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Abstract: Motivated by the importance of contextuality and a work on the robustness of the
entanglement of mixed quantum states, the robustness of contextuality (RoC) RC(e) of an empirical
model e against non-contextual noises was introduced and discussed in Science China Physics,
Mechanics and Astronomy (59(4) and 59(9), 2016). Because noises are not always non-contextual,
this paper introduces and discusses the generalized robustness of contextuality (GRoC) Rg(e) of an
empirical model e against general noises. It is proven that Rg(e) = 0 if and only if e is non-contextual.
This means that the quantity Rg can be used to distinguish contextual empirical models from
non-contextual ones. It is also shown that the function Rg is convex on the set of all empirical
models and continuous on the set of all no-signaling empirical models. For any two empirical models
e and f such that the generalized relative robustness of e with respect to f is finite, a fascinating
relationship between the GRoCs of e and f is proven, which reads Rg(e)Rg( f ) ≤ 1. Lastly, for any
n-cycle contextual box e, a relationship between the GRoC Rg(e) and the extent ∆e of violating the
non-contextual inequalities is established.

Keywords: empirical models; contextuality; non-contextuality; generalized relative robustness of
contextuality; generalized robustness of contextuality; non-contextual inequalities

1. Introduction

Contextuality is one of the most interesting manifestations of the quantumness of physical
systems and manifests itself in the famous Kochen–Specker theorem [1], which states that for
every quantum system belonging to a Hilbert space of dimension greater than two, irrespective
of its actual state, there exists a finite set of measurements whose results cannot be assigned in a
context-independent manner. It exhibits the strength of correlations that comes out of a quantum state
when measured by compatible measurements and plays a central role in quantum communication
and quantum computation. For example, quantum contextuality is related to quantum error
correction [2], random access codes [3], quantum key distribution [4] and one-location quantum
games [5]. The work in [6] proved that contextuality can supply the “magic” for quantum computation
by establishing a remarkable equivalence between the onset of contextuality and the possibility of
universal quantum computation via magic state distillation. An important and interesting question
is how to quantify quantum contextuality. A huge effort is being put into quantifying quantum
contextuality by the mutual information of contextuality, the relative entropy of contextuality and the
cost of contextuality [7].

Contextuality is a basic and amazing quantum property, as well as entanglement [8,9].
Moreover, contextuality has been formulated in terms of “empirical models”, i.e., families of probability
distributions [10]. Due to the importance of contextuality and motivated by a work on the robustness
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of entanglement of mixed quantum states against noise and jamming [11], we proposed and discussed
recently in [12,13] the robustness of contextuality (RoC) RC(e) and the contextuality cost C(e) of an
empirical model e, where RC(e) denotes the minimal amount of contextuality-free mixing needed to
wipe out all contextuality of e and C(e) denotes the minimal amount of contextuality mixing needed
to prepare e. The following conclusions have been proven: (i) an empirical model e is contextual if
and only if RC(e) > 0; (ii) the robustness of contextuality (RoC) is convex and un-increasing under a
non-contextuality-preserving affine mapping; (iii) RoC is bounded and continuous on the set of all
no-signaling empirical models; (iv) e is non-contextual if and only if C(e) = 0; and (v) e is strongly
contextual if and only if C(e) = 1. Furthermore, a relationship between RC(e) and C(e) has been
obtained. Lastly, we have computed and compared the RoCs of three empirical models. This means
that the quantities RC(e) and C(e) are measures for the contextuality of an empirical model e. However,
noises are not always non-contextual. Motivated by a work on the generalized robustness of the
entanglement of mixed quantum states against noise and jamming [14], in this paper, we consider
the generalized robustness of contextuality (GRoC) Rg(e), which characterizes the minimal amount
of mixing with general noises (i.e., both non-contextual empirical models and contextual empirical
models), which washes out all contextuality of e.

For any measurement scenarios, the problem of separating non-contextual from contextual
correlations has been solved in [10,15]. In particular, Reference [16] provided the complete
characterization of the non-contextual correlations for the case of n ≥ 4 dichotomic
observables X0, . . . , Xn−1, where each consecutive pair Ci = {Xi, Xi+1}, sum mod n,
is jointly measurable. This generalizes both the Clauser–Horne–Shimony–Holt and the
Klyachko–Can–Binicioglu–Shumovsky scenarios [17–21], which are the simplest ones for locality
and non-contextuality, respectively. Such correlations can be formulated by an n-cycle box e [16], which
is a family of probability distributions {eCi}

n−1
i=0 , where eCi is a probability distribution on all possible

outcomes of measurement Ci. The contextuality of e can be completely characterized by the extent of
violating the non-contextual inequalities in [16]. The work in [13] established the relationship between
RoC and the violating of non-contextual inequalities for n-cycle boxes. Does there exist a relationship
between the quantities Rg(e) and the extent of violating the non-contextual inequalities in [16]? In this
paper, we will establish such a relationship.

This paper is organized as follows. In Section 2, we recall definitions and relevant results with
respect to the contextuality of empirical models and the robustness of contextuality of empirical models
and then introduce and observe the generalized robustness of contextuality (GRoC) Rg(e), which
characterizes the minimal amount of mixing with general noises (i.e., both non-contextual empirical
models and contextual empirical models), which washes out all contextuality of e. Many properties
of GRoC are proven, such as faithfulness, boundedness and continuity. It is worth noting that, for
any two empirical models e and f , Rg(e)Rg( f ) ≤ 1 provided that the generalized relative robustness
of e with respect to f is finite, i.e., there exists a finite non-negative number x, such that 1

1+x e + x
1+x f

is non-contextual. In Section 3, by introducing a quantity ∆e representing the extent of violating the
non-contextual inequalities in [16], we obtain the GRoC of any n-cycle boxes (n ≥ 4) and can compare
the robustness of contextuality against any noise for any n-cycle box and m-cycle one with m, n ≥ 4.

2. Generalized Robustness of the Contextuality of Empirical Models

In [10], a measurement coverM over a nonempty finite set X is defined as a family of nonempty
subsets of X, such that

⋃
C∈M C = X and C, C′ ∈ M, C ⊆ C′ ⇒ C = C′. If in addition, O is a

nonempty finite set, then the triple (X,M, O) is said to be a measurement scenario (MS). In this case,
the elements of X are called measurements; the ones ofM are called measurement contexts; and ones
of O are called the outcomes of the measurements in X. The elements of the set E(C) consisting of all
mappings s : C → O are referred to as the events. Furthermore, we use D(E(C)) to denote the set of
all probability distributions over E(C).
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Definition 1 ([10]). Let (X,M, O) be an MS. If eC ∈ D(E(C)) for all C ∈ M, then the family
e := {eC}C∈M is said to be an empirical model on (X,M, O).

Figure 1 is used to illustrate an empirical model: each context Ck has a joint probability
distribution eCk under a measurement, such that eCk (s) is the probability that the event s with

s(A(k)
j ) = x(k)j (1 ≤ j ≤ nk) occurs.

Figure 1. An illustration of an empirical model.

Definition 2 ([10]). An empirical model e = {eC}C∈M on an MS (X,M, O) is said to be a no-signaling
empirical model if eC|C ∩ C′(t) = eC′ |C ∩ C′(t) for all t ∈ E(C ∩ C′) whenever C, C′ ∈ M with
C ∩ C′ 6= ∅, where:

eC|C ∩ C′(t) = ∑{eC(s) : s ∈ E(C), s|C∩C′ = t},

eC′ |C ∩ C′(t) = ∑
{

eC′(s
′) : s′ ∈ E(C′), s′|C∩C′ = t

}
.

For each event t : C ∩ C′ → O, the value of eC|C ∩ C′ at t is defined as the sum of all values eC(s)
with s ∈ E(C), such that s|C∩C′ = t. Similarly, the value of eC|C ∩ C′ at t is defined as the sum of all
values eC′(s′) with s′ ∈ E(C′), such that s′|C∩C′ = t. See Figure 2.

Figure 2. An illustration of s|C∩C′ = t and s′|C∩C′ = t.

Let (X,M, O) be an MS. Put:

E(X) = {s : s : X → O is a mapping},

D(E(X)) = {p : p is a probability distribution over E(X)}.

For any p ∈ D(E(X)) and C ∈ M, we define:

p|C(s) = ∑{p(s′) : s′ ∈ E(X), s′|C = s}, ∀s ∈ E(C),

and obtain p|C ∈ D(E(C)), i.e., p|C is a probability distribution for the measurements in context C.
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Figure 3 illustrates the value of p|C at s ∈ E(C), i.e., it is defined as the sum of all values p(s′)
with s′ ∈ E(X) such that the restriction of s′ on C is equal to s: s′|C = s.

Figure 3. An illustration of p|C.

Definition 3 ([10]). An empirical model e = {eC}C∈M on an MS (X,M, O) is said to be non-contextual
if there exists p ∈ D(E(X)) such that p|C = eC for all C ∈ M. Otherwise, it is said to be contextual.

Remark 1. It is easy to check that every non-contextual empirical model is no-signaling.

In the following, we use EM, NSEM, NCEM and CEM to denote the sets of all empirical models,
no-signaling empirical models, non-contextual empirical models and contextual empirical models on
an MS (X,M, O), respectively.

For any MS (X,M, O), put m = |M| (the cardinality of the set M), ` = ∑m
j=1 |E(Ci)| and

`′ = |E(X)|. Without loss of generality, we can write:

M = {C1, C2, . . . , Cm},
m⋃

i=1

E(Ci) = {s1, s2, . . . , s`}, E(X) = {t1, t2, . . . , t`′}. (1)

Definition 4 ([10]). The incidence matrix associated with an MS (X,M, O) given by (1) is defined as
the ` by the `′ matrix M = [Mi,j], where Mi,j = 1 if si ∈ E(Ck) and tj|Ck = si; and Mi,j = 0 otherwise.

Definition 5 ([10]). The incidence vector Ve associated with empirical model e = {eCk}Ck∈M on an
MS (X,M, O) given by Equation (1) is defined as the `-dimensional column vector:

Ve = (Ve[1], Ve[2], . . . , Ve[`])
T , (2)

where Ve[i] = eCk (si) if si ∈ E(Ck).

With these notations, the following theorems were proven in [10] (Proposition 4.1 and
Theorem 5.5).

Theorem 1 ([10]). e ∈ EM is non-contextual if and only if the equation MX = Ve has a non-negative real
solution X = (X[1], X[2], . . . , X[`′])T such that ∑j X[j] = 1.

Theorem 2 ([10]). For each e ∈ NSEM, the linear system MX = Ve has a real solution
X = (X[1], X[2], . . . , X[`′])T such that ∑j X[j] = 1.

By looking carefully at the incidence matrix, we obtain the following theorem, which improves
Theorem 1.

Theorem 3. e ∈ EM is non-contextual if and only if the equation MX = Ve has a non-negative real solution.

Proof. Let e ∈ EM be non-contextual. Then, we see from Theorem 1 that the equation MX = Ve has a
non-negative real solution.
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Let e ∈ EM and the equation MX = Ve have a nonnegative real solution X. Then:

`

∑
i=1

(MX)[i] =
`

∑
i=1

Ve[i] =
m

∑
i=1

∑
s∈Ci

eCi (s) = m. (3)

By directly computing, we obtain that:

`

∑
i=1

(MX)[i] =
`

∑
i=1

`′

∑
j=1

M[i, j]X[j] =
`′

∑
j=1

(
`

∑
i=1

M[i, j]

)
X[j] =

`′

∑
j=1

mX[j],

where the last equality holds since any entry of M is either one or zero and the number of ones in every
column of M is m. Combining with Equation (3), we have ∑`′

j=1 X[j] = 1. Therefore, the non-negative

real solution X to MX = Ve satisfies that ∑`′
j=1 X[j] = 1. By Theorem 1, we obtain that e

is non-contextual.

By Theorem 3, only if the equation MX = Ve has a non-negative real solution, then e
is non-contextual.

For given e, e′ ∈ EM, put:

γe,e′(x) =
1

1 + x
e +

x
1 + x

e′, ∀x ∈ [0,+∞), γe,e′(+∞) = e′. (4)

Due to the importance of contextuality and motivated by a work on the robustness of entanglement
of mixed quantum states against noise and jamming [11], we have proposed and discussed the
robustness of contextuality (RoC) RC(e) of an empirical model e in [12,13] to quantify the amount
of contextuality with respect to non-contextual mixing by asking about the minimal amount of
contextuality-free mixing needed to wipe out all contextuality of e. The mathematical definition is
as follows.

Definition 6 ([12]). Let e ∈ EM and e′ ∈ NCEM. The relative robustness of contextuality of e with
respect to e′ is defined as:

RC
(
e||e′

)
= min

{
x ∈ [0,+∞] : γe,e′(x) ∈ NCEM

}
, (5)

and the robustness of contextuality (RoC) of e is defined as:

RC(e) = min
{

RC
(
e||e′

)
: e′ ∈ NCEM

}
. (6)

Contextual empirical model e is the object in which we are interested, and it is contextuality
that supplies the “magic” for quantum computation. Although e is contextual, when it is mixed
with a non-contextual empirical model e′, the mixture γe,e′(x) = 1

1+x e + x
1+x e′ with x ∈ [0,+∞) may

be non-contextual, and so, the contextuality of e is wiped out by e′. In this sense, we say that e′ is
noise or jamming. However, noises are not always non-contextual. Motivated by the generalized
robustness [14] of entanglement, we investigate the generalized robustness of contextuality Rg(e),
which characterizes the minimal amount of mixing with general noises (i.e., both non-contextual
empirical models and contextual ones), which washes out all contextuality of e.

Definition 7. Let e, e′ ∈ EM. The generalized relative robustness of contextuality of e with respect to
e′ is defined as:
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Rg (e||e′) =
{

min
{

x ∈ [0,+∞] : γe,e′(x) ∈ NCEM
}

, γe,e′(x) ∈ NCEM for some x ∈ [0,+∞)

+∞, otherwise
, (7)

and the generalized robustness of contextuality (GRoC) of e is defined as:

Rg(e) = min
{

Rg
(
e||e′

)
: e′ ∈ EM

}
. (8)

Considering that the minimums above are taken over compact sets and the functions to be
optimized are continuous, we have that Equations (7) and (8) are well defined.

Figures 4 and 5 are given for more intuition about Rg (e||e′) and Rg(e).

Figure 4. An illustration of Rg(e‖ f ).

Figure 5. An illustration of the GRoC of an empirical model e.

Figure 4 shows that 0 < Rg (e||e′) < +∞ implies that γe,e′(x) is contextual for all x ∈ [0, Rg (e||e′)),
and γe,e′(Rg (e||e′)) is non-contextual. In the case where e′ ∈ NCEM, γe,e′(x) is non-contextual if and
only if x ∈ [Rg (e||e′) ,+∞]. Figure 5 shows that Rg(e) is finite, and the smallest radius of the circles
containing non-contextual empirical models is Rg(e). Moreover, the circle with radius r ∈ (Rg(e),+∞]

contains non-contextual empirical models, and the circle with radius r ∈ [0, Rg(e)) contains only
contextual empirical models.

Remark 2. By the definitions of RoC and GRoC of an empirical model e, we see that Rg(e) ≤ RC(e).
For any e ∈ NSEM, if Rg(e) = Rg (e||e′) = x ∈ (0, ∞), then γe,e′(x) is non-contextual,
and so, γe,e′(x) ∈ NSEM by Remark 1. Thus, e′ is the no-signaling since e ∈ NSEM and
γe,e′(x) = 1

1+x e + x
1+x e′ ∈ NSEM.
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Using the norm-distance of EM in [12], a sequence {en}∞
n=1 in EM is convergent to e if and only if

en
Ci
(s) → eCi (s) as n → ∞ for all Ci ∈ M, s ∈ E(Ci). We see from [22] (Section 0.4.6) that there exist

invertible matrices A and B and identity matrix I such that:

M = A

[
I 0
0 0

]
B. (9)

For any positive integer n and X ∈ Rn, we denote:
‖X‖1 = ∑n

j=1 |X[j]|,
‖A−1‖ = sup{‖A−1X‖1 : X ∈ R`, ‖X‖1 ≤ 1}
‖B−1‖ = sup{‖B−1X‖1 : X ∈ R`′ , ‖X‖1 ≤ 1}.

(10)

Based on the above notations, the boundedness and continuity of GRoC on the set NSEM are
proven in the following theorem. Moreover, the following theorem says that GRoC can be used to
distinguish non-contextual empirical models from contextual ones.

Theorem 4. (i) Let X0 = 1
`′ (1, 1, . . . , 1)T ∈ D(E(X)) and X]

0 be the empirical model {X0|Ci}Ci∈M, i.e., the
totally mixed non-contextual empirical model. For any e ∈ NSEM, it holds that:

0 ≤ Rg(e) ≤ m`′‖A−1‖ · ‖B−1‖ < +∞. (11)

(ii) Rg(e) is finite for any empirical model e; Rg(e) = 0 if and only if e is non-contextual.
(iii) For any e ∈ CEM, it holds that:

Rg(e) = sup
{

x ∈ [0,+∞) : γe,e′(x) ∈ CEM, ∀e′ ∈ EM
}

. (12)

(iv) The GRoC function Rg is convex on EM, i.e., if e1, e2 ∈ EM, then:

Rg(λe1 + (1− λ)e2) ≤ λRg(e1) + (1− λ)Rg(e2), ∀λ ∈ (0, 1). (13)

(v) Rg(e)Rg( f ) ≤ 1 for all e, f ∈ EM with Rg(e‖ f ) < +∞; moreover, for any e ∈ EM, there exists an
empirical model f such that Rg(e)Rg( f ) ≤ 1.

(vi) Rg as a function on NSEM is continuous, that is lim
n→∞

Rg(en) = Rg(e) provided that

en ∈ NSEM(n = 1, 2, . . .) such that lim
n→∞

en = e.

Proof. (i) Let e ∈ NSEM. Theorem 2 implies that MX = Ve has a real solution X = X′. Put:

Ze =

(
Z1

e
Z2

e

)
= A−1Ve,

(
Y′1
Y′2

)
= BX′,

then: [
I 0
0 0

](
Y′1
Y′2

)
=

(
Z1

e
Z2

e

)
.

Therefore, Z2
e = 0. Put X1 := B−1

(
Z1

e
0

)
, then MX1 = Ve and so X = X1 is a solution to MX = Ve

with:

‖X1‖1 ≤ ‖B−1‖ · ‖Z1
e‖1 = ‖B−1‖ · ‖Ze‖1 ≤ ‖B−1‖ · ‖A−1‖ · ‖Ve‖1 = m‖B−1‖ · ‖A−1‖ := B. (14)
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Let X0 = 1
`′ (1, 1, . . . , 1)T ∈ D(E(X)) and X]

0 be the empirical model {X0|Ci}m
i=1. By directly

computing, we obtain that MX0 = V
X]

0
. By Equation (14), we see that ‖X1‖1 ≤ B, and then:

(X1 + B`′X0)[j] = X1[j] + B`′X0[j] ≥ −B + B = 0, ∀1 ≤ j ≤ `′.

Hence, X = 1
1+B`′ (X1 + B`′X0) is a non-negative solution to MX = 1

1+B`′

(
Ve + B`′V

X]
0

)
. Using

Theorem 3, we obtain that 1
1+B`′ (e + B`′X]

0) is non-contextual. By Equation (7), we get that

Rg(e‖X]
0) ≤ B`′. Thus, we obtain by Equations (8) and (14) that Equation (11) holds.

(ii) First, let us prove that Rg(e) is finite for any empirical model e. To do this, we take an empirical
model e and let f = X]

0 given in (i). Note that fCi = X0|Ci > 0 for all i = 1, 2, . . . , m, we can choose
a small ε > 0 such that g := (1 + ε) f + (−ε)e is an empirical model. Then, f = γg,e(ε), and so,
γe,g(1/ε) = f ∈ NCEM. This shows that Rg(e) ≤ Rg(e||g) ≤ 1/ε < +∞. Thus, Rg(e) is finite, even
though it may be very large.

By the definitions of Rg and RC, it is easy to know that 0 ≤ Rg(e) ≤ RC(e) for any
e ∈ EM. Since e is non-contextual if and only if RC(e) = 0, we obtain that Rg(e) = 0 for
non-contextual e ∈ EM. If Rg(e) = 0, then there exists e′ ∈ EM such that 1

1+0 e + 0
1+0 e′ ∈ NCEM by

Equations (7) and (8). Thus, e ∈ NCEM.
(iii) Since e is contextual, we can assume that Rg(e) ∈ (0,+∞) in the following. Put:

Y(e) =
{

x ∈ [0,+∞) : γe,e′(x) ∈ CEM, ∀e′ ∈ EM
}

.

Then, 0 ∈ Y(e), and so, Y(e) is not empty.
At first, we shall show that Rg(e) is an upper bound of the set Y(e). Suppose that there exists an

x0 ∈ Y(e) such that x0 > Rg(e). Let Rg(e) = Rg(e‖e′) for some e′ ∈ EM such that γe,e′(y) ∈ NCEM
where y = Rg(e‖e′). For any f ∈ NCEM, we see from the convexity of NCEM [12] that:

g :=
1 + y
1 + x0

γe,e′(y) +
x0 − y
1 + x0

f ∈ NCEM.

Set e′′ = y
x0

e′ + x0−y
x0

f ∈ EM. Then:

γe,e′′(x0) =
1

1 + x0
e +

x0

1 + x0

(
y
x0

e′ +
x0 − y

x0
f
)
= g ∈ NCEM,

which contradicts the property of x0. This shows that Rg(e) is an upper bound of the set Y(e).
Then, we shall prove that Rg(e) is the supremum of the set Y(e). Since e is contextual, we obtain

from (ii) that Rg(e) > 0. For any ε ∈ (0, Rg(e)), take x = Rg(e)− ε
2 . Then, x ∈ (0,+∞) and Rg(e)− ε<

x < Rg(e). If there exists an e′ ∈ EM such that γe,e′(x) ∈ NCEM, then Rg(e) ≤ Rg(e‖e′) ≤ x < Rg(e),
a contradiction. Hence, γe,e′(x) ∈ CEM for all e′ ∈ EM, and so, x ∈ Y(e) with Rg(e)− ε < x. Therefore,
Rg(e) = sup Y(e), i.e., (12) holds.

(iv) Let:
e1, e2 ∈ EM, Rg(e1) = x1, Rg(e2) = x2

and e = λe1 + (1 − λ)e2(λ ∈ (0, 1)). Then by (ii) we see that both x1 and x2 are finite.
Put x = λx1 + (1− λ)x2. Thus, there exist e′1, e′2 ∈ EM such that γe1,e′1

(x1), γe2,e′2
(x2) ∈ NCEM and:

Rg(e1) = Rg(e1||e′1), Rg(e2) = Rg(e2||e′2).

Since λx1
x , (1−λ)x2

x ≥ 0 and λx1
x + (1−λ)x2

x = 1, we get e′ := λx1
x e′1 +

(1−λ)x2
x e′2 ∈ EM, and:
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γe,e′(x) =
1

1 + x
e +

x
1 + x

e′

=
1

1 + x
(λe1 + (1− λ)e2) +

x
1 + x

(
λx1

x
e′1 +

(1− λ)x2

x
e′2

)
=

λ(1 + x1)

1 + x

[
1

1 + x1
e1 +

x1

1 + x1
e′1

]
+

(1− λ)(1 + x2)

1 + x

[
1

1 + x2
e2 +

x2

1 + x2
e′2

]
=

λ(1 + x1)

1 + x
γe1,e′1

(x1) +
(1− λ)(1 + x2)

1 + x
γe2,e′2

(x2).

Observing that:

λ(1 + x1)

1 + x
,
(1− λ)(1 + x2)

1 + x
≥ 0,

λ(1 + x1)

1 + x
+

(1− λ)(1 + x2)

1 + x
= 1,

we see that γe,e′(x) ∈ NCEM. Consequently,

Rg(λe1 + (1− λ)e2) = Rg(e) ≤ Rg(e||e′) ≤ x = λRg(e1) + (1− λ)Rg(e2).

(v) Assume that x = Rg(e‖ f ) < +∞. Clearly, if x = 0, then Rg(e) = 0 by Equation (8).
We see from (ii) that Rg( f ) < +∞, and so, Rg(e)Rg( f ) = 0 < 1. Next, we assume that x > 0.

Then, γe, f (x) = e+x f
1+x ∈ NCEM. Since:

γ f ,e(
1
x
) =

f + 1
x e

1 + 1
x

= γe, f (x) ∈ NCEM,

we obtain that Rg( f ‖e) ≤ 1
x and then:

Rg(e)Rg( f ) ≤ Rg(e‖ f )Rg( f ‖e) ≤ x× 1
x
= 1.

For any e ∈ EM, we see from Equation (8) that there exists an empirical model f such that
Rg(e‖ f ) = Rg(e). The first conclusion of (ii) yields that Rg(e‖ f ) < ∞, and then, the first conclusion
implies that Rg(e)Rg( f ) ≤ 1.

(vi) Assume that en ∈ NSEM(n = 1, 2, . . .) such that lim
n→∞

en = e. By the closedness of

NSEM ([12], Theorem 2.2), we obtain that e ∈ NSEM.

Claim 1. Rg(e) ≤ lim
n→∞

Rg(en).

Put x = lim
n→∞

Rg(en). Then, x = lim
k→∞

Rg(enk ) for some subsequence {enk}∞
k=1. For each k = 1, 2, . . . ,

there exists f k ∈ NSEM such that Rg(enk ) = Rg(enk || f k) := xk ∈ [0, ∞). The compactness of
NSEM ([12], Theorem 2.2) yields that there exists a subsequence { f kj}+∞

k=1 satisfying f kj → f ∈ NSEM
as j→ ∞. Since

1
1 + xkj

e
nkj +

xkj

1 + xkj

f kj ∈ NCEM

and NCEM is closed, we have:

1
1 + xkj

e
nkj +

xkj

1 + xkj

f kj → 1
1 + x

e +
x

1 + x
f ∈ NCEM.

By Equation (7) and (8), we know that Rg(e) ≤ Rg(e|| f ) ≤ x = lim
n→∞

Rg(en).
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Claim 2. lim
n→∞

Rg(en) ≤ Rg(e).

Assume that lim
n→∞

Rg(en) = lim
k→∞

Rg(enk ).

When the set {k : enk 6= e} is finite, then we obtain that lim
n→∞

Rg(en) = lim
k→∞

Rg(enk ) = Rg(e).

When the set {k : enk 6= e} is infinite, there exists subsequence {enkj }∞
j=1 of {enk}∞

k=1 such that

e
nkj 6= e for any j. For any Ci ∈ M, take:

FCi = {s ∈ E(Ci) : eCi (s) = 0}, GCi = {s ∈ E(Ci) : eCi (s) 6= 0}.

Then:
FCi

⋂
GCi = ∅ and FCi

⋃
GCi = E(Ci).

Since ∑s∈E(Ci)
eCi (s) = 1 and eCi (s) ≥ 0 for any s ∈ E(Ci), we get that GCi 6= ∅. For any s ∈ GCi , since

eCi (s) > 0 and e
nkj
Ci

(s) → eCi (s) as j goes to infinity, we obtain that there exists positive integer JCi ,s
such that:

e
nkj
Ci

(s) >
1
2

eCi (s) > 0, ∀j > JCi ,s.

Take:
J = max{JCi ,s : Ci ∈ M, s ∈ GCi}.

Then, we have that e
nkj
Ci

(s) > 0 for any j > J, Ci ∈ M and s ∈ GCi . For any j > J, take:

ε j = max
Ci∈M,s∈GCi

max

0,
eCi (s)

e
nkj
Ci

(s)
− 1

 ≤ max
Ci∈M,s∈GCi

∣∣∣∣∣∣ eCi (s)

e
nkj
Ci

(s)
− 1

∣∣∣∣∣∣ .

Thus, ε j is convergent to zero since e
nkj converges to e and ε j > 0 for any j. Otherwise, when ε j = 0 for

some j, we have eCi (s) ≤ e
nkj
Ci

(s) for any Ci ∈ M and s ∈ E(Ci). Since:

1 = ∑
s∈E(Ci)

eCi (s) = ∑
s∈GCi

eCi (s) ≤ ∑
s∈GCi

e
nkj
Ci

(s) ≤ ∑
s∈E(Ci)

e
nkj
Ci

(s) = 1,

we obtain that e
nkj
Ci

(s) = eCi (s) for any Ci ∈ M, s ∈ E(Ci), and then, e
nkj = e, which contradicts the

fact that e
nkj 6= e for all j. Thus, we obtain a sequence of positive numbers ε j with limit zero. Take:

f j
Ci
(s) =


1

1− 1
1+ε j

e
nkj
Ci

(s), s ∈ FCi

e
nkj
Ci

(s)− 1
1+ε j

eCi
(s)

1− 1
1+ε j

, s ∈ GCi

,

for any Ci ∈ M, s ∈ E(Ci). Since ε j ≥
eCi

(s)

e
nkj
Ci

(s)
− 1 for any Ci ∈ M and s ∈ GCi , we have:

1 + ε j ≥
eCi (s)

e
nkj
Ci

(s)
> 0, for any Ci ∈ M, s ∈ GCi .

Hence,

e
nkj
Ci

(s)− 1
1 + ε j

eCi (s) ≥ e
nkj
Ci

(s)−
e

nkj
Ci

(s)

eCi (s)
eCi (s) = 0, ∀Ci ∈ M, s ∈ GCi



Entropy 2016, 18, 297 11 of 19

and so, for any Ci ∈ M, we have that f j
Ci
(s) ≥ 0 for all s ∈ E(Ci). By directly computing, we obtain

that ∑s∈E(Ci)
f j
Ci
(s) = 1 for any Ci ∈ M and then f j ∈ EM. Since:

e
nkj =

(
1− 1

1 + ε j

)
f j +

1
1 + ε j

e,

Rg is convex (by (iv)) and Rg( f j) ≤ m`′‖A−1‖ · ‖B−1‖ for any j (by (i)), we obtain that for any j,

Rg(e
nkj ) = Rg

((
1− 1

1 + ε j

)
f j +

1
1 + ε j

e

)

≤
(

1− 1
1 + ε j

)
Rg( f j) +

1
1 + ε j

Rg(e)

≤
(

1− 1
1 + ε j

)
m`′‖A−1‖ · ‖B−1‖+ 1

1 + ε j
Rg(e)

→ Rg(e).

Therefore,
lim

n→∞
Rg(en) = lim

j→∞
Rg(e

nkj ) ≤ Rg(e).

Combining Claim 1 with Claim 2, we see that:

Rg(e) ≤ lim
n→∞

Rg(en) ≤ lim
n→∞

Rg(en) ≤ Rg(e)

and then lim
n→∞

Rg(en) = Rg(e).

By Equation (13), we observe that:

Rg(λe1 + (1− λ)e2) ≤ max{Rg(e1), Rg(e2)}, λ ∈ (0, 1).

This means that there does not exist a parameter λ ∈ (0, 1) such that:

Rg(λe1 + (1− λ)e2) > Rg(e1) and Rg(λe1 + (1− λ)e2) > Rg(e2).

In other words, mixing of two empirical models does not increase simultaneously the GRoC of the
mixed empirical models. Theorem 4. (v) says that Rg(e) and Rg( f ) cannot be large simultaneously
whenever e, f ∈ EM and Rg(e‖ f ) < +∞. By the compactness of EM ([12], Theorem 2.2), we obtain
that Claim 1 also holds for en ∈ EM(n = 1, 2, . . .) such that lim

n→∞
en = e, i.e. for any e0 ∈ EM and any

ε > 0, there exists δ > 0 such that Rg(e0)− ε < Rg(e) provided that e ∈ EM with ‖e− e0‖ < δ.

Definition 8 ([10]). An empirical model e = {eCi}Ci∈M is said to be strongly contextual if for any
s ∈ E(X) there exists Ci ∈ M such that eCi (s|Ci ) = 0.

Definition 9 ([12]). The quantity:

C(e) = inf
{

p ∈ [0, 1] : e = pe′ + (1− p)e′′, e′ ∈ EM, e′′ ∈ NCEM
}

is called the contextuality cost of e ∈ EM.
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Corollary 1. There exists a strongly contextual e0 ∈ NSEM such that:

Rg(e0) = max{Rg(e) : e ∈ NSEM}.

Proof. Since Rg is continuous on NSEM and NSEM is a compact set, we obtain that Rg has a
maximal value on NSEM. For any e ∈ CEM

⋂
NSEM, if e is not strongly contextual, then the cost of

contextuality C(e) of e is strictly less than one ([12], Theorem 4.1), and there exist strongly contextual
f ∈ NSEM and non-contextual h ∈ EM such that e = C(e) f + (1− C(e))h ([12], Corollary 4.1). Since
h is non-contextual, we see from Theorem 4 that Rg(h) = 0. It follows from the convexity of Rg

(Theorem 4) that:

Rg(e) ≤ C(e)Rg( f ) + (1− C(e))Rg(h) = C(e)Rg( f ) < Rg( f ).

This shows that the maximal value of Rg over NSEM must be attained at some strongly contextual
and no-signaling empirical model.

3. The GRoC of n-Cycle Boxes

In this section, we consider n dichotomic observables X0, . . . , Xn−1, where each consecutive pair
{Xi, Xi+1}, sum mod n, is jointly measurable and take:

X = {Xi}n−1
i=0 , O = {0, 1}, andM = {Ci}n−1

i=0 with Ci = {Xi, Xi+1}.

Then, (X,M, O) is an MS. The no-signaling empirical models on MS (X,M, O) are said to be n-cycle
boxes. To compute the GRoC of n-cycle boxes, the following notations and lemmas are needed. Denote
events on measurement context Ci as:

si
00 : Ci → O with si

00(Xi) = si
00(Xi+1) = 0; si

01 : Ci → O with si
01(Xi) = 0, si

01(Xi+1) = 1;

si
10 : Ci → O with si

10(Xi) = 1, si
10(Xi+1) = 0; si

11 : Ci → O with si
11(Xi) = si

11(Xi+1) = 1,

where the sum is mod n. Thus, E(Ci) = {si
00, si

01, si
10, si

11} for any Ci. For any n-cycle box
e = {eCi}Ci∈M, take:

Ee
i = eCi (s

i
00) + eCi (s

i
11)− eCi (s

i
01)− eCi (s

i
10). (15)

Put:
Γ = {{γi}n−1

i=0 : γi ∈ {−1, 1}, |{i : γi = −1}| is odd}. (16)

In the following, we assume that n ≥ 4 unless otherwise stated and compute Rg(e).

Lemma 1 ([16]). An n-cycle box e is non-contextual if and only if all 2n−1 tight non-contextuality inequalities
hold, i.e.,

Ωe,{γi}n−1
i=0

=
n−1

∑
i=0

γiEe
i ≤ n− 2, ∀{γi}n−1

i=0 ∈ Γ.

For an n-cycle box e, take:

4e = max
{

Ωe,{γi}n−1
i=0

: {γi}n−1
i=0 ∈ Γ

}
− (n− 2). (17)

Then,4e quantifies the extent of violating the non-contextual inequalities in Lemma 1. By Lemma 1
and Equation (17), we see that e is non-contextual if and only if4e ≤ 0.
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Lemma 2. For every contextual n-cycle box e, there exists one and only one non-contextuality inequality
of all 2n−1 tight non-contextuality inequalities that is violated. That is, for an n-cycle box e, if there exists
{γi}n−1

i=0 ∈ Γ such that Ωe,{γi}n−1
i=0

> n− 2, then:

Ωe,{βi}n−1
i=0

< n− 2, ∀{βi}n−1
i=0 ∈ Γ \ {{γi}n−1

i=0 }.

Proof. Assume that {γi}n−1
i=0 ∈ Γ such that Ωe,{γi}n−1

i=0
> n − 2. Let {βi}n−1

i=0 ∈ Γ \ {{γi}n−1
i=0 }.

Then, we obtain by Equation (16) that γi, βi ∈ {−1, 1}; both |{i : γi = −1}| and |{i : βi = −1}|
are odd numbers and {βi}n−1

i=0 6= {γi}n−1
i=0 . Therefore, there exist 0 ≤ j 6= k ≤ n − 1 such that

β j = −γj and βk = −γk. Since eCi ∈ D(E(Ci)), we obtain that |Ee
i | ≤ 1 by Equation (15).

Moreover, (n− 2)−∑i 6=j,k γiEe
i < γjEe

j + γkEe
k since Ωe,{γi}n−1

i=0
> n− 2. Thus,

Ωe,{βi}n−1
i=0

=
n−1

∑
i=0

βiEe
i

= ∑
i 6=j,k

βiEe
i − γjEe

j − γkEe
k

< ∑
i 6=j,k

βiEe
i −

(
(n− 2)− ∑

i 6=j,k
γiEe

i

)
≤ 2 ∑

i 6=j,k
|Ee

i | − (n− 2)

≤ 2(n− 2)− (n− 2)

= n− 2.

With these lemmas, we can prove the following theorem.

Theorem 5. For any n-cycle box e, it holds that:

Rg(e) =
max{4e, 0}

2n− 2
. (18)

Proof.

• Case (i): If e is non-contextual, then we have that Rg(e) = 0 by Theorem 4 (ii) and Ωe,{γi}n−1
i=0
≤ n− 2

for any {γi}n−1
i=0 ∈ Γ by Lemma 1. By Equation (17), we see that4e ≤ 0, and so, (18) holds.

• Case (ii): If e is contextual, then there exists one and only one {γi}n−1
i=0 ∈ Γ such that

Ωe,{γi}n−1
i=0

> n− 2, and so:

Ωe,{βi}n−1
i=0

=
n−1

∑
i=0

βiEe
i < n− 2, ∀{βi}n−1

i=0 ∈ Γ \ {{γi}n−1
i=0 }. (19)

Take

x0 =
Ωe,{γi}n−1

i=0
− (n− 2)

2n− 2
.

Then, x0 = 4e
2n−2 = max{4e ,0}

2n−2 . Clearly, there exists n-cycle box f such that:

E f
i =

{
1, if γi = −1;
−1, if γi = 1.



Entropy 2016, 18, 297 14 of 19

• Case (iia): If n is an even number, then we obtain that {−γi}n−1
i=0 ∈ Γ and Ω f ,{−γi}n−1

i=0
= n.

By Lemma 2, we have that:

Ω f ,{βi}n−1
i=0

=
n−1

∑
i=0

βiE
f
i < n− 2, ∀{βi}n−1

i=0 ∈ Γ \ {{−γi}n−1
i=0 }. (20)

Claim 3. Rg(e|| f ) = x0.

By Lemma 1 and Inequalities (19) and (20), we obtain that 1
1+x e + x

1+x f is non-contextual if and
only if:

1
1 + x

Ωe,{γi}n−1
i=0

+
x

1 + x
Ω f ,{γi}n−1

i=0
=

1
1 + x

Ωe,{γi}n−1
i=0
− nx

1 + x
≤ n− 2

and:
1

1 + x
Ωe,{−γi}n−1

i=0
+

x
1 + x

Ω f ,{−γi}n−1
i=0

= − 1
1 + x

Ωe,{γi}n−1
i=0

+
nx

1 + x
≤ n− 2,

i.e.,

x0 =
Ωe,{γi}n−1

i=0
− (n− 2)

2n− 2
≤ x ≤

Ωe,{γi}n−1
i=0

+ (n− 2)

2
.

By Equation (7), we obtain that Rg(e|| f ) = x0.

Claim 4. Rg(e) = x0.

By Claim 3 and Equation (8), we have Rg(e) ≤ x0. Take:

EM1 = {h ∈ EM : Ωh,{γi}n−1
i=0

> n− 2},

EM2 = {h ∈ EM : −n ≤ Ωh,{γi}n−1
i=0

< −(n− 2)}

and:
EM3 = {h ∈ EM : −(n− 2) ≤ Ωh,{γi}n−1

i=0
≤ n− 2}.

Then, EM1 ∪ EM2 ∪ EM3 = EM.
For h ∈ EM1, we have:

1
1 + x

Ωe,{γi}n−1
i=0

+
x

1 + x
Ωh,{γi}n−1

i=0
> n− 2, ∀x ∈ [0,+∞].

Hence, we have from Lemma 1 that 1
1+x e + x

1+x h is contextual for any x ∈ [0,+∞], and so,
Rg(e||h) = +∞ > x0 by Equation (7).

For h ∈ EM2, we have that Ωh,{−γi}n−1
i=0

> n− 2, and so:

Ωh,{βi}n−1
i=0

=
n−1

∑
i=0

βiEh
i < n− 2, ∀{βi}n−1

i=0 ∈ Γ \ {{−γi}n−1
i=0 }. (21)

By Lemma 1 and Inequalities (19) and (21), we obtain that 1
1+x e + x

1+x h is non-contextual if and only if:

1
1 + x

Ωe,{γi}n−1
i=0

+
x

1 + x
Ωh,{γi}n−1

i=0
≤ n− 2

and:
1

1 + x
Ωe,{−γi}n−1

i=0
+

x
1 + x

Ωh,{−γi}n−1
i=0
≤ n− 2,
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i.e.,
Ωe,{γi}n−1

i=0
− (n− 2)

n− 2−Ωh,{γi}n−1
i=0

≤ x and x ≤
Ωe,{γi}n−1

i=0
+ (n− 2)

Ωh,{−γi}n−1
i=0
− (n− 2)

.

Since:
Ωe,{γi}n−1

i=0
− (n− 2)

n− 2−Ωh,{γi}n−1
i=0

≤ 2
n− 2

≤ 1 ≤ n− 2
2
≤

Ωe,{γi}n−1
i=0

+ (n− 2)

Ωh,{−γi}n−1
i=0
− (n− 2)

for n ≥ 4, we obtain that 1
1+x e + x

1+x h is non-contextual if and only if:

Ωe,{γi}n−1
i=0
− (n− 2)

n− 2−Ωh,{γi}n−1
i=0

≤ x ≤
Ωe,{γi}n−1

i=0
+ (n− 2)

Ωh,{−γi}n−1
i=0
− (n− 2)

. (22)

By Equation (7), we get that Rg(e||h) =
Ω

e,{γi}
n−1
i=0
−(n−2)

n−2−Ω
h,{γi}

n−1
i=0

. Since Ωh,{γi}n−1
i=0
≥ −n, we see that Rg(e||h) ≥ x0.

When h ∈ EM3
⋂

NCEM, we know that:

Ωh,{βi}n−1
i=0

=
n−1

∑
i=0

βiEh
i ≤ n− 2, ∀{βi}n−1

i=0 ∈ Γ. (23)

Combining Lemma 1 and Inequalities (19) and (23), we get that 1
1+x e + x

1+x h is non-contextual if and
only if:

1
1 + x

Ωe,{γi}n−1
i=0

+
x

1 + x
Ωh,{γi}n−1

i=0
≤ n− 2. (24)

If Ωh,{γi}n−1
i=0

= n− 2, then for any x ∈ [0,+∞), Inequality (24) is always violated, and so, 1
1+x e + x

1+x h

is contextual. By Equation (7), we obtain from inequality (24) that Rg(e||h) = +∞ ≥ x0. If
Ωh,{γi}n−1

i=0
< n− 2, we obtain that 1

1+x e + x
1+x h is non-contextual if and only if:

Ωe,{γi}n−1
i=0
− (n− 2)

n− 2−Ωh,{γi}n−1
i=0

≤ x.

By Equation (7), we see that:

Rg(e||h) =
Ωe,{γi}n−1

i=0
− (n− 2)

n− 2−Ωh,{γi}n−1
i=0

.

Since Ωh,{γi}n−1
i=0

> −n, we obtain that Rg(e||h) > x0.

When h ∈ EM3
⋂

CEM, there exists {βi}n−1
i=0 ∈ Γ \ {{γi}n−1

i=0 , {−γi}n−1
i=0 } such that

Ωh,{βi}n−1
i=0

> n− 2, and then:

Ωh,{αi}n−1
i=0

< n− 2, ∀{αi}n−1
i=0 ∈ Γ \ {{βi}n−1

i=0 }. (25)

By Lemma 1 and Inequalities (19) and (25), we have that 1
1+x e + x

1+x h is non-contextual if and only if:

1
1 + x

Ωe,{γi}n−1
i=0

+
x

1 + x
Ωh,{γi}n−1

i=0
≤ n− 2

and:
1

1 + x
Ωe,{βi}n−1

i=0
+

x
1 + x

Ωh,{βi}n−1
i=0
≤ n− 2,
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i.e.,
Ωe,{γi}n−1

i=0
− (n− 2)

n− 2−Ωh,{γi}n−1
i=0

≤ x and x ≤
Ωe,{βi}n−1

i=0
+ (n− 2)

Ωh,{βi}n−1
i=0
− (n− 2)

.

Hence,

Rg(e||h) =


Ω

e,{γi}
n−1
i=0
−(n−2)

n−2−Ω
h,{γi}

n−1
i=0

, if
Ω

e,{γi}
n−1
i=0
−(n−2)

n−2−Ω
h,{γi}

n−1
i=0

≤
Ω

e,{βi}
n−1
i=0

+(n−2)

Ω
h,{βi}

n−1
i=0
−(n−2) ;

+∞, otherwise.

Thus,

Rg(e||h) ≥
Ωe,{γi}n−1

i=0
− (n− 2)

n− 2−Ωh,{γi}n−1
i=0

.

Since Ωh,{γi}n−1
i=0

> −n, we obtain that Rg(e||h) > x0.

In a word, we obtain that Rg(e||h) ≥ x0 for any h ∈ EM and Rg(e|| f ) = x0. Therefore, we have
from Equation (8) that Rg(e) = x0.

• Case (iib): If n is an odd number, then it is easy to find that:

Ω f ,{βi}n−1
i=0

=
n−1

∑
i=0

βiE
f
i =

n−1

∑
i=0

(−βiγi) ≤ n− 2, ∀{βi}n−1
i=0 ∈ Γ. (26)

Claim 5. Rg(e|| f ) = x0.

From Lemma 1 and Inequalities (19) and (26), we get that 1
1+x e + x

1+x f is non-contextual if and
only if

1
1 + x

Ωe,{γi}n−1
i=0

+
x

1 + x
Ω f ,{γi}n−1

i=0
≤ n− 2

i.e.,

x0 =
Ωe,{γi}n−1

i=0
− (n− 2)

2n− 2
≤ x.

Therefore, Rg(e|| f ) = x0.

Claim 6. Rg(e) = x0.

By Claim 5 and Equation (8), we have Rg(e) ≤ x0. Take:

EM1 = {h ∈ EM : Ωh,{γi}n−1
i=0
≥ n− 2}, EM2 = {h ∈ EM : Ωh,{γi}n−1

i=0
< (n− 2)}.

For h ∈ EM1, it is easy to check that Rg(e||h) = +∞ ≥ x0.
For h ∈ EM2 ⋂NCEM, we see from Lemma 1 and Inequality (18) that 1

1+x e + x
1+x h is

non-contextual if and only if:

1
1 + x

Ωe,{γi}n−1
i=0

+
x

1 + x
Ωh,{γi}n−1

i=0
≤ n− 2,

i.e.,
Ωe,{γi}n−1

i=0
− (n− 2)

n− 2−Ωh,{γi}n−1
i=0

≤ x

Hence,

Rg(e||h) =
Ωe,{γi}n−1

i=0
− (n− 2)

n− 2−Ωh,{γi}n−1
i=0

≥ x0.
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For h ∈ EM2 ⋂CEM, there exists {βi}n−1
i=0 ∈ Γ \ {{γi}n−1

i=0 } such that Ωh,{βi}n−1
i=0

> n− 2, and so:

Ωh,{αi}n−1
i=0

< n− 2, ∀{αi}n−1
i=0 ∈ Γ \ {{βi}n−1

i=0 }. (27)

By Lemma 1 and Inequalities (19) and (27), we obtain that 1
1+x e + x

1+x h is non-contextual if and only if:

1
1 + x

Ωe,{γi}n−1
i=0

+
x

1 + x
Ωh,{γi}n−1

i=0
≤ n− 2

and:
1

1 + x
Ωe,{βi}n−1

i=0
+

s
1 + x

Ωh,{βi}n−1
i=0
≤ n− 2,

i.e.,
Ωe,{γi}n−1

i=0
− (n− 2)

n− 2−Ωh,{γi}n−1
i=0

≤ x and x ≤
n− 2−Ωe,{βi}n−1

i=0

Ωh,{βi}n−1
i=0
− (n− 2)

.

Hence,

Rg(e||h) =


Ω

e,{γi}
n−1
i=0
−(n−2)

n−2−Ω
h,{γi}

n−1
i=0

, if
n−2−Ω

e,{βi}
n−1
i=0

Ω
h,{βi}

n−1
i=0
−(n−2) ≥

Ω
e,{γi}

n−1
i=0
−(n−2)

n−2−Ω
h,{γi}

n−1
i=0

;

+∞, otherwise.

Therefore,

Rg(e||h) ≥
Ωe,{γi}n−1

i=0
− (n− 2)

n− 2−Ωh,{γi}n−1
i=0

≥ x0.

Now, we have shown that Rg(e||h) ≥ x0 = Rg(e|| f ) for any h ∈ EM. Therefore, Rg(e) = x0.
This shows that Equation (18) holds.

Remark 3. In [13], we have computed the robustness of contextuality of an n-cycle box e and
obtained that:

RC(e) =

{
max{4e ,0}

2n−4 , n is even;
max{4e ,0}

2n−2 , n is odd.

Hence, Rg(e) = RC(e) for even n and Rg(e) < RC(e) for odd n.

Example 1. For any n-cycle box f , we have E f
i ≤ 1 for any i, and so, Ω f ,{γi}n−1

i=0
≤ n for any {γi}n−1

i=0 ∈ Γ.

Hence, ∆ f ≤ 2 by Equation (17), and then, Equation (18) implies that Rg( f ) ≤ 1
n−1 .

Let us consider the n-chain box e = CHn in [7], which is given by:

eCi (s
i
00) = eCi (s

i
11) =

1
2

, eCi (s
i
01) = eCi (s

i
10) = 0(i = 0, 1, . . . , n− 2),

eCn−1(s
n−1
00 ) = eCn−1(s

n−1
11 ) = 0, eCn−1(s

n−1
01 ) = eCn−1(s

n−1
10 ) =

1
2

.

By taking γ0 = γ1 = · · · = γn−2 = 1 and γn−1 = −1, we obtain that {γi}n−1
i=0 ∈ Γ and Ωe,{γi}n−1

i=0
= n.

Thus, ∆e = 2 by Equation (17), and then, Equation (18) implies that Rg(e) = 1
n−1 . This shows that:

max{Rg(e) : e is an n-cycle box} = Rg(CHn) =
1

n− 1
.
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4. Conclusions

Because noises are not always non-contextual, we have introduced and discussed the generalized
robustness of contextuality (GRoC) Rg(e) of an empirical model e against general noises. We also
have proven that Rg(e) = 0 if and only if e is non-contextual. This means that the quantity Rg can be
used to distinguish non-contextual empirical models from contextual ones. For any two empirical
models e and f with Rg(e‖ f ) < ∞, it has been proven Rg(e)Rg( f ) ≤ 1, which reveals a fascinating
relationship between the GRoCs of e and f . A relationship between GRoC and the extent of violating
the non-contextual inequalities for n-cycle(n ≥ 4) boxes has also been established, which reads
Rg(e) =

max{∆e ,0}
2n−2 . Thus, for any n-cycle boxes e and f , when ∆e ≤ ∆ f , we have Rg(e) ≤ Rg( f ); when

e and f are contextual, we have ∆e ≤ ∆ f if and only if Rg(e) ≤ Rg( f ). This means that Rg(e) can be
used to quantify the contextuality of n-cycle boxes. Moreover, we have proven that the maximal value
of Rg over NSEM must be attained at some strongly contextual model. This shows that to some extent,
Rg(e) contains the quantity of contextuality of e.
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