp rate. On the other
hand, the ability to obtain simultaneously multiple chirped microwave waveforms, each having its own
characteristics, may enhance flexibility and provide new functionality in instrumentation and imaging
applications. In this paper, we describe two fiber-based implementations for simultaneous generation
of multiple (at least two) chirped microwave waveforms. The first approach uses superimposed linearly
chirped Bragg gratings (BGs) in a Sagnac interferometer while the second incorporates multiple linearly
chirped BGs in a multi-channel arrayed waveguide Sagnac interferometer (AWGSI). We show how
these structures can be used to synthesize multiple chirped microwave waveforms with the same
central frequency and different RF chirp rates, as well as to obtain independent control over the central
frequency and RF chirp rates.

Electrical spectrum analysis of ultrabroadband photonic RF arbitrary waveforms and ultrahigh
repetition rate optical pulse trains is necessary for monitoring the quality of the waveforms.
It is performed typically using a photodiode for optical-to-electrical (O/E) conversion and an electrical
spectrum analyzer (ESA). However, this approach is limited by the bandwidth of available electronics
and, hence, cannot be used to characterize photonic waveforms that have a bandwidth in excess
of 100 GHz. While a trade-off between measurement bandwidth and resolution has to be made,
photonic implementation of radio-frequency spectrum analysis (RFSA) based on ultrafast nonlinear
optics (e.g., Kerr nonlinearity) allows for characterizing signals with a bandwidth well beyond
100 GHz. Photonic RFSA was originally proposed and demonstrated using optical fiber as the
nonlinear medium [12]; it has since been reported using integrated technologies in chalcogenide,
silicon-on-insulator, and silica material platforms [13–17]. In all demonstrations, however, only a single
waveform can be characterized at a time. Simultaneous multi-channel (or multi-signal) RFSA with a
single integrated device may be more practical compared to using (and duplicating) multiple nonlinear
waveguides for parallel single channel operation. Integrated waveguides can be engineered to support
several propagating spatial modes, which we can exploit to perform multi-channel nonlinear optical
signal processing, including RFSA. This creates a new degree of freedom for scaling the number of
channels that can be characterized simultaneously. In this paper, we describe how to harness nonlinear
optics in a mode selective manner using an integrated silicon photonic (SiP) device, ultimately leading
to the realization of on-chip multi-channel RFSA.

2. Photonic Generation of Chirped Microwave Waveforms

2.1. General Considerations

There are many different techniques that use photonics for arbitrary microwave waveform
generation. A relatively straightforward and powerful approach is to perform optical pulse shaping to
synthesize the desired optical (temporal) waveform followed by O/E conversion (see Figure 1a).
The ability to tailor the optical pulses translates into the ability to realize reconfigurable and
tunable microwave waveform generation. A number of optical pulse shaping techniques exist,
including classical Fourier transform pulse shaping, direct space-to-time pulse shaping, temporal
pulse shaping, and optical spectral shaping followed by wavelength-to-time mapping (WTM) [4,18].
In terms of ease of implementation, the latter approach is very attractive: a spectral shaper is used
to tailor the amplitude spectrum from a pulsed broadband optical source and the shaped spectrum
then propagates through a dispersive medium where the frequency content is distributed in the time
domain, i.e., WTM, see Figure 1b [4,19].

To generate a uniform microwave waveform, i.e., with constant frequency or that is chirp-free,
we require a spectral shaper that has a periodic filter response, i.e., a constant free spectral range (FSR),
and a linear WTM. On the other hand, to obtain a chirped microwave waveform, we can follow one of
two approaches: (1) use a spectral shaper with a constant FSR and a nonlinear WTM [20,21] or (2) use a
spectral shaper with a variable FSR followed by a linear WTM. While both approaches have been
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demonstrated, we consider the second, as it avoids the need for specially designed dispersive media
with nonlinear delay characteristics or the limitations of such media, e.g., group delay ripple associated
with nonlinearly chirped BGs. Moreover, a simple length of single-mode fiber (SMF) or dispersion
compensating fiber (DCF) can implement linear WTM over a broad optical bandwidth. It should be
noted that the principle component in the systems for generating chirped microwave waveforms is the
spectral shaper: it must allow for synthesizing the desired amplitude spectrum from the input source,
as this will ultimately correspond to the desired waveform after WTM.
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cavity with distributed resonances, the spectral response of the Sagnac interferometer can be tuned 
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Figure 1. Principle of (a) photonic generation of arbitrary microwave waveforms based on optical
pulse shaping and optical-to-electrical (O/E) conversion and (b) generation of chirped microwave
waveforms based on optical spectral shaping and wavelength-to-time mapping (WTM).

2.2. Photonic Generation of Chirped Microwave Waveforms Using Superimposed LCFBGs

Spectral shapers in both fiber and integrated forms that provide an aperiodic response
(i.e., variable FSR) have been considered, including a serial array of BGs (sometimes referred to
as a spatially discrete chirped BG or a step-chirped BG) [22,23], a Fabry–Pérot cavity with distributed
resonances based on spatially separate or overlapping (either fully or partially) linearly chirped
BGs [24,25], a Michelson interferometer incorporating linearly chirped BGs in each arm [26,27],
or a Sagnac interferometer incorporating a single linearly chirped BG [28,29]. The Sagnac configuration,
illustrated in Figure 2a, provides the same functionality as the Michelson interferometer incorporating
two identical and oppositely chirped BGs. Unlike the serial array or Fabry-Pérot cavity with distributed
resonances, the spectral response of the Sagnac interferometer can be tuned readily by adjusting the
path mismatch in the loop. Moreover, the configuration is simple, as it requires only a single grating
and is robust to environmental perturbations. The spectral response of the Sagnac interferometer
incorporating a linearly chirped BG is given by [4,30]:
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where Rg(λ) is the reflectivity of the grating, neff is the effective index of the waveguide, CLCBG is the
linear chirp of the grating (in nm/mm or nm/cm), ∆L = L1 − L2 is the path mismatch between the
two arms in the Sagnac interferometer, and λc is the center wavelength. The spectral response has a
wavelength dependent FSR defined by
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where L(λ) denotes the wavelength dependent, equivalent cavity length. After linear WTM in a
dispersive medium with a first-order dispersion coefficient
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A single linearly chirped BG in a Sagnac interferometer provides a single aperiodic spectral
response (within the grating bandwidth), which can be used to generate a single chirped microwave
waveform. In order to generate multiple chirped microwave waveforms simultaneously, we require
multiple spectral shapers, e.g., multiple or parallel Sagnac interferometers, each incorporating
their own linearly chirped BG as illustrated in Figure 2b. As shown in Figure 2c, we can
replace the multiple Sagnac interferometers and multiple linearly chirped BGs by a single Sagnac
interferometer incorporating superimposed linearly chirped BGs to achieve the same functionality [31].
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The superimposed gratings operate over different spectral bands and hence, operate independently.
As such, the structure can be considered equivalent to multiple Sagnac interferometers operating
in parallel whereby each one generates a single chirped microwave waveform. A drawback of this
configuration, though, is that the superimposed gratings all have the same path mismatch.

Equations (1)–(4) are also valid for the case of superimposed gratings. The spectral response
T(λ) effectively comprises multiple spectral bands, each associated with the response of one of the
gratings in the superimposed structure. Moreover, the characteristics of each spectral band, and hence
the properties of the chirped microwave waveform that can be generated, are determined by the
corresponding grating in the superimposed structure. As shown by Equations (3) and (4), for a fixed
WTM, the central frequency of each chirped microwave waveform, given by fRF(0), depends on the
path mismatch ∆L (r the corresponding delay time ∆t =

(
ne f f ∆L

)
/c0, where c0 is the speed of light

in vacuum) while the RF chirp rate depends only on the grating chirp (CLCBG). As all of the gratings
experience the same path mismatch, all of the generated chirped microwave waveforms have the same
central frequency. Moreover, if the superimposed gratings have the same chirp, then the generated
microwave waveforms will also have the same RF chirp rate. On the other hand, if the superimposed
gratings have different chirps, then we can obtain chirped microwave waveforms having the same
central frequency, but with different values of RF chirp rate.

To demonstrate the principle, we generate simultaneously two chirped microwave waveforms
using a fiber-based Sagnac interferometer incorporating two superimposed linearly chirped BGs.
Figure 3 depicts the experimental setup. We use a femtosecond mode-locked laser operating at a
repetition rate of 20 MHz (corresponding to a period of 50 ns) as the broadband source. WTM is
achieved using a length of DCF with a dispersion of

..
Φλ = −1719 ps/nm. The two superimposed

gratings have the same reflectivity of ~80%; the central wavelengths are 1545.4 nm and 1551.1 nm
(the spectral separation is ~5.7 nm), the corresponding 3 dB bandwidths are 4.4 nm and 4.9 nm, and the
dispersions are CLCBG1 = 53.3 ps/nm and CLCBG2 = 47.8 ps/nm. Erbium doped fiber amplifiers (EDFAs)
are used to compensate for losses. The average power of the broadband pulses launched into the
Sagnac interferometer is ~3 dBm. We use polarization controllers (PCs) to adjust and optimize the
interference pattern of the Sagnac response and one tunable optical delay line (ODL) to adjust the delay
time or path mismatch between the two arms. By adjusting the ODL, we can readily obtain waveforms
at different central frequencies (as described by Equation (3)) in real time. Prior to O/E conversion,
we remove amplified spontaneous emission (ASE) noise from the EDFAs using an optical bandpass
filter (OBF). We measure the spectral responses of the generated waveforms using an optical complex
spectrum analyzer (OCSA) having a resolution of 0.16 pm and record the temporal waveforms using a
high bandwidth photodiode (PD) for O/E conversion connected to a 33 GHz real-time oscilloscope
(RTO) operating at 80 GS/s. After O/E conversion, we also obtain the RF spectra using a 40 GHz ESA
with a resolution bandwidth of 20 kHz (we use optical filters to separate spectrally the two waveforms
prior to measuring their RF spectra). Note that, since the system for generating the waveforms is linear,
the order in which the two operations—spectral shaping and WTM—are performed does not matter;
in our experiments, we perform WTM prior to spectral shaping.
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The characteristics of the generated waveforms are summarized in Figures 4–6. Figure 4 shows the
optical spectra and temporal waveforms for a delay time in the Sagnac interferometer of ∆t = −100 ps,
0 ps, and +100 ps (the difference in power between the two spectral bands and hence the two waveforms
is due in part to the spectrum of the pulsed source and the setting of the EDFA used prior to detection).
The two waveforms are separated temporally by 9.8 ns; this separation is determined by the product of
the difference between the central wavelengths of the two spectral bands (5.7 nm) and the amount of
dispersion (−1719 ps/nm). Since we use a negative dispersion element in our experiments, the WTM
is reversed: while the spectra show the FSR varying in one direction, the temporal traces show the
reverse. Moreover, the first (temporal) waveform (on the left) corresponds to longer wavelengths,
whereas the second waveform (on the right) is associated with shorter wavelengths. Figure 5 shows the
calculated spectrograms for these waveforms, which confirm simultaneous generation of two different
chirped microwave waveforms. By tuning the delay, we can change the sign of the RF chirp rate as well
as the central frequency (as explained previously, both waveforms have the same central frequency).
Since the grating chirps are different, both waveforms exhibit different RF chirp rates. Finally, Figure 6
shows the RF spectra for the two waveforms. The waveforms occupy a frequency span of up to 26 GHz
for delay times of±100 ps and up to 19 GHz for a delay time of 0; these results are consistent with those
shown in the spectrogram distributions. The full-width at half-maximum (FWHM) durations for the
first and second waveforms are ~8.4 ns and ~7.0 ns, respectively; the corresponding time bandwidth
products (TBWPs) are as large as 274 and 224.
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2.3. Photonic Generation of Chirped Microwave Waveforms Using an Arrayed Waveguide Grating
Sagnac Interferometer

The use of superimposed gratings in a Sagnac interferometer allows for the simultaneous
generation of multiple chirped microwave waveforms using a simple structure with real-time
tunability/reconfigurability. However, one main limitation of the approach is the fact that the generated
waveforms have the same central frequency. Thus, while the Sagnac interferometer with superimposed
gratings has the same functionality as multiple Sagnac interferometers with individual gratings,
it cannot achieve the same capability for independent tuning of the waveform characteristics.
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Capmany et al. demonstrated that it is possible to create a multi-channel (or multi-wavelength/
multiple spectral bands) Sagnac interferometer using arrayed waveguide gratings (AWGs),
i.e., an AWGSI (see Figure 7a) [32]. The AWGSI can also achieve the same functionality as multiple
Sagnac interferometers, especially if we consider that each Sagnac interferometer operates over
a specific spectral band. In each branch of the AWGSI (i.e., in each spectral band or channel),
we can incorporate a linearly chirped BG as well as a tunable ODL (see Figure 7b). In so doing,
we now have a Sagnac interferometer operating over multiple spectral bands where, in each, we have
control over the characteristics by tuning the different ODLs [33]. Thus, each channel of the AWGSI can
be used to generate a single chirped microwave waveform where the characteristics of the waveform,
such as the sign and magnitude of the RF chirp rate and the central frequency, are determined by
the characteristics of the linearly chirped BG and the delay time. In other words, we can generate
simultaneously multiple chirped microwave waveforms where we can adjust the central frequency
and RF chirp rate of each waveform independently and in real time.
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Figure 7. (a) Schematic of an arrayed waveguide Sagnac interferometer (AWGSI) (adapted from [32])
and (b) its use for simultaneously generating multiple chirped microwave waveforms.

As a proof-of-principle demonstration, we generate simultaneously two chirped microwave
waveforms using a fiber-based two-channel AWGSI incorporating linearly chirped BGs.
The experimental setup is shown in Figure 8 and is nominally the same as that shown in Figure 3,
with the exception of the AWGSI replacing the Sagnac interferometer with superimposed gratings.
To implement the two-channel AWGSI, we use 3 dB couplers and a pair of matched OBFs in each branch.
The spectral widths of the two channels (set by the OBFs) are 1 nm and 0.7 nm. Each branch incorporates
a linearly chirped BG having a reflectivity ~80%, center wavelength = 1540 nm, 3 dB bandwidth ~10 nm,
and dispersion of ~140 ps/nm (i.e., gratings with the same characteristics are used). The OBFs in each
branch are adjusted to occupy different spectral bands of the grating response; in this case, the bottom
branch is set to cover shorter wavelengths while the top branch covers longer wavelengths. Each
branch also has its own tunable ODL to control the path mismatch/delay time to allow for independent
tuning of the central frequency and sign of the RF chirp rate.
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characteristics of the first waveform (on the left and associated with longer wavelengths) vary while 
those of the second waveform (on the right and associated with shorter wavelengths) are held 
constant. This shows the ability of the AWGSI to provide independent tuning of the generated 
waveforms, a capability not possible with superimposed gratings. 

 
(a) (b)

 
(c) (d)

 

(e) (f)

Figure 9. Spectral and temporal results. The delay time in the bottom branch at shorter wavelengths 
is fixed at −70 ps while that in the top branch at longer wavelengths is varied: −70 ps (a,b); 0 ps (c,d); 
and +70 ps (e,f). 

Figure 8. Schematic of experimental setup for simultaneous generation of two chirped microwave
waveforms using AWGSI incorporating linearly chirped BGs.

The characteristics of the generated waveforms are summarized in Figures 9–11.
In these experiments, we fix the path mismatch/delay time in the bottom branch (at shorter
wavelengths) to ∆t = −70 ps and vary the delay in the top branch (at longer wavelengths). Figure 9
shows the optical spectra and temporal waveforms. Again, due to the use of a negative dispersion
element, the WTM is reversed. The corresponding calculated spectrograms appear in Figure 10. Clearly,
the characteristics of the first waveform (on the left and associated with longer wavelengths) vary while
those of the second waveform (on the right and associated with shorter wavelengths) are held constant.
This shows the ability of the AWGSI to provide independent tuning of the generated waveforms,
a capability not possible with superimposed gratings.
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Note that the magnitude of the RF chirp rate for both waveforms is the same, as the two gratings
have nominally the same characteristics. It is possible to have different values of RF chirp rate if
gratings with different chirp are used. Figure 11 illustrates the RF spectra for the two waveforms.
The frequency spans a range of up to 24 GHz for delay times of ±70 ps and up to 16 GHz for a delay
time of 0 ps. Given the difference in the spectral widths of the two channels, the durations of the
waveforms are not the same: here, the first waveform has a FWHM of ~1.7 ns while that of the second
waveform is ~1.2 ns. The waveforms are separated temporally by ~3.4 ns, which again is determined
by the separation of the spectral bands and the dispersion. For a delay time of −70 ps, the TBWPs of
the first and second waveforms are 29.5 and 14.4, respectively.

2.4. Discussion

We have demonstrated simultaneous generation of multiple (two) chirped microwave waveforms
with using an optical spectral shaper based on (1) superimposed linearly chirped BGs in a Sagnac
interferometer and (2) an AWGSI incorporating linearly chirped BGs in each branch. Both approaches
can be scaled to generate a greater number of waveforms: for example, the superposition of at least
nine fiber BGs was demonstrated [34] and AWGs operating over many wavelengths are readily
available. While the use of superimposed gratings in a Sagnac interferometer offers greater simplicity
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in terms of implementation, it cannot provide the same capability as the AWGSI, especially in terms of
generating waveforms with very different central frequencies. Moreover, by using tunable chirped
BGs, e.g., through pump tuning [35], the AWGSI offers the possibility to generate multiple waveforms,
with independent tuning of the central frequency and RF chirp rate.

Several factors will limit the number of waveforms that can be generated simultaneously.
For example, in fiber, the number of gratings that can be superimposed depends on the photosensitivity
of the fiber and the strength of each grating (which is set by corresponding peak refractive index
change). Another factor is associated with the following. The repetition rate (R) of the mode-locked
laser (or pulsed broadband source) used in the system gives a period (or temporal window) of 1/R
into which the generated waveforms can be fit without interleaving. To first order, assuming that the
generated waveforms have the same duration, the total number of waveforms is obtained by dividing
the temporal window by the duration of a waveform. The duration of each waveform depends on the
optical spectral bandwidth and the amount of dispersion used for WTM. These values are typically set
by the need to have very large TBWP (e.g., to support a high compression ratio). As such, while the
number of spectral bands can be high, the number of waveforms might be less.

Perhaps the greatest advantage of the AWGSI approach is the potential for integration, e.g., in SiP.
In particular, high performance AWGs in SiP [36] have been realized and BGs are now routinely
produced [37,38]. By introducing a pn junction to the silicon waveguide and applying a bias voltage,
reconfiguration can be enabled through the plasma dispersion effect. In particular, if the junction is
introduced along the rib waveguide BG, the grating chirp, and hence RF chirp rate, can be tuned [27].
On the other hand, using a pn junction for a silicon waveguide that is part of an interferometer branch
will allow for tuning the path mismatch, and, hence, control over the central frequency. Such advances
will result in the implementation of a fully programmable and integrated multiple chirped microwave
waveform generator.

3. Photonic Radio-Frequency Spectrum Analysis

3.1. Context

The RF spectrum of an optical signal under test, denoted Es(t), is given by the Fourier transform
of its intensity |Es(t)|2. In fact, an ESA that is connected to a photodiode that detects Es(t) will display

the squared magnitude of the Fourier transform of its intensity, i.e.,
∣∣∣={ |Es(t)|2

}∣∣∣2. The principle
for photonic RFSA is illustrated in Figure 12 and described in detail in [12]. Briefly, the signal
under test (referred to as the ‘pump’) will phase modulate a continuous wave (CW) ‘probe’ via
cross-phase modulation (XPM) in a nonlinear waveguide. For certain conditions, it can be shown that
the XPM-induced sidebands on the probe, i.e., from phase modulation, are determined by the intensity
of the signal under test. Thus, measuring the power spectral density around the probe using an optical
spectrum analyzer (OSA) (which gives the squared magnitude of the Fourier transform of the field
of the signal being measured) will correspond effectively to the RF spectrum of the signal under test,

i.e., the OSA measurement gives
∣∣∣={ |Es(t)|2

}∣∣∣2.
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The bandwidth for photonic RFSA can exceed several THz. The use of bidirectional
propagation [39] and orthogonal polarizations [40] in a polarization maintaining highly nonlinear fiber
can increase the number of optical signals that can be characterized using a single nonlinear waveguide
medium to four. However, no further scaling in the number of signals that can be characterized is
possible. Multi-channel simultaneous RFSA operation in a single integrated device will be beneficial
as it can reduce footprint when compared to the duplication of single mode nonlinear waveguides.
Moreover, such a multi-channel approach can still seek to exploit bidirectional propagation and
orthogonal polarizations to gain a factor of four in terms of the number of signals (channels) that can
be processed. Integrated waveguides can be engineered to support several propagating spatial modes.
Each of the modes can then be used to process a different signal; as such, a single multimode waveguide
can support parallel (simultaneous) multi-channel operation, i.e., spatial modes are utilized rather than
a dedicated nonlinear waveguide per processed signal. For example, by harnessing nonlinear optics
based on mode selectivity, Ding et al. demonstrated simultaneous four wave mixing (FWM)-based
wavelength conversion of two wavelength channels [41] while we achieved simultaneous regenerative
wavelength conversion of two wavelength channels using XPM [42]. Since photonic implementation
of RFSA is based on XPM, we consider exploiting mode selective nonlinear optics to characterize
simultaneously multiple ultrahigh repetition rate optical signals [43].

3.2. Integrated Mode-Selective Nonlinear Device

To demonstrate the principle of operation, we designed and fabricated an integrated (two channel)
mode selective nonlinear device (MSND) in SiP as depicted in Figure 13. The MSND uses silicon
waveguides that have a thickness H = 220 nm and sit on top of a 3 µm buried oxide (BOX) layer with
a 2 µm thick index-matched top oxide cladding (the waveguide cross section appears in Figure 13c).
It comprises the following: vertical grating couplers (VGCs) for input and output coupling to optical
fiber, a multimode (here two modes) nonlinear waveguide (mm-NLWG), and a mode multiplexer and
demultiplexer (m-MUX/m-deMUX) to convert single mode input from the fibers/VGCs to appropriate
modes that propagate in the mm-NLWG and vice versa.
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Figure 13b shows the design of the m-MUX and m-deMUX, which are based on asymmetric 
directional couplers (ADCs) [44,45]. The principle of operation is as follows. An optical signal that is 
launched into Port #3 will propagate as a transverse electric (TE0) or fundamental mode in the upper 
waveguide on the input side of the ADC and be converted to the TE1 mode on the output side. It 
then propagates as a TE1 mode in the mm-NLWG. On the other hand, an optical signal that is 
launched into Port #1, i.e., in the lower waveguide on the input side of the ADC will maintain its 
mode profile (TE0) at the ADC output and then propagate as a TE0 mode in the mm-NLWG. The 
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Figure 13. (a) Schematic of mode selective nonlinear device (MSND) comprising vertical grating
couplers (VGCs), mode multiplexer and demultiplexer (m-MUX/m-deMUX), and multimode nonlinear
waveguide (mm-NLWG); (b) asymmetric directional couplers (ADC) structure; (c) cross section of
silicon waveguide; (d) intra-channel and inter-channel transmittance (i.e., linear inter-channel cross-talk)
over the wavelength span from 1500 to 1600 nm.

Figure 13b shows the design of the m-MUX and m-deMUX, which are based on asymmetric
directional couplers (ADCs) [44,45]. The principle of operation is as follows. An optical signal that is
launched into Port #3 will propagate as a transverse electric (TE0) or fundamental mode in the upper
waveguide on the input side of the ADC and be converted to the TE1 mode on the output side. It then
propagates as a TE1 mode in the mm-NLWG. On the other hand, an optical signal that is launched
into Port #1, i.e., in the lower waveguide on the input side of the ADC will maintain its mode profile
(TE0) at the ADC output and then propagate as a TE0 mode in the mm-NLWG. The width of the upper
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waveguide in the ADC is 360 nm while that of the lower waveguide extends linearly from 700 nm
to 800 nm; this allows for phase matching between the TE0 and TE1 modes for mode transformation.
The coupling gap and length of the ADCs are chosen to be 100 nm and 30 µm, respectively; this gives
a coupling efficiency of up to 91% over a wavelength range of 100 nm from 1500 nm to 1600 nm.

The mm-NLWG has a width of 800 nm and supports the TE0 and TE1 modes as well as the first
two transverse magnetic modes that are not excited due to the specific designs of the VGCs we used
(which are optimized for TE mode operation). Table 1 summarizes the characteristics of the modes in
the mm-NLWG.

Table 1. Characteristics of the TE modes in the multimode nonlinear waveguide (mm-NLWG)
calculated using Mode Solver from Lumerical MODE Solutions and using a nonlinear index
n2 = 4.5 × 10−18 m2/W.

Parameter TE0 Mode TE1 Mode

Dispersion @ 1550 nm, ps/(nm·cm) −5.55 × 10−4 1.56 × 10−3

Dispersion slope @ 1550 nm, ps/(nm·cm2) 1.75 × 10−6 −1.51 × 10−5

Effective area, µm2 0.094 0.122
Nonlinear parameter, m−1·W−1 194 150

In the MSND, we denote the transmission from Port #1 to Port #2 as Channel #1 and that from Port
#3 to Port #4 as Channel #2. The measured intra-channel transmissions within Channel #1 or #2 and
inter-channel transmission between Channel #1 and #2 are shown in Figure 13d. These measurements
account for coupling loss (~6 dB/coupler) and propagation loss. The linear inter-channel cross-talk
(i.e., either from Port #1 to #4 or from Port #3 to #2) is more than 15 dB less than the corresponding
intra-channel cases.

Nonlinear optical effects (e.g., FWM or XPM) occur when both a high power pump and a CW
probe propagate in the same mode in the mm-NLWG. In particular, if a high power pump and a CW
probe are input at Port #1, they will propagate as a TE0 mode in the mm-NLWG (or equivalently,
on Channel #1). Similarly, if the pump and CW probe are input at Port #3, they will propagate as a TE1

mode in the mm-NLWG (or on Channel #2). However, no nonlinear interactions occur if the pump
and the CW probe are input on separate ports because they will propagate as different modes in the
mm-NLWG and the inter-modal nonlinear interaction is very limited.

To characterize the nonlinear crosstalk, we compare the highest XPM-induced power around the
probe when both pump and probe are input on the same channel (e.g., both are on Channel #1) to when
they are launched on different channels (e.g., the pump is on Channel #2 whereas the probe is on
Channel #1). Measurements show that the nonlinear inter-channel crosstalk at 1540 nm and 1560 nm is
−30 dB. We can then infer the nonlinear coefficients for inter-modal interactions to be ~0.15 m−1·W−1

from the TE0 to TE1 modes and ~0.19 m−1·W−1 from the TE1 to TE0 modes.

3.3. Bandwidth Measurements

The maximum bandwidth for a photonic implementation of RFSA is given by [12]

∆ fmax =
1

L|2D∆λ+ S · ∆λ2| , (5)

where D is the dispersion and S the dispersion slope of the nonlinear waveguide (both at the central
wavelength of the signal under test), and ∆λ is the wavelength detuning between the CW probe and
the signal. From the simulated dispersion properties of the mm-NLWG, the maximum theoretical
bandwidths on Channel #1 and #2 are 4.5 THz and 1.5 THz, respectively, for a 10 nm detuning in a
2 cm long waveguide. This estimate does not account for higher order dispersion, which will reduce
this bandwidth.
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We measured the bandwidth of our RFSA using the setup illustrated in Figure 14. The pump
(or signal under test) is the beat signal from two CW lasers whose wavelengths are located about
λs = 1562.5 nm; the probe is a CW signal at λp = 1535 nm. λs and λp were chosen according to the
spectral responses of the VCGs and the availability of optical filters and amplifiers. We adjusted
the beat frequency (df ) by detuning the two CW lasers symmetrically about λs. The bandwidth on
each channel of the RFSA was then obtained by examining the variation in the power level of the
XPM-induced sidebands at ±df from λp as a function of df (for these measurements, we used an OSA
with 0.1 nm resolution bandwidth). To avoid nonlinear absorption in the mm-NLWG, we maintained
the total power launched into Channel #1 to be 23.4 mW (the probe alone accounted for 8.9 mW) and
into Channel #2 to 37.1 mW (the probe alone accounted for 15.1 mW). Figure 15a,b show the spectral
evolution about λp as df is increased while 15c shows the response for both channels (the traces are
based on a 2nd-order polynomial fit to the measured values). Note that, in Figure 15c, optical powers
at higher frequencies are all normalized to the optical power at 0.125 THz (i.e., a wavelength detuning
between the two CW pump signals of 1 nm). The fluctuations in the measured responses are due to
the ripples in the spectral responses of the VGCs (e.g., the peak-to-peak ripple for a VGC-to-VCG test
structure is 3.6 dB). The 3 dB bandwidths for Channel #1 and Channel #2 are >2.0 THz and 0.5 THz,
respectively. With the chosen values of λs and λp, the XPM-induced spectral tones at ±df will overlap
with the FWM idlers from the two beating CW signals for a detuning greater than 11 nm; this restricts
the effective bandwidth of the MSND to 1.4 THz. The measured bandwidths are generally smaller than
those estimated using Equation (5). The differences arise from (1) the fact that the calculated values
only account for the dispersion and dispersion slope of the waveguide and not higher order values
of dispersion and (2) limitations on measuring the output power of the beat signal due to ripples,
the bandwidth, and the shape of the VGC spectral response.
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3.4. Multi-Channel Results

We demonstrate simultaneous characterization of the RF spectrum for two ultrahigh repetition
rate optical pulse trains, one at 160 GHz and the other at 640 GHz, using the setup in Figure 16.
A mode-locked laser at 1550 nm and having a repetition rate of 10 GHz is first divided into two
branches. In one branch, we use a commercial optical multiplexer (OMUX) to increase the repetition
rate to 160 GHz. The OMUX is designed nominally to increase the data rate of a 27–1 pseudo-random
bit sequence (PRBS), i.e., to obtain a 27–1 PRBS at 40 Gb/s, 80 Gb/s, or 160 Gb/s from a 27–1 PRBS at
10 Gb/s. In this sense, we do not have a true 160 GHz pulse train, i.e., the OMUX does not perform
true pulse repetition rate multiplication. This can be verified by observing the optical spectrum of
the 160 GHz pulse train, which exhibits 10 GHz spectral tones as opposed to only tones separated
by 160 GHz. In the second branch, we filter two tones separated by 640 GHz to create a 640 GHz
sinusoidal waveform by optical heterodyning. These two ultrahigh repetition rate (bandwidth) signals
are amplified and filtered and used as separate pump signals before being combined with the CW
probes using wavelength-division-multiplexing (WDM) couplers. The wavelengths of the CW probes
launched into Channel #1 and Channel #2 are 1540 nm and 1559 nm, respectively. The average powers
launched into the MSND are the following: 69.2 mW and 31.6 mW, respectively, for Channel #1,
and 63.1 mW and 32.3 mW, respectively, for Channel #2. The estimated nonlinear phase shifts for both
channels are ~0.12 radians which ensures accuracy for the extraction of the RF spectrum. At these
power levels, we again observe negligible nonlinear absorption in the mm-NLWG. We measure the
output spectra on each channel using the OCSA (with 0.16 pm or 20 MHz resolution), which provides
more details on the photonic RF spectrum of the signals under test. Note that the scanning rate of
photonic RFSA depends on that of the OSA used which, in turn, depends on settings such as sensitivity.
Our measurements with the OCSA were obtained with a relatively high sensitivity (typically−70 dBm)
and a sweep would take a few seconds.
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pulse train with a 160 GHz repetition rate on Channel #2. WSS: Finisar waveshaper.

The results are summarized in Figure 17: Figure 17a,b show the optical spectra measured at
the output for Channel #1 and #2, respectively, during simultaneous RFSA operation; Figure 17c,d
highlight the corresponding RF spectra (i.e., half of the sideband measured from the probe wavelength).
The red curves are obtained when both channels are active, i.e., for simultaneous characterization
of the two signals, whereas the blue curves correspond to the case when only the observed channel
is active. For Channel #1, a 640 GHz tone is detected properly. For Channel #2, the RF spectrum of
the 160 GHz pulse train shows harmonics at 10 GHz; as explained previously, this is due to the fact
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that the multiplexer does not perform true pulse repetition rate multiplication. Nevertheless, we can
identify a 160 GHz tone along with one at 320 GHz. We can see that the 640 GHz tone in Channel #1 is
not impacted whether or not the signal in Channel #2 is active; more specifically, when Channel #2 is
active, the 160 GHz spectral tone does not appear at the output of Channel #1. Similarly, the 640 GHz
tone from the signal on Channel #1 does not appear in the spectral output of Channel #2. These results
verify the fact that we can perform simultaneous RFSA for each channel in the MSND with negligible
inter-channel interference.Photonics 2017, 4, 44 16 of 20 
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XPM-induced sidebands are observed on (a) Channel #1 and (b) Channel #2; the half sideband RF
spectrum is illustrated in (c) for Channel #1 and (d) for Channel #2. Insets: enlarged spectra around the
640 GHz and 160 GHz tones. The resolutions of the RF spectra shown are set by the resolution of the
optical complex spectrum analyzer (OCSA); in this case, 20 MHz.

3.5. Discussion

There are two primary factors that determine the number of channels that can be processed,
i.e., the number of spatial modes that can be supported by the MSND: (1) the number of modes that
can be multiplexed using the ADC and (2) the ability to obtain sufficient nonlinear optical effects in the
higher order spatial modes. First, while it is possible to obtain phase matching so that the TE0 mode can
be transformed to many higher order modes, the smaller difference in effective indices of the modes can
induce greater inter-channel cross-talk during mode conversion. ADCs capable of exciting eight modes
in a multi-mode waveguide (TE0–TE3 and TM0–TM3) have been realized [45]; however, scaling to
a greater number of modes may require new and/or more complex m-MUX/m-deMUX designs.
Second, the effective area of higher order modes is greater than for the fundamental and lower order
modes. As such, the peak power required for higher order modes to achieve a similar nonlinear phase
change for lower order modes will be greater. This can create problems in terms of nonlinear absorption,
especially if SiP is considered for developing the MSND. In this context, a material platform such as
silicon-rich nitride may be more suitable, as it does not show nonlinear absorption effects [46,47].
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While the results shown in this paper focused on photonic RFSA of high repetition rate optical
pulse trains, and, in particular, identification of the associated RF frequency tones, we can also
monitor impairments such as the impact of dispersion on these pulse trains (see, e.g., [13–17,43]).
Moreover, as demonstrated in [48], we can obtain the RF spectra of more arbitrary waveforms such
as pulse bursts having uniform, apodized, and ramped envelopes/profiles and frequency content at
40 GHz and 80 GHz. Ultimately, a trade-off between bandwidth and resolution must be made; unless
a high resolution OSA is used, the resolution might be limited even if very high bandwidth signals can
be characterized.

4. Conclusions

In this review paper, we described approaches to generate simultaneously two chirped microwave
waveforms as well as to perform simultaneous RFSA of two ultrahigh repetition rate optical
pulse trains.

In terms of simultaneous generation of multiple chirped microwave waveforms, the AWGSI
incorporating linearly chirped BGs achieves the same functionality and capability as having multiple
Sagnac interferometers, each incorporating its own grating (regardless of whether a fiber-based or
photonic integrated circuit based approach is considered). While both approaches use the same
number of gratings, the AWGSI achieves its ‘parallel’ nature by exploiting the wavelength domain,
which, in turn, reduces complexity and the number of components needed for its implementation.
Parallel operation via the wavelength domain can also be applied to other spectral shaping techniques,
such as the Fabry–Pérot cavity with distributed resonances.

Harnessing nonlinear optical effects in a mode selective manner represents another way to
achieve parallel operation via spatial modes. In this paper, we considered RFSA based on XPM as the
nonlinear optical effect. FWM is another nonlinear optical effect that has been used to perform IFM for
microwave sensing applications [49–51]. Simultaneous wavelength conversion of two optical signals
based on FWM has been demonstrated using the MSND [41]. As such, we can also expect to perform
simultaneous IFM for at least two microwave signals. Moreover, as different nonlinear effects are
excited in a mode selective manner, and as the inter-channel nonlinear effects are minimal, it should also
be possible to realize multi-functional operation with the MSND, e.g., RFSA can be performed on one
channel with IFM on the other. Such multi-channel and multi-functional microwave signal processing
can only be enabled through photonics. While scaling the number of channels that can be processed
will be constrained by (1) the number of spatial modes that can be multiplexed/demultiplexed and
(2) the nonlinear coefficient associated with the higher order modes (effectively, the amount of power
required to obtain a sufficient nonlinear interaction), we can nonetheless take advantage of bidirectional
propagation and orthogonal polarizations to increase by a factor of four the number of channels that
can be processed via different spatial modes.

The most direct approach for multi-channel microwave photonic signal processing is to duplicate
the processing block that performs the processing function, i.e., there will be as many processing
blocks as there are channels to be processed. While this form of ‘parallel’ processing can indeed be
implemented readily, it may not result in the most practical realization. This, in turn, may impose limits
on scalability. The solutions and approaches presented in this paper demonstrate how simple ‘tricks’
can be used to process multiple signals simultaneously without the need for ‘brute force’ duplication
and should stimulate further work on the topic.
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