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Abstract: In order to improve the control precision and robustness of the existing proportion
integration differentiation (PID) controller of a 3-Revolute–Revolute–Revolute (3-RRR) parallel robot,
a variable PID parameter controller optimized by a genetic algorithm controller is proposed in this
paper. Firstly, the inverse kinematics model of the 3-RRR parallel robot was established according to
the vector method, and the motor conversion matrix was deduced. Then, the error square integral
was chosen as the fitness function, and the genetic algorithm controller was designed. Finally, the
control precision of the new controller was verified through the simulation model of the 3-RRR planar
parallel robot—built in SimMechanics—and the robustness of the new controller was verified by
adding interference. The results show that compared with the traditional PID controller, the new
controller designed in this paper has better control precision and robustness, which provides the
basis for practical application.
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1. Introduction

Parallel industrial robots are essentially closed kinematic chain mechanisms, in which the
end-effector is clamped onto the base through several independent kinematic chains [1]. Parallel
industrial robots exhibit the following obvious advantages over the serial series: no cumulative error,
little movement inertia, high structural stiffness, high load capacity, and so on. They are suitable for
fast and accurate operations, and have been widely applied in industrial fields such as integrated
circuit manufacturing and testing, fiber docking, and flight simulators [2,3]. For instance, Lee and
Yien [4] set up a three degrees of freedom (3-DOF) parallel industrial robot in order to operate and carry
large-scale workpieces. Another 3-DOF micro-sized planar parallel industrial robot was developed
for low-torque precision positioning tasks [5]. Combined with the advantages of parallel robots and
their wide applications in all aspects of social life, the research on parallel industrial robots is of
great significance.

A typical 3-DOF planar 3-Revolute–Revolute–Revolute (3-RRR) parallel industrial robot—
consisting of a moving platform which is connected to three identical branches and a static
platform—has the advantages of a simple structure, good symmetry and accurate positioning.
Therefore, many scholars have conducted detailed research on it. Gutierrez [6] performed an exhaustive
singularity analysis of a 3-RRR planar parallel robot. From a kinematic point of view, the optimum
characteristics of the 3-DOF planar parallel industrial robot were studied by Gosselin and Angeles [7].
Serdar Kucuk [8] presented an optimization problem for the 3-degrees-of-freedom RRR fully planar
parallel manipulator (3-RRR) based on the actuator power consumption. The effects of clearance
on the dynamics of a planar 3-RRR parallel manipulator are investigated in [9]. Based on forward
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kinematics theory, Flavio and Ron [10] studied the singularity problem, focusing completely on the
planar parallel robot. Sébastien and Ilian [11] studied the accuracy problems on several kinds of typical
3-DOF planar parallel industrial robots. Gao [12] designed a planar 3-RRR parallel industrial robot by
analyzing kinematics, singularity, dynamics, and controlling problems. Zhang et al. [13] presented the
first-order approximation coupling model of planar 3-RRR flexible parallel robots and considered the
rigid body motion constraints, elastic deformation motion constraints, and dynamic constraints of the
moving platform in the coupling model. Yu [14] presented experimental research on the dynamics
of flexible 3-RRR parallel robots and compared the results between the theoretical and experimental
analysis. It can be seen from the above literature that the current research on the 3-RRR parallel robot
mainly focuses on the dynamics model, work space analysis, singular point analysis, and structural
optimization. Good control precision also plays a crucial role in the practical application of a robot.

At present, the research on robot control algorithms mainly focuses on fuzzy control
algorithms [15], adaptive robust control algorithms [16], and genetic control algorithms [17].
Stanet et al. [18] proposed a fuzzy controller for a 3-DOF parallel industrial robot in medical
applications, and achieved more precise results with the fuzzy-based controller than with the classic
PID controller. Noshadi et al. [19,20] introduced a method by which an active force can be used to
control the platform. They also designed a two-level fuzzy tuning resolved acceleration control for
the platforms. In doing so, they suggested that when there is disturbance, the manipulator can still
perform trajectory tracking tasks with a stable response. Pham et al. [21] proposed a robust adaptive
control method based on radial basis function neural network (RBFNN), and studied the trajectory
tracking control of a two-link robot cleaning detection mechanism. In research by Ku et al. [22]
the model predictive control was performed to fulfill the positioning control of a 3-RRR planar
parallel manipulator. Song et al. [23] proposed a new path planning method for a robot based on a
genetic algorithm and the Bezier curve. Wang et al. [24] presented a double global optimum genetic
algorithm–particle swarm optimization for path planning of a welding robot. Lu et al. [25,26] proposed
a new method for the optimal design and tuning of a Proportional–Integral–Derivative-type interval
type-2 fuzzy logic controller for Delta parallel robot trajectory tracking control. The main aims of the
above literature are to improve the robot control accuracy. However, a good control program needs
to not only improve the control accuracy but also have the characteristics of simplicity, applicability,
robustness, and stability.

It is well known that the classic PID controllers have the advantage of simplicity, and the genetic
random search algorithm has a fast search ability. A variable PID parameter controller optimized by
a genetic algorithm has been designed in this paper, differing from previous research by combining
both advantages. The inverse kinematics model of the 3-RRR parallel robot was established according
to the vector method, and the motor conversion matrix was deduced. The control precision of the
new controller was verified through the simulation model of the 3-RRR planar parallel robot—built
in SimMechanics—and the robustness of the new controller was verified by adding interference.
The results show that compared with the traditional PID controller, the new controller designed in
this paper not only has better control precision, stability, and higher robustness but also has the
characteristics of simplicity and applicability, which provides the basis for practical application. The
other parts of this paper are arranged as follows: Section 2 introduces the model of the planar parallel
industrial robot; Section 3 presents the virtual bench setup and genetic algorithm controller; Section 4
discusses the simulation results; finally, Section 5 is the conclusion.

2. The Model of the Planar 3-RRR Parallel Robot

It is essential to establish the kinematics model for researching the planar parallel industrial
robot control strategies. In this section, the inverse kinematics model of the 3-RRR parallel robot is
established according to the vector method, and the motor conversion matrix is deduced, which is the
foundation for the subsequent control.



Algorithms 2018, 11, 7 3 of 13

2.1. The Structure of the 3-RRR Planar Parallel Robot

The three-dimensional map of the 3-RRR parallel robot is shown in Figure 1. The schematic
diagram of the 3-RRR planar parallel robot is shown in Figure 2. The outline of the 3-RRR planar
parallel robot is composed of the regular triangle of the moving platform C1C2C3; the fixed base
A1A2A3; and three identical branches A1B1C1, A2B2C2, A3B3C3. As Figure 2 shows, the three vertices
of the regular triangle are A1, A2, A3, where the active revolute joints are set. The points of B1, C1, B2,
C2, B3, C3 are the passive revolute joints, where A1B1 = A2B2 = A3B3 = l1, B1C1 = B2C2 = B3C3 = l2. The
radius of the circle of the motor in the working platform is R. The radius of the circle of the joints in
the moving platform is r. The 3-DOF planar motion can be achieved using the three driving motors in
the three active joints.
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2.2. The Kinematic Model of the 3-RRR Planar Parallel Robot

According to the geometric relationships shown in Figure 2, the coordinates of the motor in the
static coordinate system are shown as follows,

A =
[

A1 A2 A3

]
=

[
0
√

3R
√

3
2 R

0 0 3
2 R

]
(1)

The coordinates of the center of the moving platform in the moving coordinate system are shown
as follows,

P =
[

C1 C2 C3

]
=

[
−
√

3
2 r

√
3

2 r 0
− 1

2 r − 1
2 r r

]
(2)

The spatial transformation matrix T for transforming the moving coordinate system into the static
coordinate system is shown as follows,

T =


cos β cos γ sin β cos γ sin α− sin γ cos α sin β cos γ cos α + sin γ sin α x
sin γ cos β sin γ sin β sin α + cos γ cos α sin γ sin β cos α− cos γ sin α y
− sin β cos β sin α cos β cos α z

0 0 0 1

 (3)

where α, β, γ are the rotation angles around X, Y and Z, respectively. x, y, z are the distances along
the X, Y and Z axes, respectively. Due to the parallel robot studied in this paper, they can only be
translated along the x, y axis and rotated around the z axis,

α = 0, β = 0, z = 0 (4)

T can be expressed as follows,

T =


cos γ − sin γ 0 x
sin γ cos γ 0 y

0 0 1 0
0 0 0 1

 (5)

The coordinates of the moving platform center in the static coordinate system can be expressed
as follows, [

C
1

]
= T ×

[
P
1

]
(6)

Combining Equations (2) and (5), C can be expressed as follows,

C =
[

C1 C2 C3

]
=

[
x− r cos

(
π
6 − γ

)
x + r cos

(
γ− π

6
)

x− r sin γ

y− r sin
(

π
6 + γ

)
y + r sin

(
γ− π

6
)

y + r cos γ

]
(7)

For any one branch AiBiCi, the parallel robot satisfies the following motion constraint of the
closed-loop vector. The vector equation is expressed as follows [8],

⇀
OCi =

⇀
OAi +

⇀
AiBi +

⇀
BiCi (8)

where i = 1, 2, 3.
Combined with Equation (8), θBi is the angle between the link BiCi and the positive direction of

the X axis.
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{
xCi = xAi + l1 cos θAi + l2 cos θBi
yCi = yAi + l1 sin θAi + l2 sin θBi

(9)

Equation (9) can be expressed as follows,

fi1 sin θAi + fi2 cos θAi + fi3 = 0 (10)

where
fi1 = 2l1(yAi − yCi)

fi2 = 2l1(xAi − xCi)

fi3 = x2
Ci + y2

Ci + x2
Ai + y2

Ai − 2xCixAi − 2yCiyAi + l2
1 − l2

2

Let ti = tan(θi/2), substituting Equation (10), according to the universal formula of the
trigonometric function, Equation (10) can be expressed as follows,

( fi3 − fi2)t2
i + 2 fi1ti + ( fi3 + fi2) = 0 (11)

According to the rooting formula, the roots can be expressed as follows,
θ1

Ai = 2arctan
(
− fi1+

√
f 2
i1+ f 2

i2− f 2
i3

fi3− fi2

)
θ2

Ai = 2arctan
(
− fi1−

√
f 2
i1+ f 2

i2− f 2
i3

fi3− fi2

) (12)

Similarly, θBi can be obtained.
In order to build the genetic algorithm controller, it is necessary to obtain the transformation

matrix of the motor physical model. The physical model of the three-phase asynchronous motor is
shown in Figure 3.
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The model of the three-phase asynchronous motor can be established by coordinate
transformation. The transformation matrix from the three-phase coordinate system to the two-phase
stationary coordinate system through the geometric relationship can be expressed as follows [27],

C3s/2s =

√
2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
(13)
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The transformation matrix from the two-phase stationary coordinate system to the two-phase
rotation coordinate system can be expressed as follows [27],

C2s/2r =

[
cos θe sin θe

− sin θe cos θe

]
(14)

3. Virtual Bench Setup and Genetic Algorithm Controller

To verify the control effect of the PID controller optimized by the genetic algorithm, a virtual bench
is constructed in SimMechanics. At the same time, to simulate the gap error between the two revolute
joints in the actual system in the establishment of a three-dimensional model, the axis distance between
the two revolute joints is set to 0.5 mm. As Figure 4 shows, the virtual bench of the planar 3-RRR
parallel industrial robot is translated from its Pro/E form into Simulink in the SimMechanics toolbox.
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According to the industrial robot structure in Figure 1, a virtual bench can be established as shown
in Figure 4. The parallel industrial robot is composed of three elements, six links, one moving platform,
and three driving joints. The moving platform is connected by three branches which consist of two
individual links. Each of the two links are connected by revolute joints. The three driving joints on
the static platform can constitute an equilateral triangle. Similarly, the three connection joints on the
moving platform can also constitute an equilateral triangle.

The control scheme is significant for achieving the good stability and precise positioning needed
by the 3-RRR planar parallel industrial robot. As we already know, the traditional PID controllers have
good control of linear objects and their great advantages are simplicity and convenience. However,
when the control reference is complicated in the trajectory tracking control, or when the dynamical
parameters are changeable and complex, the classic PID control may not rapidly present a good result.
In order to make the controller perform better, the genetic algorithm is introduced in this paper. It is a
random search algorithm of natural selection and genetic mechanism which possesses the advantage
of simplicity, versatility, robustness, and speed compared to the conventional method. The design flow
chart of the genetic algorithm controller is shown in Figure 5.

The design process of the genetic algorithm is as follows:

Step 1: Parameter encoding: Due to the need-tuning parameters in the real domain, the simple binary
encoding and encoder, six sub-strings can be used as the six parameters influencing each other.
They then formed a chromosome. The precision of the PID solution parameters is set to 4 digits
after the decimal point, and the solution space of the PID parameters can be divided into
(1000 − 0) × (104) = 10,000,000 points. Because 223 < 10,000,000 < 224, 24-bit binary numbers are
needed to represent these solutions. In other words, a solution code is a 24-bit binary string.
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Initially, these binary strings are randomly generated. One such binary string represents a
chromosome string where the length of the chromosome string is 24.

Step 2: The fitness function is the basis for evaluating the selection, where the error integral can be used
as the performance of the system, such as Integrator Error (IE), Integrator Absolute Error (IAE),
Integral Square Error (ISE), Integration Time and Absolute Error (ITAE), etc. Each formula has
its own focus. This paper wants to achieve a smaller dynamic error, so the integral square error
is used as the fitness function:

F =
∫ ∝

0
[e (t)]2 (15)

Step 3: Genetic algorithm parameters: Group size n = 20, Crossover probability Pc = 0.8, Mutation
probability Pm = 0.005.

Step 4: If the error is minimum, then running is stopped, as the output has reached the optimal
parameters. Otherwise, Steps 1 to 3 are repeated.
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The stability of the controller is of great importance to the reliability of the control system.
To further theoretically analyze the stability of the PID controller optimized by a genetic algorithm
for the 3-RRR parallel robot, the Routh stability criterion is introduced for stability verification of the
PID controller optimized by a genetic algorithm. The system PID closed-loop control block diagram is
shown in Figure 6.
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According to the closed-loop PID control block diagram shown in Figure 6, the characteristic
equation of the closed-loop control transfer function can be expressed as follows,

bKpKds3 +
(
bKp + aKpKd

)
s2 +

(
aKp + bKpKi

)
s + aKpKi = 0 (16)

The Routh-table of the characteristic equation is expressed as follows,

s3 bKpKd aKp + bKpKi
s2 bKp + aKpKd aKpKi

s2 (bKp+aKpKd)(aKp+bKpKi)−(bKpKd)(aKpKi)
bKp+aKpKd

s0 aKpKi

(17)

In order to build PID controllers conveniently, the circular equation is divided into two input
equations ( XP = 0.03− 0.03 cos(50t) (Equation (a)), YP = 0.03 sin(50t) (Equation (b))). Therefore, two
PID controllers optimized by a genetic algorithm are set. The parameters in system transfer function
are given as a = 0.7374, b = 0.000036.

When there is no interference added, the PID control parameters of the PID controller optimized
by a genetic algorithm for Equation (Equation (a)) are Kp1 = 991.1899, Ki1 = 152.2033, Kd1 = 9.9589.
The PID control parameters of the PID controller optimized by a genetic algorithm for Equation
(Equation (b)) are Kp2 = 0.3, Ki2 = 799.9985, Kd2 = 0.0003.

When there is interference added, the PID control parameters of the PID controller optimized by
a genetic algorithm for Equation (Equation (a)) are Kp1 = 100, Ki1 = 198.9589, Kd1 = 9.7398. The PID
control parameters of the PID controller optimized by a genetic algorithm for Equation (Equation (b))
are Kp2 = 0.3, Ki2 = 799.4141, Kd2 = 0.0003.

Substituting the above parameters into the Routh-table Equation (17), it can be seen that none of
the coefficients of the eigenvalue equation is zero, and the sign of each coefficient is positive; therefore,
according to the Routh stability criterion, the system can be proved to be stable.

4. Simulation and Results Discussion

To verify the control effect of the PID controller optimized by a genetic algorithm, the circular
trajectory which is commonly used in industrial applications is selected as the trajectory. The system
control block diagram is shown in Figure 7. The trajectory equation is as follows,

XP = 0.03− 0.03 cos(50t)
YP = 0.03sin(50t)

θ = π/6
(18)

The radius of the circle where the active revolute joints are located is R = 0.25 m. The radius of
the circle where the triangle of the mobile platform is located is r = 0.0825 m; the length of the links
l1 = l2 = 0.16 m; the concentrated mass of the links mg = 0.2 kg; the concentrated mass of the moving
platform mp = 1 kg. To better describe the trajectory tracking error, ei (i = 1, 2) are defined as the
tracking errors. The control parameters of the classic PID controller are Kp1 = 10, Ki1 = 100, Kd1 = 5,
Kp2 = 0.35, Ki2 = 500, Kd2 = 0.0003. e1 =

√(
xp − xd

)2
+
(
yp − yd

)2

e2 =
√(

xg − xd
)2

+
(
yg − yd

)2
(19)

where

xd is the x coordinate of the desired trajectory.
yd is the y coordinate of the desired trajectory.
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xp is the x coordinate of the trajectory obtained by the classic PID controller.
yp is the y coordinate of the trajectory obtained by the classic PID controller.
xg is the x coordinate of the trajectory obtained by the PID controller optimized by a genetic algorithm.
yg is the y coordinate of the trajectory obtained by the PID controller optimized by a genetic algorithm.

The trajectory tracking errors of the classic PID and the PID optimized by a genetic algorithm are
shown in Figure 8. It is found that the PID controller optimized by the genetic algorithm has a higher
control accuracy. The trajectories of the end-effector using the classic PID and the PID optimized
by a genetic algorithm are shown in Figure 9. It can be found that the running trajectory of the PID
controller optimized by a genetic algorithm is closer to the desired trajectory; therefore, the genetic
algorithm-optimized PID controller designed in this paper has a higher trajectory tracking accuracy.
Moreover, the PID controller obtained by a genetic algorithm saves more time than the PID controller
obtained by the trial and error method, which is simple and practical.
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Figure 9. Trajectories of the end-effector using the classic PID and the PID optimized by a
genetic algorithm.

The trajectory tracking errors of the classic PID and the PID optimized by a genetic algorithm
are shown in Figure 10. The maximum error is still less than 1 mm. It is found that the controller
designed in this paper still has a higher accuracy when the interference is added. The trajectories of the
end-effector using the classic PID and the PID optimized by a genetic algorithm are shown in Figure 11.
It can be found that the running trajectory of the PID controller optimized by a genetic algorithm is
closer to the desired trajectory. Therefore, the genetic algorithm-optimized PID controller designed in
this paper has a higher trajectory tracking accuracy and has better robustness when the interference
is added.

Figure 12 shows the torque curves produced by the classic PID controller and the PID controller
optimized by a genetic algorithm. These torque curves are measured using a torque transducer built in
SimMechanics. It can be found that, compared with the traditional PID controller, the torque curves
produced by the PID controller optimized by a genetic algorithm are smoother at the beginning of
operation; therefore, the new controller has better stability at the beginning.
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5. Conclusions

In this paper, a variable PID parameter controller optimized by a genetic algorithm controller
is proposed. The inverse kinematics model of the 3-RRR parallel robot was established according
to the vector method, and the motor conversion matrix was deduced. The gap error between the
two revolute joints in the actual system was simulated by the establishment of a three-dimensional
model; the axis distance between the two revolute joints was set to 0.5 mm. The simulation model
of the 3-RRR planar parallel robot—built by SimMechanics—was used to verify the new controller.
The results show that, compared with the traditional PID controller, the new controller designed in this
paper has better control precision, and when interference is added to the system, the new controller
has better robustness and stability, which provides the basis for practical application.
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