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Abstract: A major advantage of additive manufacturing (AM) technologies is the ability to print
customized products, which makes these technologies well suited for the orthopedic implants
industry. Another advantage is the design freedom provided by AM technologies to enhance the
performance of orthopedic implants. This paper presents a state-of-the-art overview of the use of
AM technologies to produce orthopedic implants from lattice structures and functionally graded
materials. It discusses how both techniques can improve the implants’ performance significantly,
from a mechanical and biological point of view. The characterization of lattice structures and the
most recent finite element analysis models are explored. Additionally, recent case studies that use
functionally graded materials in biomedical implants are surveyed. Finally, this paper reviews
the challenges faced by these two applications and suggests future research directions required to
improve their use in orthopedic implants.
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1. Introduction

Recent progress in Additive Manufacturing (AM) technologies has allowed for the development of
novel applications in various industries. The aerospace, automotive and tooling industries, for example,
are increasingly beginning to use AM technologies. AM is no longer just a rapid prototyping technique;
in fact, the applications of AM in the medical segment are numerous [1]. Some of these applications
include the planning of surgical operations, printing of biodegradable tissues, and, most importantly,
the development of orthopedic implants. Moreover, the application of reverse engineering in AM
technology ensures the customization of the printed implants [2]. The reverse engineering process
starts with data acquisition or obtaining the exact anatomical data from scanning techniques, such as
computed tomography (CT) or magnetic resonance imaging (MRI). The 2D images can then be
converted to a 3D CAD model using specialized software. Afterward, the CAD model is converted to
a stereolithography (STL) file to be fed to the AM machine for printing.

AM techniques are favorable, as compared to other traditional methods such as casting and
forging, because of their ability to tailor the implant according to the patient’s anatomy. Other various
benefits of AM technologies include their lower cost, shorter lead time, and the lack of tooling as
compared to other manufacturing methods. According to the ASTM committee F42 on additive
manufacturing technologies, AM technologies can be classified into seven categories according to the
state of the material used. These seven categories are material jetting, binder jetting, material extrusion,
powder bed fusion, directed energy deposition, sheet lamination, and vat photopolymerization.
Comparative studies outlining the advantages and limitations and applications of each method has

J. Manuf. Mater. Process. 2017, 1, 13; doi:10.3390/jmmp1020013 www.mdpi.com/journal/jmmp

http://www.mdpi.com/journal/jmmp
http://www.mdpi.com
http://dx.doi.org/10.3390/jmmp1020013
http://www.mdpi.com/journal/jmmp


J. Manuf. Mater. Process. 2017, 1, 13 2 of 19

been presented in several reviews [3–5]. The techniques used for biomedical applications will be
discussed in more details later in the review.

Different materials have been developed to suit the numerous functions of the orthopedic implants,
including metallic, ceramic, and polymers. The material selection criteria may vary depending on both
the application and the implant type. For instance, most of the load bearing implants are fabricated
from metallic materials, since these have higher mechanical reliability than other materials [6]. On the
other hand, for articulating surfaces, two material combinations are used: hard on soft couples and
hard on hard couples [7]. The hard materials refer to metal and ceramics, while the soft materials refer
to polyethylene. Some of the most suitable metallic biomaterials are titanium alloys, cobalt-chromium
alloys, and various stainless steels [8]. One downside of metallic materials is the high stiffness and
weight, which sometimes make them unsuitable for orthopedic implant. Therefore, a lot of research
has been directed to reduce their stiffness and weight.

The most significant benefit of reducing the stiffness of the metallic material used in orthopedic
implants is to avoid the “stress shielding” phenomenon [9]. This phenomenon is associated with
the fact that the stiff metal implanted beside the bone will bear most of the load, leaving the bones
with less load. Conforming to Wolff’s Law [10], bone requires continuous mechanical stimulation to
regrow, or else it will start reducing its mass by getting thinner or becoming more porous (external
and internal remodeling). Commercially pure titanium printed using AM technology showed
low stiffness [11] when compared to other titanium alloys fabricated by powder metallurgy [12].
The replacement of aluminum elements by titanium showed a reduction of 5% in the stiffness of
titanium alloys [13]. The use of porous metallic materials has also been considered for reducing
metallic material stiffness [14].

The fabricated porosity also enhances the metallic material from the biological point of view, since
porous metals have better osseointegration [15]. Osseointegration, first described by Bothe et al. [16] and
Leventhal [17], denotes the fixation of synthetic material to bone without the formation of any other tissues.
Thus, bone grows into the porous structure and enhances the fixation of the implant to the host bone.
The designs that can be used by AM technologies to print porous implants are numerous, and the ability
of AM to precisely control the shape and size of these porosities is impressive as well. Harryson et al. [18]
were among the first groups to discuss the suitability of AM technologies for fabricating patient-specific
implants. The fabrication of a femoral stem using a lattice structure was suggested to reduce stiffness
while maintaining strength. Murr et al. [19] worked on the application of AM to manufacture customized
implants, taking into consideration its ability to fabricate porous structures. Novel designs for the
femoral and tibial components were suggested, and lattice structures were used instead of the porous
coating. Therefore, cracking, de-attachment, and instability drawbacks resulting from porous coating
were prevented. Bose et al. [20] focused on the application of AM in bone tissue engineering, wherein the
mechanical properties of some 3D printed scaffolds material were summarized.

Another advantage of AM is the possible printing of functionally graded materials (FGM).
FGM are materials that vary in composition or microstructure following a certain deign law [21].
A major benefit of these materials over composite and coated materials is that for FGM, the variation
in composition is gradual, which reduces the stress concentration effects near the interface between
different phases [22]. The human body is composed of several functionally graded materials, the most
important of these being bone and teeth. Bone tissues are composed of compact bone layer (cortical)
that changes in porosity and distribution to form a less dense bone (cancellous) [23]. Since bones and
joints are prone to failure due to natural wear or accidents, there is a need to mimic natural joints
and fabricate orthopedic implants with FGM. The use of FGM can ensure improvement in both the
mechanical properties of implants and the interaction of the implant with the host body [24]. The 3D
printing of load bearing implants having FGM was discussed by Sola et al. [25]. Several research case
studies have been recently proposed, as will be discussed later.

This paper aims to focus on the applications of lattice structures and FGM in the orthopedic
implants industry, more specifically concerning load bearing implants. Although the customization
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of implants is a key factor in choosing AM technologies as a manufacturing method for implants,
the ability to print implants using lattice structures and FGM is an important added benefit. In what
follows, manufacturing of lattice structures using AM technologies is first discussed, followed by a
description of how lattice structures can be characterized to evaluate its performance. One contribution
of this review is the emphasis on the numerical modelling of lattice structures, illustrating the difference
between different modelling methods reported in the literature. In addition, the manufacturing of
FGM using AM technologies is presented, and various types of FGM that can be applied in orthopedic
implants are discussed. Finally, some challenges are discussed to identify future research directions for
both lattice structures and FGM applications in orthopedic implants.

2. Lattice Structure

2.1. Classification

The terms cellular material and lattice structure are often used interchangeably in the literature;
in fact, the lattice structure is one type of cellular material [26]. Cellular materials are usually
classified according to their porosity type (open, closed) and their building unit cells order (stochastic,
non-stochastic). There are several applications for cellular materials including heat exchangers, filters,
load bearing components, and biomedical implants [27]. Some typical examples of cellular materials are:
foam, honeycomb, sponges, folded materials and lattice structures. Lattice structures are characterized
by open pores and non-stochastic orientations of the building unit cells. The unit cell geometry and
topology are used to tailor the mechanical properties of the part. Tan et al. [28] indicated that the unit
cells used in biomedical implants can be classified according to their form or deformation behavior.
The form of the unit cells can be reticulated or stochastic. If the unit cells are arranged in a specific
order, they are called reticulated (non-stochastic). The deformation behavior dictates how unit cells
fail, and this behavior can take the form of stretching or bending. Reticulated meshes were found to be
favorable to stochastic meshes when mechanical properties were compared, while stretch dominated
unit cells proved to be more satisfactory in orthopedic implants than bend dominated unit cells [28].

The lattice structures used in tissue engineering and bone scaffolds is usually classified according
to the unit cells design. This design can be divided into the following four groups: CAD-based [29],
image-based [30], implicit surfaces [31], or topology optimized unit cells [32]. Figure 1 represents the
different types of lattice structures used in biomedical implant applications. The CAD-based design
uses unit cells that are adopted from Platonic and Archimedean polyhedral solids [33]. Examples
include simple cube, diamond, tetrahedral, and dodecahedron unit cells. Implicit-based unit cells,
are sometimes referred to as triply periodic minimal surfaces (TPMS). These minimal surfaces are
based on the concept of the differential geometry of surfaces [34] and are gaining attention in bone
tissue engineering as they have a mean curvature of zero, like the trabecular bone. An example of
TPMS based on implicit surfaces is the gyroid and Schwartz’s diamond unit cells [35]. Load bearing
implants have multiple requirements, such as low stiffness, high strength, and high permeability.
Recent research has been oriented towards the topology optimization (TO) of the base unit cell [36].
This technique relies on numerical methods to change the shape of the unit cell to satisfy the multiple
objective functions required for enhanced performance.
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Figure 1. Different unit cell designs of lattice structures used in biomedical implants. (a) CAD-based 
unit cells [37]; (b) Implicit surface based unit cells [34]; (c) Topology optimized unit cells [38]. 
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2.2. Manufacturing

Various manufacturing methods have been used to create porous metallic implants, including
powder metallurgy [39,40], metal foaming techniques [41], and space holder methods [42]. However,
these techniques are limited to fabricating randomly organized porous structures, providing limited
control of pore size, geometry, and distribution. AM processes, on the other hand, offer methods
capable of manufacturing parts with a predefined customized external shape, as well as providing
accurate control of internal cell geometry [43]. A comparison between conventional manufacturing
methods and AM technology was provided by Rashed et al. [27]. AM technologies were clearly
distinguished due to their accuracy and precision. Therefore, they are now being used more frequently
than other methods. As discussed in the introduction, metallic materials are the most common
materials used for load-bearing implants.

The powder bed fusion technique (PBF) and the directed energy deposition method (DED) are
the most common AM technologies used to print metallic orthopedic implants. In PBF, an energy
source (electron or laser beam) is used to selectively melt parts of the powder bed based on the data
fed to the machine. When one layer is fused, the building platform is lowered by a predetermined
distance via a piston. A mechanical coater (roller or blade) places a new layer of powder on top of the
platform, and the process is repeated until the final shape has been reached [4]. The literature reports
two main PBF technologies that can print metallic parts. These are Electron Beam Melting (EBM) and
Selective Laser Melting (SLM). The second AM technology, DED, is also known by the commercial
name laser engineering net shaping (LENS). In DED, an energy source (electron or laser beam) is used
to build complex parts as the material is being deposited from a nozzle [4]. Material can take the form
of powder or wire, and there is no powder bed to support the parts as in PBF. Parts are built directly
on the substrate, so this method has the advantage of being able to build new parts or fix old ones.

SLM and EBM are both more accurate and can achieve a better resolution. Therefore, they can
be used to print lattice structures. LENS, on the other hand, can be used to print porous structures
without the capability of controlling the unit cell size or shape. Irregular porous structures have
been fabricated using LENS where porosity is controlled by the laser power and scanning speed [44].
When comparing SLM, EBM, and LENS, some differences are noted in the mechanical properties of
the printed part. These differences are usually related to the difference in the microstructure of the
parts [45]. The high energy resulted from the EBM is attributed to the electron energy source, thus fully
dense parts can be printed. SLM has higher cooling rate than EBM, resulting in coarser microstructure,
higher tensile strength, and lower ductility than parts [46]. Both SLM and LENS were used to produce
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commercial pure titanium samples with mechanical properties better than conventional methods [47].
The cooling rate in SLM is also higher, which resulted in finer microstructure and therefore produced
more desirable mechanical properties.

The dimensional and mechanical properties of lattice structures can be improved by choosing
the optimum process parameters [48]. For SLM, the most significant process parameters are laser
power, scan speed, hatch spacing, and layer thickness. Overall energy input was found to be the
most significant factor affecting the dimensional accuracy. The energy input can be calculated from
the laser power, scan speed, and the laser spot diameter. Moreover, the higher the energy input,
the more susceptible the strut is to have internal porosity [48]. Ahmadi et al. [49] studied the effect
of laser power and exposure time on the mechanical properties of lattice structures. The diamond
unit cell was studied, where the authors developed a novel method of printing the lattice by using a
vector-based approach. The struts were defined by their start and end coordinates in the absence of
diameter data. Therefore, the laser power and exposure time were used to determine the strut diameter.
Since maximum laser power with maximum exposure time will develop a thick strut, the highest
mechanical properties were obtained at this point. Another important factor that can affect the lattice
structure’s mechanical properties is the build orientation. It was noted that the horizontal struts of the
diamond unit lattice structures had the worst quality in terms of dimensions and internal porosity,
leading to its poor mechanical properties [50].

Statistical analysis can be used to determine which of the process parameters have the most
significant effects on lattice structures. Sing et al. [51] used analysis of variance (ANOVA) to determine
the most significant factor in determining the elastic constant of lattice structures. In their study,
laser power, scan speed, strut diameter, and unit cell shape were varied, and the mechanical properties
of lattice structures was evaluated. It was found that only the cell geometry and strut diameter effected
the elastic constant. These two parameters changed the porosity of the structure, which is directly
related to its stiffness. In a further study, the same authors used a regression analysis to study the
effect of process parameters on the dimensional accuracy of lattice structures [52]. The lattice structure
examined had simple cube unit cells, having diagonal struts on all four sides. In this study, the laser
power, scanning speed, and layer thickness of an SLM machine were changed, and the horizontal,
vertical, and diagonal struts were characterized. The experimental results show that laser power has
the most significant effect on dimensional accuracy, porosity, and stiffness.

Dimensional accuracy plays an important role in obtaining the proper mechanical properties
of lattice structures. The proper choice of process parameters results in better and enhanced lattice
structure quality [53]. More research is needed in this area to investigate different unit cells (implicit and
topology optimized), different materials, and different pore sizes. Moreover, appropriate dimensional
and mechanical characterization protocols should be put in place to ensure the proper characterization
of different lattice structures.

2.3. Characterization

Achieving the accurate characterization of lattice structures is necessary for several reasons,
including assessing the quality of printing. Characterization includes microstructure, dimensional,
and mechanical properties. The microstructure of lattice structures is expected to be different than
that of bulk, since its strut thickness decreases significantly as compared to bulk parts. Another factor
impacting the microstructure is the cooling rate, which depends on the thickness of the part being
printed [54]. Algardh et al. [55] investigated the change in microstructure for different wall thicknesses
printed using EBM. It was noticed that the thinner the wall, the faster the cooling rate, and the finer the
grain structure. Cheng et al. [56] studied the microstructure of lattice structures and concluded from
their experimental work that, as the strut thickness decreases, the hardness increases. Dimensional
characterization is related to the evaluation of the strut size, pore size, and pore shape. A few techniques
are used in the literature to measure this diameter/size, such as optical microscopes (OM), scanning
electron microscopes (SEM), and micro computed topography (CT) [57].
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The mechanical properties of lattice structures depend mainly on the following three parameters:
the material, the cell topology, and the relative density of the part [58]. One technique used to assess
the mechanical properties of lattice structures is to perform a static compression test for the printed
samples. The difference in mechanical properties between a stochastic foam and a non-stochastic
lattice structures was evaluated by Cheng et al. [56]. The non-stochastic lattice was found to have
higher specific strength than that of the foam specimens. Li et al. [37] studied the effect of different unit
cells on the mechanical properties of lattice structures that could be used in biomedical applications.
It was suggested that the mechanical properties depend mainly on the failure mechanism of the unit
cell being either bending or stretching dominated. Ahmadi et al. [59] studied the effect of unit cell
design and porosity on the mechanical properties of lattice structures. It was noted that stiffness
decreased with the increase of porosity, which is desirable for reducing the stress shielding effect.
Yánez et al. [60] evaluated the compressive behavior of gyroid lattice structures for cancellous bone
applications. The strut angle was found to be a critical factor that affected the compressive properties:
as the strut angle decreased, the stiffness and compressive strength increased.

Although increasing the controlled porosity reduces the stiffness and provides space for bone
ingrowth, fatigue properties may suffer [61]. Therefore, relying on static mechanical tests alone is
not sufficient. More research should investigate the fatigue properties of lattice structures. The effect
of porosity and unit cell shape on the fatigue strength of lattice structures was investigated by
Harbe et al. [62]. Normalized fatigue strength was found to be less than that of solid samples of
the same material. This difference was traced to the presence of stress concentrations (from un-melted
powder or closed pores) and the martensitic microstructure resulting from the process. Yavari et al. [63]
investigated the effect of different unit cells and porosity on the fatigue properties of a titanium lattice
fabricated by SLM. It was noted that high porosity structures had shorter fatigue life than structures
with low porosity. In addition, it was noted that, for some unit cells, the fatigue resulted in compressive
loading of the struts. This led to the shrinking the of the fatigue cracks which enhances fatigue life.

The dimensional characterization, mechanical properties, and fatigue properties of some lattice
structures reported on in recent literature are summarized in Table 1. It is noted that both the material
and unit cell shape play a key role in defining the mechanical and fatigue properties of lattice structures.
As expected, the higher the relative density, the better the yield and normalized fatigue strengths.
The stiffness values for different lattice structures follows the same pattern as the yield strengths [64].
The difference between nominal values and measured values could be traced back to defects resulting
from poor choice of process parameters. Additional research in this area should focus on creating
process-structure-property (PSP) relationships to relate the defects of AM processes with their root
causes. Data on the mechanical properties for the different unit cells are still limited, and more
information about different biomaterials is still needed. The possible combinations of different unit cell
size, shape, and porosity lead to numerous design options. Therefore, accurate numerical modelling is
needed to assess the mechanical properties of lattice structures.

2.4. Modelling and Validation

Finite element methods (FEM) can be used to predict the mechanical properties of lattice structures
and test the several possibilities of different unit cell shapes and sizes. One major benefit of these methods
is that they reduce a significant amount of the experimental work needed to fully characterize the printed
lattice structures. Another key advantage for using FEM is that a detailed stress-strain distribution can be
obtained, which is useful for the design optimization of lattice structures. Moreover, FEM can be used to
evaluate the failure modes of lattice structures, which is important for biomedical implants. The accuracy
of FEM depends on the material properties assigned to the model, the meshing element geometry (struts
representation), size (finite or infinite), and the model design (CAD/implicit surface).



J. Manuf. Mater. Process. 2017, 1, 13 7 of 19

Table 1. Characterization of different lattice structures.

Unit Cells Material/Method
Relative Density (%) Pore Size (µm) Strut Size (µm) Yield Strength

(Mpa)
Normalized Fatigue

Strength at 106 Cycles Ref.
Nominal Measured Nominal Measured Nominal Measured

Cube
Ti-6AL-4V/SLM 24.2–39.1 29.7–49.3 2040–1000 1960–765 450–800 466–941 7.28–163.02 — [65]
Ti-6AL-4V/SLM 11–34 11–36 1452–1080 1413–1020 348–720 451–823 29.9–112.6 0.2 σy [63]

Diamond
Ti-6AL-4V/EBM 17–40 — 1540–570 430–570 — 19.1–112.73 0.15-0.25 σy [62]
Ti-6AL-4V/SLM 20–33 17–36 1040–807 1142–826 234–693 350–564 6.8–70.6 0.32 σy [63]

Dodecahedron
Ti-6AL-4V/SLM 10–34 11–32 1250–950 1305–920 250–550 246–506 ~10–120 — [59]
Ti-6AL-4V/SLM — 15.8–31.6 500–450 608–560 120–230 140–251 19.4–117.2 0.12 σy [61]

CP Ti/SLM 19–34 18.3–33.7 500–450 — 120–230 — 8.6–36.9 0.32-0.51 σy [66]

Truncated
cuboctahedron

Ti-6AL-4V/SLM 18–36 19–36 1024–807 1142–862 324–693 350–564 ~30–150 —- [59]
Ti-6AL-4V/SLM 11–34 13–37 1452–1080 1413–1020 348–720 451–823 41.4–110.1 0.35 σy [63]

Gyroid
NiTi/SLM 21.7 25.2 850 — 320 298 29 0.2 σy [67]

Ti-6AL-4V/SLM 5–20 — 1600–560 — — — 6.5–81.3 — [68]
Ti-6AL-4V/SLM 31–49 38–52 — 464–406 169–261 258–330 ~120–240 ~0.6 σy [34]
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The material properties of struts are needed to be known for characterization, since this
information will affect the predicted results. Yavari et al. [61] predicted that using the same energy
density in all lattice structures would result in the same material properties and that there would be
no significant differences between the bulk and strut material properties. Experiments performed
by Tsopanos et al. [69] indicated a reduction of 74% in the stiffness of struts as compared to bulk.
The difference was attributed to the drastic change in surface area, orientation angle, and laser exposure
time when printing struts. The mesh elements used can be classified into one dimensional (1D) and
three dimensional (3D) models. The 3D mesh elements deal with the struts as a volume rather
than a beam, meaning that better accuracy can be obtained, but longer computation time is needed.
Gumruk et al. [70] attributed deviations between numerical models with 1D and 3D elements to the
fact that the 1D models cannot represent the actual material volume at the nodes. Smith et al. [71]
suggested increasing the material volume at the nodes of the lattice structures to enhance the accuracy
of 1D mesh elements. The size of the model is another important factor to be considered.

With infinite models, only the periodically repeating part of the structure is modeled; thus, a small
model size can be obtained, and less computation time is required than with finite models. Finite models
were found to be more accurate when predicting the mechanical properties of implants made from lattice
structures, since they are more accurate [72]. Reducing the volume of the CAD model by voxelization is a
research direction being pursued to reduce the computation time in FEA modelling. Where the 3D model
is presented in a discretized method instead of continuous [73], this technique represents the model as
discrete voxels that give a suitable approximation for the continuous model. Dumas et al. [74] proposed
a novel approach to model the lattice structures: the model itself was generated in MATLAB using the
voxelization method. It was proved that this model would require less computation time as compared to
those designed in CAD software. The difference between both experimental and numerical techniques
are considerably high, reaching an average of 40%. Another method proposed to reduce the volume of
CAD models is to use voronoi tessellations [75]. This method requires less space; however, it might not be
able to mimic abrupt changes in the lattice as well as CAD designs.

The difference between numerical and experimental results can be traced to several factors,
including the process parameter’s effect on the build, un-melted powder, and broken struts if they exist
in the part [76]. Campoli et al. considered the strut variation diameter and the internal porosity defects
resulting from the EBM process when modelling lattice structures. Gonzalez et al. [77] proposed
accounting for three manufacturing errors: strut diameter variation, strut inclination, and fractured
struts. Although these methods will reduce the significant gap between numerical and experimental
results if successfully applied, the application of such methods on different unit cells requires significant
dimensional characterization and may be challenging to achieve.

Table 2 summarizes some of the recent and important research that has been conducted on the
modelling of mechanical properties of lattice structures used in biomedical implant applications.
The different mesh size, material property, model size, model input, and deviations between
experimental and numerical results are presented. The 3D mesh elements and finite size are preferred
when modelling small objects, such as those needed for biomedical applications. It was noted that
most of the research conducted assumes the material property model to be the same as the bulk
material. Although voxelization can reduce the numerical modelling computation time, more effort is
needed to improve the complex geometrical representations of this method. Finally, the gap between
experimental and numerical modelling is presented. One possible approach to reducing the gap
between numerical and experimental results is to develop methodologies for optimizing process
parameters, thus limiting manufacturing errors.
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Table 2. Summary for the different finite element (FE) models used to predict mechanical properties of lattice structure.
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3. FGM

3.1. Classification and Manufacturing

FGM can be classified into three distinct groups: gradient microstructure, gradient composition,
and gradient porosity [82]. Figure 2 represents a schematic illustration of the three different types of
FGM. The functionally graded composition can be defined as “A change in composition across the
bulk volume of a material aimed to dynamically mix and vary the ratios of materials within a three
dimensional volume to produce a seamless integration of monolithic functional structures with varied
properties” [83]. FGM can provide an enhanced substitute for the coating in orthopedic implants,
thus avoiding the sudden change in chemical composition and the “peeling-off” effect of the coated
layer [84]. Functionally graded coating (FGC) was developed prior to FGM. The fabrication of FGC
can be accomplished using vapor deposition techniques, plasma spraying, and Ion Beam Assisted
Deposition (IBAD) [85]. These methods are energy extensive and are therefore not suitable for bulk
FGM parts fabrication. Techniques like powder metallurgy [86] and the centrifugal method [87] are
more commonly used in the fabrication of bulk parts. However, the 3D shapes obtained from these
techniques are relatively simple and limited to cylinders or blocks. Accordingly, AM technologies
may be considered a suitable method of fabricating customized parts with the required accuracy [25].
The ability to use more than one material using the DED technique is employed to print FGM parts
from two, and sometimes three, materials.

Functionally graded porosity can be created in materials by changing the porosity across the bulk
volume. The variation in density will combine variation in mechanical properties, which can make the
part more functional than a single constitutive material for some applications. Parts of the implants
with low porosity have high mechanical stability, while high porosity regions support bone ingrowth
and help with the implant’s fixation [88]. The functionally graded porosity can be manufactured
using any method used to fabricate lattice structures, as mentioned earlier. However, AM remains an
attractive method for fabricating such structures with the required geometry and precise control of unit
cells [89]. Two common AM technologies used to print this type of functional gradation are PBF and
DED technologies. In general, when using the DED technique, porosity shape, size, and distribution
cannot be controlled [90]. Differentially, the use of PBF techniques, like SLM and EBM, can result in
precisely controlled pores that follow a specific design rule in size and allocation [91].

A material with varying microstructures along its volume could be achieved by controlling heat
treatment. This recent progress in the fabrication of gradient microstructures was investigated by
Popovich et al. [92]. In this study, the precise control of laser power and scanning speed of a DED
technology was used to create specimens of graded microstructure in Inconel. The advantage of
this technique is that a tougher core can be obtained, with a hardened surface that would increase
wear resistance. Although this technique has not been applied in the biomedical realm, it suggests a
direction for improving the hardness of articulating surfaces
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3.2. Case Studies

The aim of most research is to use FGM in orthopedic implants to achieve a better mechanical or
biological advantage. Several advantages can be achieved, such as improving the fixation of implant
to bone, enhancing the stress shielding phenomena, hardening the articulating surface, and removing
interfacial stresses between the implant and bone. The method used to evaluate the performance of the
implant is usually based on numerical optimization. The use of FGM in orthopedic implants reported
in the available literature has been limited to gradation in porosity and composition. Most of the case
studies discussed numerical models, but only a small amount of research has validated the model
by using AM technologies. In this section, some examples of functionally grading porosity will be
illustrated, followed by examples of functionally graded composition. A detailed description for some
important case studies from the literature is presented in Table 3.

An implant’s stability after implantation depends on the pore shape and size of the implant
surface facing the host bone. Wang et al. [95] suggested the use of SLM to print a functionally
graded porosity for the acetabular cup to enhance its stability after implantation. The proposed lattice
structure had octet truss unit cells that varied in length across its design. Mathematical analysis and
manufacturability issues for the proposed design were discussed, and it was shown that this design
could withstand the maximum stresses that this area is usually subjected to in normal daily activities.
España et al. [96] also suggested the use of the DED process to print an acetabular cup from functionally
graded composition. For the part mating with the femoral head, cobalt alloy was suggested. For the
part mating with the bone, titanium alloy with fabricated porosity was proposed. DED techniques
have the advantage of printing more than one material. However, they cannot obtain precise and
controlled unit cell shapes, as can SLM.

To reduce the femoral stem stiffness and avoid the stress shielding phenomena, the use of
functionally graded porosity is a new approach that has recently generated significant attention.
Hazlehurst et al. [97,98] proposed the fabrication of an implant from cobalt-based alloys using SLM.
The internal lattice for the design had a simple cube shape. A 3D FEA model was developed to
model the proposed designs. An experimental cantilever bending test was performed to validate the
efficiency of the designs. Both experimental and numerical results proved that functionally graded
porosity would reduce overall stiffness. However, a difference between experimental and numerical
results was noted. The difference, in this case, was attributed to the SLM accuracy and manufacturing
errors. Functionally graded porosity in both axial and radial directions of a CoCr femoral stem have
been suggested by Limmahakhun et al. [99]. This innovative design was proposed to work on solving
the proximal bone stress shielding problems while also trying to maintain the implant’s stability.
The unit cell chosen for this lattice structure was pillar octahedron. A 3D FEA analysis model was
developed to evaluate the stress shielding effect on the implant. Furthermore, a three-points bending
test was performed for the printed femoral stems to validate the model. Numerical and experimental
results both proved an enhancement in the stress shielding effect when compared to solid titanium
femoral stems.

The use of optimization models to numerically assign the porosity in the femoral stem is another
promising approach. Fernando [100] proposed an optimization method to reduce the stress shielding
and the interfacial stresses. The developed FEA model considered the additive manufacturing
errors. The proposed model was a 2D model, which might be a significant approximation.
Arabnejad et al. [101] proposed a similar optimization method based on the homogenization concept.
The authors were able to develop a 3D FEA model and extended their research to cover femoral
stems generated from a tetrahedron unit cell lattice structure [102]. The same authors extended their
optimization method to enhance the design of the implant against fatigue fractures [103] caused by
the cyclic loading associated with walking stresses. This opens a wide area of research possibilities to
experiment with other lattice structure unit cells, such as gyroids, and evaluate their performance in
the fully porous femoral stem.
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The functionally grading of metals with other materials such as ceramics and hydroxyapatite
has shown superior performance results and increases in service life of implants in several case
studies. A 3D FEM was developed by Oshkour et al. [104,105] for the femoral component of a knee
through functionally graded composition. Three different material combinations were suggested:
titanium, cobalt chromium, and hydroxyapatite. Hedia et al. [106] compared numerical models of 1D
FGM and 2D FGM for the acetabular cup of a hip implant. A combination of titanium, bio-glass
and hydroxyapatite was suggested. All numerical results pointed toward a reduction in stress
shielding. Low modulus at the distal end and high modulus at the proximal end was suggested
by Al-Jassir et al. [107] to improve the performance of the femoral stem. The proposed material
combination was titanium alloy and cobalt chromium alloy, which may be challenging to grade
together. To overcome aseptic loosening, Bahraminasab et al. [108] suggested using a gradient from
titanium alloys and alumina-ceramic for a knee femoral component. Moreover, some porosity was
added to the surface of the implant mating with the bone to improve fixation and eliminate the effect
of soft tissue formation. The manufacturing of such a part using AM technologies could only be done
using DED in the present time. The bonding of the metallic and ceramic material needs to be further
researched, specifically when printing complex parts, to validate the model.

Table 3. Case studies for using FGM for biomedical implants.

FGM Type Proposed Design Description Ref.

Porosity
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4. Challenges and Future Directions

The employment of lattice structures and FGM in the design and manufacturing of orthopedic
implants should have a promising future. In order to substantially increase the use of these technologies
in the biomedical implant industry, several challenges need to be addressed:

• The overall characterization of lattice structures needs to be improved. A standard protocol for
assessing the dimensions/microstructure/mechanical performance needs to be developed.

• There is a need to trace the defects of lattice structures manufactured by AM technology to their
root causes. This can be performed by creating a process-structure-property (PSP) relationships
for different lattice structures.
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• A library for the different unit cells used in orthopedic implants should be established to allow for
the assessment of different unit cells’ performances in different applications. Moreover, the database
should contain both mechanical and biological information about the different unit cells.

• The development of new FGM designed from biomaterials using AM technologies should be
studied in more depth. The combination of metallic, ceramic, and inorganic materials could result
in an implant having high functionality.

• Integration between the simulation and AM of implants fabricated from FGM is needed to ensure
that the gap between modelling and fabrication is eliminated.

• The long-term performance of functionally graded implants produced by additive manufacturing
technologies needs to be assessed. The in vivo performance determines the benefits and
limitations from a biological point of view.

5. Conclusions

This review highlights that AM technologies can add more benefits to the key advantage, which is
customization, in the manufacturing of the orthopedic implants. Lattice structures can be used to
reduce stress shielding and enhance osseointegration, while the use of FGM addresses significant
issues such as: stress shielding, implant stability and aseptic loosening. To obtain high quality lattice
structures, the process parameters of AM technologies need to be optimized. Different factors affect
the mechanical properties of these structures, such as material, shape of unit cells, and porosity.
More accurate FEA models should be developed to assess the seemingly limitless combinations that
could be obtained from these factors. AM technologies have been studied to create functionally
graded composition implants, as well as functionally graded porosity for customized implants.
The modelling of the biological and mechanical performance of implants fabricated from FGM has
been well established. More experimental studies are needed to validate these models and further
enhance their applicability in orthopedic implants.
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