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Abstract: This research investigates spatio-temporal patterns of police calls-for-service in the Region
of Waterloo, Canada, at a fine spatial and temporal resolution. Modeling was implemented via
Bayesian Integrated Nested Laplace Approximation (INLA). Temporal patterns for two-hour time
periods, spatial patterns at the small-area scale, and space-time interaction (i.e., unusual departures
from overall spatial and temporal patterns) were estimated. Temporally, calls-for-service were found
to be lowest in the early morning (02:00–03:59) and highest in the evening (20:00–21:59), while high
levels of calls-for-service were spatially located in central business areas and in areas characterized
by major roadways, universities, and shopping centres. Space-time interaction was observed to be
geographically dispersed during daytime hours but concentrated in central business areas during
evening hours. Interpreted through the routine activity theory, results are discussed with respect to
law enforcement resource demand and allocation, and the advantages of modeling spatio-temporal
datasets with Bayesian INLA methods are highlighted.

Keywords: spatio-temporal; law enforcement; police calls-for-service; Bayesian; Integrated Nested
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1. Introduction

In law enforcement, the implementation of computer-aided dispatch systems that automatically
record location- and time-specific information for police calls-for-service has facilitated the storage,
retrieval, and analysis of large volumes of spatio-temporal data [1–5]. Paired with technological
advances in geographic information systems, crime mapping, or the analysis and visualization of
historical spatial and temporal police call-for-service patterns, has become an important part of
police operations and strategy [6]. Police calls-for-service encompass reported crimes, emergency
response, traffic management, and other police-facilitated services [6], and compared to official crime
data, provide a more comprehensive indicator of overall police resource demand. Increasingly,
call-for-service data is available at fine spatial and temporal resolutions, enabling detailed analysis of
local space-time variation.

Past crime mapping research at the small-area scale often analyzes spatial and temporal patterns
separately. Purely spatial analyses identify hotspots, or groups of small areas that exhibit clustering
or high-spatial autocorrelation [7]. Assuming a null hypothesis of spatial randomness (i.e., no
spatial autocorrelation) a variety of statistical tests have been applied to identify spatial clusters
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of crime or calls-for-service, including the Getis-Ord statistic [8], local Moran’s I [9,10], the spatial scan
statistic [11,12], and the spatial point pattern test [13]. Purely temporal analyses, on the other hand, fit
time trends to small-area data. One popular method is the group-based trajectory analysis, which uses
mathematical functions (i.e., linear, quadratic) to generalize long-term time trends [14,15], but treats
small-area data as independent and does not account for local spatial autocorrelation.

Purely spatial and purely temporal methods do not simultaneously analyze variation in space
and time and, consequently, do not identify space-time interaction. Space-time interaction is defined
as residual space-time clustering after accounting for overall spatial and temporal patterns, and
is estimated for each space-time unit of analysis [16–18]. In this research context, areas with high
space-time interaction for a given time period may be highlighted as areas that exhibit unusually
high levels of calls-for-service above baseline spatial and temporal risk. Space-time interaction
helps to uncover patterns that may be overlooked in purely spatial or temporal analyses and
that may be associated with, for example, long-term changes in local socioeconomic conditions
or social disorganization [19], changes to drug market conditions or resident perceptions of law
enforcement [20,21], or short-term changes in policing strategy [22].

Broadly, methods of spatio-temporal analysis can be classified as testing- or model-based [16].
Testing-based approaches provide one test statistic for the study region that quantifies relative
clustering in both space and time [23]. For point data, two popular approaches are the Knox and
Jacquez tests, which count the number of point pairs that occur within specified spatial and temporal
thresholds, with the former based on user-chosen thresholds and the latter based on nearest-neighbour
thresholds [17,18,24]. For small-area data, the space-time scan statistic first identifies spatial hotspots
based on the difference between observed and expected counts within ellipses centred at small-area
centroids, and extends the spatial ellipse over time to analyze the persistence of spatial hotpots [11,25].
While useful for identifying overall levels of space-time clustering for a dataset, testing-based methods
do not identify overall spatial and temporal patterns (i.e., for the study region) and do not provide risk
estimates for observations not identified as hotspots.

Model-based spatio-temporal methods for small-area data decompose observed space-time data
into overall spatial and overall temporal patterns, as well as space-time interaction. Estimates of these
components are not feasible by comparing maps or count or rate data, particularly when the number
of space-time units is large. Conceptually, space-time models resemble regression models, where
the outcome variable (i.e., count of calls-for-service) is estimated through a number of parameters
including spatial, temporal, and spatio-temporal random effects [26]. Models with many random
effects parameters are often implemented in a Bayesian framework [27]. Briefly, Bayesian methods
combine observed data (i.e., space-time incident counts) and prior information (i.e., spatial and
temporal structures) to estimate posterior probability distributions of model parameters, including
space-time interaction [28].

Random effects parameters can be interpreted as surrogates for unmeasured spatial, temporal,
or space-time processes. Spatial random effects, for example, represent spatially autocorrelated
covariates and are often specified via conditional autoregressive (CAR) processes [29]. CAR processes
assume that the mean of the spatial random effects parameter in a given area is conditional on spatial
random effects estimates in geographically adjacent areas. This is often referred to as “borrowing
strength” [30]. The CAR model has been used extensively in ecological studies to analyze health-related
outcomes [31–33] as well as crime [34–36]. The CAR process can be conveniently applied to temporal
data, where temporal random effects for a time period is conditional on the mean values of temporal
random effects at time periods both before and after [37,38].

Applying Bayesian models to analyze spatio-temporal datasets is computationally challenging
using conventional Markov chain Monte Carlo (MCMC) algorithms [39,40] because MCMC requires
iterative assessment of various full conditional density functions and monitoring convergence of
posterior probability distributions requires extensive simulation [41,42]. Recently, the Integrated
Nested Laplace Approximation (INLA) method has been proposed, which approximates posterior
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probability distributions via numerical integration rather than an MCMC-based iterative process [28,43].
Past research comparing MCMC and INLA approaches has found that INLA reduces computational
time and retains reliable parameter estimates [28]. Computational efficiency is important when
analyzing spatio-temporal data because various prior distributions and assumptions for spatial,
temporal, and space-time random effects parameters can be tested and compared [44].

This research analyzes spatio-temporal patterns of police calls-for-service at the small-area level
in the Region of Waterloo, Canada. Calls-for-service for one year (2011) were temporally aggregated to
12 time periods of 2 hours, representing a 24 hour day, and geographically aggregated to 755 census
dissemination areas, resulting in a total of 9060 space-time units. Aggregated calls-for-service were
analyzed to provide broad insight into the space-time patterns of law enforcement resources and
because this provides sufficient count data to capture meaningful spatial, temporal, and space-time
patterns at this resolution. Hourly patterns were analyzed because crime and police resources have
been shown to vary by hour of day more than any other predictor [45] and anticipated spatial and
temporal autocorrelation can be appropriately accounted for via CAR processes.

This paper first reviews the study region and call-for-service data. Next, the spatio-temporal
model is detailed and four types of space-time interactions are described, each of which holds specific
assumptions regarding the spatial and/or temporal structure of residual space-time patterns. Overall
spatial and overall temporal patterns, as well as space-time interaction and space-time hotspots,
are visualized, interpreted through the routine activity theory, and discussed in the contexts of
understanding and informing police resource allocation. In conclusion, we reflect on the use of
Bayesian spatio-temporal models and INLA to model spatio-temporal datasets.

2. Study Region

The Regional Municipality of Waterloo, Ontario, Canada, is composed of the cities of Waterloo,
Kitchener, and Cambridge, as well as four rural townships. In 2011, the region had a population of
506,107 distributed across 755 census dissemination areas (DAs). For reference, DAs are the smallest
areal units that cover the entirety of Canada and are delineated such that residential populations are
between 400 and 700 [46].

3. Police Call-for-Service Data

Call-for-service data were provided by the Waterloo Regional Police Service for 1 January 2011 to
31 December 2011. Calls-for-service include violent crimes (count = 2696), property crimes (13,704),
disorder (18,949), bylaw complaints (10,598), motor-vehicle-related calls (31,105), 911 calls (65,617),
and a variety of other police-related services [47,48]. Locations reflect the closest intersection to call
location and calls were summed to the DA-scale. Descriptive statistics for total calls-for-service are
shown in Table 1. Expected counts were calculated as the product of study region rate and DA
population (= (total call-for-service count/total population) x DA population) to reflect underlying
population variation.

Table 1. Descriptive statistics for call-for-service counts in Waterloo Region, 2011.

Study Region Dissemination Area

Total Count Mean Min. Max. Std. Dev.

Population 507,096 671.65 5 4698 462.78
Total calls-for-service 290,275 384.47 0 42,912 1623.68

Expected calls-for-service 290,275 1 384.47 2.86 2689.26 264.91
1 Expected total count and mean values are equal to observed count and mean values.
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In general, areas with high total counts were located in the centre of the study region, closely
corresponding to the central business areas of Waterloo, Kitchener, and Cambridge, as well as in areas
towards the periphery of the study region in the east and south (Figure 1A). Compared to observed
counts, expected counts were lower in central business areas but higher in areas adjacent to central
business areas (i.e., areas that have larger residential populations) (Figure 1B).
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Figure 1. Geographic distribution of (A) count of all police calls-for-service in 2011 and (B) expected
count of calls-for-service.

Temporally, calls-for-service were categorized into 12 time periods, each representing 2 hours of a
24 hour day (Table 2). Calls were highest during afternoon and evening hours and lowest in the early
morning (Figure 2). In total, there were 290,027 calls-for-service distributed over 9060 space-time units
(= 755 DAs × 12 time periods).

Table 2. Descriptive statistics for the temporal variation of calls-for-service. Note that 00:00 refers to
midnight and 12:00 refers to noon.

Time Period Mean Min. Max. Std. Dev.

00:00 to 01:59 29.81 0 1987 88.04
02:00 to 03:59 19.31 0 1229 57.86
04:00 to 05:59 10.80 0 850 36.14
06:00 to 07:59 18.22 0 2015 76.87
08:00 to 09:59 39.02 0 3951 155.97
10:00 to 11:59 40.96 0 4310 164.22
12:00 to 13:39 38.87 0 5035 190.14
14:00 to 15:59 44.77 0 5718 214.58
16:00 to 17:59 40.95 0 5718 215.58
18:00 to 19:59 36.01 0 5100 188.78
20:00 to 21:59 33.78 0 4195 156.10
22:00 to 23:59 31.98 0 2985 116.13

The spatial patterns of calls-for-service are shown in Figure 3 for 04:00–05:59 (Figure 3A), the
time period with the lowest observed count, and for 14:00–15:59 (Figure 3B), the time period with the
highest observed count. Compared to 14:00–15:59, there were fewer areas with high counts (>50) during
04:00–05:59 and high-count areas were located closer to the main transportation corridor connecting
Waterloo, Kitchener, and Cambridge. From 14:00 to 15:59, there were many more areas with high
call-for-service counts and these areas were geographically dispersed throughout the study region.
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4. Spatio-Temporal Modeling

Bayesian spatial and spatio-temporal models are often hierarchical with three levels [39]. In this
context, hierarchical is used to describe the structure of Bayesian models: the first level models the
observed data with a likelihood function (probability distribution) and specifies a process model that
includes spatial, temporal, and space-time random effects; the second level assigns prior distributions
for model parameters; and the third level specifies hyperpriors for parameters of second-level
prior distributions (e.g., variances). Prior distributions quantify researcher uncertainty in parameter
estimates and impose spatial and/or temporal structure for random effects parameters [30,49].

At the first level, call-for-service count for small-area i (1, . . . , 755) and time period t (1, . . . , 12) is
represented by Oit and sampled from a Poisson distribution (Equation (1)). The Poisson mean, µit, is
the product of expected call-for-service count (Eit) and relative risk (rit) (Equation (2)). Poisson models
are common in spatial and spatio-temporal analysis of count data at the small-area scale [50].

Oit ∼ Poisson(µit) (1)

µit = Eit × rit (2)
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Equation (3) decomposes relative risk into overall risk for the study region (α) and spatial,
temporal, and space-time random effects. This is the general nonparametric model structure used for
space-time analysis [44]. The parametric structure models space-time interaction by incorporating a
time covariate that assumes linearity [44,51]. Main spatial effects (ui + si) measure the spatial pattern
of calls-for-service and account for spatial autocorrelation and overdispersion [52]. Main temporal
effects (γt + φt) capture overall time trend for the study region. Space-time interaction (Ψit) measures
departures from main spatial and main temporal effects.

log(µit) = log(Eit) + α + ui + si + γt + φt +Ψit (3)

4.1. Prior Distributions

A vague prior of a normal distribution with mean 0 and variance 1000 was specified for α.
Vague priors provide little information and let the observed data dominate posterior estimates.
The prior for unstructured spatial effects (ui) was a normal distribution with mean zero and variance
σ2

u (Equation (4a)). Spatially structured random effects (si) detect spatial autocorrelation and were
assigned an intrinsic conditional autoregressive (ICAR) prior distribution, with spatial adjacency
matrix W and variance σ2

s (Equation (4b)). For reference, W is a symmetrical matrix where adjacency
for a given small area includes all small areas sharing a vertex. ICAR is a common prior distribution
for spatial random effects parameters, where the expected mean of si is equal to the mean of adjacent
si’s [29,52,53]. The variance of si is controlled by σ2

s and is inversely proportional to the number of
neighbors of area i. Note that the ICAR prior imposes spatial structure.

ui ∼ Normal(0, σ2
u) (4a)

si ∼ ICAR(W, σ2
s) (4b)

Unstructured temporal effects (γt) were assigned a prior of a normal distribution with mean
zero and variance σ2

γ (Equation (5a)). Similar to si, the prior distribution for structured temporal
effects (φt) was an ICAR process with temporal weight matrix P and variance σ2

φ, where φt borrows
strength from adjacent time periods (Equation (5b)). This is analogous to the spatial ICAR model
(Equation (4a,b)). Alternative priors where temporal adjacency is conditional only on previous
time periods are available [54,55], however ICAR was considered suitable in this context because
calls-for-service at time t should be correlated with incidents at both t − 1 and t + 1 [18].

γt ∼ Normal(0, σ2
γ) (5a)

φt ∼ ICAR(P, σ2
φ) (5b)

Without prior information regarding residual space-time structure, we tested four prior
distributions for Ψit. Each imposes different assumptions regarding spatial and/or temporal
structure [44]. Testing many types of space-time interaction would generally be prohibitively time
consuming using MCMC-based algorithms, however INLA enables efficient analysis and model
checking of multiple prior distributions.

Type I space-time interaction assumes that Ψit for each space-time unit is exchangeable and
independently and identically distributed (i.e., ui and γt interact, as shown in Equation (3)). This type
of space-time interaction is suitable in the case that residual space-time patterns in calls-for-service
for a given space-time unit of analysis are not correlated with adjacent areas or times. Type II
interaction is composed of spatially unstructured but temporally structured effects, assuming that
small-area incident risk is similar over time but independent in space such that adjacent areas do not
have similar patterns of calls-for-service (i.e., ui and φt interact). Type III interaction is composed
of spatially structured but temporally unstructured effects and assumes that small-area incident
risk exhibits spatial autocorrelation for each time period but are independent in time (i.e., si and γt
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interact). Type IV space-time interaction captures both spatial and temporal structure and assumes
that calls-for-service for a space-time unit of analysis are both spatially and temporally correlated
(i.e., si and φt interact) [40,44]. This specification is reasonable when the trend of calls-for-service for
one area is similar over time and geographically adjacent areas exhibit similar trends. The variance
for all types of Ψit is controlled by σ2

Ψ. Further details regarding the assumptions and modeling of
inseparable space-time interaction can be found in Knorr-Held [44].

4.2. Hyperprior Distributions

The third level of this Bayesian hierarchical model specifies prior distributions for variance
parameters of second-level prior distributions. These are referred to as hyperprior distributions.
All precision parameters (the reciprocal of variance) were assigned a vague Gamma(0.5, 0.0005)
distribution [56]. All models were tested with hyperprior distributions of Gamma(0.001, 0.001) to
ensure that results were not sensitive to hyperprior specification.

4.3. Model Implementation and Goodness-of-Fit

Modeling was completed in R using the R-INLA package [43] and results were exported and
mapped in Quantum GIS 2.14. The Deviance Information Criterion (DIC) was used to assess model
fit [57]. Broadly, DIC is a Bayesian analogue of the Akaike Information Criterion and balances model
goodness-of-fit and complexity [58]. Smaller DIC values by at least five units indicate superior model
fit [57]. DIC is shown in Equation (6), where D is the mean deviance and pD is effective number of
parameters, or the mean deviance (D) minus the deviance evaluated at the posterior estimated values
(D̂) (Equation (7)). Of note, highly correlated parameters (i.e., space, time or space-time random effects)
are often counted as less than one “effective parameter” in DIC calculations [59].

DIC = D + pD (6)

pD = D − D̂ (7)

5. Results

DIC values and the number of effective parameters (pD) for the four spatio-temporal models
testing space-time interaction are shown in Table 3. Note that DIC values from the models testing
Type I, II, III, and IV space-time interaction do not exhibit extreme differences. This can be attributed to
all models taking the form shown in Equation (3), but differing with respect to the prior distributions
of the space-time interaction parameters.

Table 3. Deviance Information Criterion (DIC) values for models with Type I, II, III, and IV
space-time interaction.

Space-Time Interaction Interaction Parameters DIC pD

Type I ui and γt 54,099 5010
Type II ui and φt 53,630 4556
Type III si and γt 53,997 4678
Type IV si and φt 53,470 4311

The model analyzing Type IV space-time interaction had the lowest DIC and is identified as the
best fitting model. The degree to which spatial, temporal, and spatio-temporal structures influence
posterior parameter estimates can be observed by comparing the effective number of parameters (pD)
and the number of data points analyzed (i.e., 755 DAs × 12 time periods = 9060). In this research, pD is
small relative to the number of data points, indicating that there is considerable spatial and temporal
autocorrelation of calls-for-service in the dataset [39].
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Each parameter in Equation (3) can be individually visualized using model decomposition [60].
Because this research applies a Poisson log-linear model, we take the natural logarithm of model
parameters to estimate relative risk due to main temporal effects (= exp(γt + ]φt)), main spatial effects
(= exp(ui + si)), and space-time interaction (= exp(Ψit)). For interpretation, main effects and space-time
interaction values greater than 1 can be considered to have higher than average spatial/temporal or
space-time risk. Posterior means and associated 95% credible intervals (CI) are reported. 95% CIs are
the interval in which the posterior mean has a 95% probability of occurring.

5.1. Main Temporal Effects

Main temporal effects are shown in Figure 4 and were lowest in the early morning between 02:00
and 03:59 (0.918, 95% CI: 0.894, 0.942) and highest in the evening between 20:00 and 21:59 (1.047,
95% CI: 1.025, 1.071). There was an increasing trend from early morning to the middle of the day,
peaking at 10:00–11:59 (1.045, 95% CI: 1.024, 1.068), followed by a decrease at 12:00–13:59 and a gradual
increasing trend through the evening. This temporal pattern is noticeably different from the observed
data, where the highest number of calls-for-service occurred between 14:00 and 15:59. This can be
attributed to the ICAR smoothing imposed on φt as well as the simultaneous analysis of spatial
variation of calls-for-service.
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5.2. Main Spatial Effects

Main spatial effects of calls-for-service are shown in Figure 5. In general, main spatial effects were
highest in central areas of the study region and lowest in peripheral and rural areas, particularly in the
northwest. The highest spatial risk was found in Area A (1113.06, 95% CI: 781.77, 1551.25) which is
likely due to a residential population considerably smaller than all other areas, and consequently, a
low expected calls-for-service count (Figure 5). This is a limitation of using residential population to
calculate expected counts. Area B had the second highest spatial risk of 284.76 (95% CI: 204.93, 388.51).
The characteristics of Areas B, C, and D are relevant to understanding the geographic distribution of
police calls-for-service and are discussed below.
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5.3. Space-Time Interaction

Space-time interaction and space-time hotspots for 10:00–11:59 and 20:00–21:59 are shown in
Figures 6 and 7, respectively. These time periods were chosen because they correspond to the highest
main temporal effects (Figure 4) and demonstrate the geographic variability in space-time interaction
throughout the course of a day. Space-time hotspots were identified by monitoring the posterior
probability (PP) that exp(Ψit) is greater than 1. PP can be interpreted as the Bayesian equivalent of
a p-value [61]. The closer PP is to 1, the stronger the evidence that areas are space-time hotspots.
Compared with the point estimate (i.e., posterior mean) of space-time interaction (Ψit), PP is a more
robust indicator for detecting hotspots since it accounts for the variance/uncertainty of Ψit and makes
use of the full posterior probability distribution of Ψit, potentially minimizing the probability of
detecting false hotspots [53].
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6. Discussion

Results of this analysis help to understand spatial, temporal, and spatio-temporal law enforcement
resource demand and provide a starting point for more detailed inquiry focused on possible
explanations for space-time patterns. Providing context for the interpretation of results is the routine
activity theory, which hypothesizes that crime offenses result from the convergence of motivated
offenders, suitable targets, and a lack of capable guardianship in time and space [62]. While the
routine activity theory was originally proposed to explain crime offenses, it has been used extensively
to analyze call-for-service data because it provides a theoretical lens to interpret spatio-temporal
fluctuations in police data as a function of population-level movement patterns as well as small-area
land-use characteristics [63]. It should be noted that the types and quantities of police resources
required when responding to different classes of calls-for-service varies and that this is one limitation
of analyzing aggregated call-for-service data.

6.1. Interpreting Results of Spatio-Temporal Analysis

Main temporal effects of police calls-for-service are representative of the general shifts in resource
demand throughout the course of a day and can, for example, be used to interpret overall staffing
requirements. As shown in Figure 4, the main temporal effect peaks at two time periods, between 10:00
and 11:59 and between 20:00 and 21:59. Despite similar main temporal effects, the compositions of
calls-for-service for these time periods were distinct. For example, there were a total of 1843 reported
motor vehicle collisions during 10:00–11:59 compared to 767 during 20:00–21:59. Similarly, during
20:00–21:59 there were 1447 bylaw complaints compared to 495 during 10:00–11:59. Applied to police
resource allocation, dispatch staffing should peak at these two time periods, however, higher levels of
police units capable of responding to motor vehicle collisions should be staffed during 10:00–11:59 and
higher levels of bylaw enforcement should be staffed during 20:00–21:59.

Main spatial effects highlight the general spatial pattern of police calls-for-service. Areas with
high spatial effects have consistently high numbers of calls-for-service and are areas where police
resources should be directed for all time periods. Exploring the characteristics of Areas B, C, and D
provides insight into reasons these areas may have high spatial effects. The study region’s largest
shopping centre and a major transit node are located in Area B and frequently occurring incidents in
this area were motor vehicle stops (1108), minor motor vehicle collisions (187), and traffic enforcement
(169). Area C contains a large university and student housing and incidents were largely composed of
lost or damaged property (1257), general emergency calls (220), and small theft (372). Area D contains
a major highway that transects the study region and calls-for-service in this area were dominated by
emergency calls (38,173), incidents recorded as part of routine detail (750), and vehicle stops (459).
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Space-time interaction estimates area-specific departures from main spatial and main temporal
effects [44] and indicates if additional resources are needed for specific areas apart from baseline
spatial and temporal resource allocations. For 10:00–11:59, there were no areas with exp(Ψit) > 1.5 and
areas with moderate space-time interaction were dispersed throughout the study region (Figure 6A).
In comparison, during 20:00–21:59, there were 63 areas with exp(Ψit) > 1.5 and these areas were
concentrated in and around central business areas (Figure 7A). This may be explained by the
shifting patterns of routine activities of residents [62]: daytime employment and leisure activities
are geographically dispersed in urban, suburban, and rural areas of the study region, while central
business areas are where evening leisure activities are concentrated [64,65].

Space-time hotspots, identified by evaluating the posterior probability of exp(Ψit) > 1.0, are specific
areas that require additional law enforcement resources to handle high numbers of calls-for-service.
Posterior probability ranges from 0 to 1 and enables hotspot areas to be ranked based on the strength
that exp(Ψit) > 1.0. The three areas with greatest PP for 10:00–11:59 and 20:00–21:59 are shown in
Figures 6B and 7B (labelled as Areas 1, 2, and 3), respectively. During 10:00–11:59, space-time hotspots
were found to be concentrated in the central business area of Kitchener, but located close to a local
university during 20:00–21:59.

To further explore geographic variations in space-time interaction, we visualize space-time
interaction and space-time hotspots for 02:00–03:59 (Figure 8A,B, respectively). This time period had the
lowest main temporal effect (Figure 4). During this time period, space-time interaction was clustered
around central business areas and extended along the major commercial and transportation corridor in
the study region. While overall staffing may be lowest during this time period, calls-for-service were
geographically clustered so that resources can be targeted to specific high-demand areas.
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6.2. Modeling Bigger Spatio-Temporal Datasets with INLA

Bayesian analysis of spatio-temporal datasets via MCMC algorithms is computationally expensive
because they gradually alter posterior distributions and require researchers to monitor posterior
estimates and check convergence diagnostics [42]. INLA, in contrast, calculates posterior distributions
through numerical integration and does not require consistent monitoring of convergence. We
compared the time required to estimate Equation (3) with the simplest Type I space-time interaction on
an IBM ThinkPad with a 2.4 GHz processor and 12 gigabytes RAM. Using MCMC in WinBUGS, model
convergence required approximately 13 hours whereas INLA required approximately seven minutes.

While this research analyzes 9060 space-time units, the advantages of INLA modeling may be
more fully realized on bigger spatio-temporal datasets. When data are available for large spatial
and temporal extents, INLA spatio-temporal models may be applied to analyze small-area data for a
country (e.g., Canada was composed of 56,204 DAs in 2011) over many years to identify generalizable,
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regional, and neighbourhood-specific patterns in calls-for-service. When spatio-temporal point data
are available, INLA can be extended via stochastic differential partial equation (SPDE) modeling [40].

7. Conclusions

The implementation of computer-aided-dispatch systems in law enforcement has led to the
increasing availability of call-for-service datasets with both spatial and temporal information. These
datasets have facilitated the growth of crime mapping, however past research has infrequently
considered spatial and temporal patterns simultaneously. Space-time analysis requires methods
that can identify spatial and temporal patterns, as well as space-time interaction, and account for both
local spatial autocorrelation and temporal autocorrelation.

This research applied a Bayesian spatio-temporal modeling approach implemented via INLA to
identify spatial, temporal, and space-time patterns of calls-for-service for two-hour time periods at
the small-area level. Results were interpreted through the routine activity theory, which focuses on
population-level activity patterns in both space and time. It was shown that main temporal effects of
calls-for-service peaked between 20:00 and 21:59 and were lowest between 02:00 and 03:59. Purely
spatial call-for-service patterns showed high risk in central business areas and in areas with highways,
a local university, and a regional shopping centre. Space-time interaction estimates departures from
main spatial and temporal patterns and enables the identification of space-time hotspots, or areas with
high posterior probability of exhibiting space-time interaction greater than 1. During daytime hours
(10:00–11:59), space-time hotspots were dispersed throughout the study region but during evening
(20:00–21:59) and early morning time periods (02:00–03:59) space-time hotspots were clustered in
downtown areas and close to a local university.

One limitation of this research is that expected call-for-service counts were calculated using
residential population. Recent research has shown that alternative measures of population (i.e., the
denominator in crime rate calculations) may influence the results and interpretation of spatial analyses
of crime [66]. Future research may consider including alternative measures to population, such as
ambient populations, workday or commuting populations, or populations estimated via social media
data [67]. A second limitation of this research is that we only consider the routine activity theory
and that there are a variety of additional theoretical perspectives and covariates not included. Future
studies analyzing a specific call-for-service type should include covariates such as neighbourhood
socioeconomic status, local land-use composition, and police perception, particularly if analyzing
specific types of calls-for-service [6,68]. Analysis of specific call types may also provide more details
regarding the types and quantities of law enforcement resources required.

Future research analyzing spatio-temporal datasets should consider analyzing service time (i.e.,
hours of law enforcement resources) to better understand overall resource allocation and match
call-for-service data to service time to quantify the resources required by different call types. While this
research described the spatial, temporal, and residual spatio-temporal patterns of crime, small-area
risk factors were not included. Future research should explore associations between neighbourhood
characteristics and calls-for-service by extending this spatio-temporal model to include covariates and
consider analyzing point data to highlight specific addresses or intersections where calls-for-service
exhibit high clustering [62]. It would also be advantageous to analyze hourly patterns in context of
daily, monthly, and seasonal patterns, which may be suited for a multilevel spatio-temporal modeling
approach. Finally, future research may adapt the presented spatio-temporal Bayesian model for
probabilistic forecasts [69,70].
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Supplementary Materials: R code for INLA models, spatial and temporal adjacency graph files, call-for-service
data, Region of Waterloo shapefile.

Acknowledgments: The authors thank the Waterloo Regional Police Service for providing calls-for-service
data. This research was supported by the Social Sciences and Humanities Resource Council of Canada Grant
767-2013-1540. Hui Luan is grateful to the Chinese Scholarship Council (CSC) for supporting his doctoral research
at the University of Waterloo.

Author Contributions: Hui Luan, Matthew Quick and Jane Law conceived of the study. Hui Luan performed
statistical analysis and contributed to writing. Matthew Quick prepared data, contributed to writing, and prepared
figures. Jane Law provided feedback on analysis and edited the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CI Credible Interval
DA Dissemination Area
DIC Deviance Information Criterion
(I)CAR (Intrinsic) Conditional Autoregressive
MCMC Markov Chain Monte Carlo
INLA Integrated Nested Laplace Approximation
PP Posterior Probability

References

1. Chan, J.B.L. The technological game: How information technology is transforming police practice.
Criminol. Crim. Justice 2001, 1, 139–159. [CrossRef]

2. Sanders, C.B.; Hannem, S. Policing “the risky”: Technology and surveillance in everyday patrol work.
Can. Rev. Sociol. 2012, 49, 389–410. [CrossRef]

3. Manning, P.K. Information technologies and the police. Crime Justice 1992, 15, 349–398. [CrossRef]
4. Bursik, R.J.; Grasmick, H.G. The use of multiple indicators to estimate crime trends in American cities.

J. Crim. Justice 1993, 21, 509–516. [CrossRef]
5. Manning, P.K. Technology’s ways: Information technology, crime analysis and the rationalizing of policing.

Criminol. Crim. Justice 2001, 1, 83–103. [CrossRef]
6. Klinger, D.A.; Bridges, G.S. Measurement error in calls-for-service as an indicator of crime. Criminology 1997,

35, 705–726. [CrossRef]
7. Quick, M.; Law, J. Exploring hotspots of drug offences in Toronto: A comparison of four local spatial cluster

detection methods. Can. J. Criminol. Crim. Justice 2013, 55, 215–238. [CrossRef]
8. Craglia, M.; Haining, R.; Wiles, P. A comparative evaluation of approaches to urban crime pattern analysis.

Urban Stud. 2000, 37, 711–729. [CrossRef]
9. Murray, A.T.; Mcguffog, I.; Western, J.S.; Mullins, P. Exploratory spatial data analysis techniques for

examining urban crime. Br. J. Criminol. 2001, 41, 309–329. [CrossRef]
10. Ceccato, V. Homicide in São Paulo, Brazil: Assessing spatial-temporal and weather variations.

J. Environ. Psychol. 2005, 25, 307–321. [CrossRef]
11. Nakaya, T.; Yano, K. Visualising crime clusters in a space-time cube: An exploratory data-analysis approach

using space-time kernel density estimation and scan statistics. Trans. GIS 2010, 14, 223–239. [CrossRef]
12. Shiode, S. Street-level spatial scan statistic and STAC for analysing street crime concentrations. Trans. GIS

2011, 15, 365–383. [CrossRef]
13. Andresen, M.A. Testing for similarity in area-based spatial patterns: A nonparametric Monte Carlo approach.

Appl. Geogr. 2009, 29, 333–345. [CrossRef]
14. Weisburd, D.; Bushway, S.; Lum, C.; Yang, S.-M. Trajectories of crime at places: A longintudinal study of

street segments in the city of Seattle. Criminology 2004, 42, 283–321. [CrossRef]
15. Groff, E.R.; Weisburd, D.; Yang, S.-M. Is it important to examine crime trends at a local “Micro” level?

A longitudinal analysis of street to street variability in crime trajectories. J. Quant. Criminol. 2010, 26, 7–32.
[CrossRef]

16. Robertson, C.; Nelson, T.A.; MacNab, Y.C.; Lawson, A.B. Review of methods for space-time disease
surveillance. Spat. Spatiotemporal. Epidemiol. 2010, 1, 105–116. [CrossRef] [PubMed]

http://dx.doi.org/10.1177/1466802501001002001
http://dx.doi.org/10.1111/j.1755-618X.2012.01300.x
http://dx.doi.org/10.1086/449197
http://dx.doi.org/10.1016/0047-2352(93)90035-L
http://dx.doi.org/10.1177/1466802501001001005
http://dx.doi.org/10.1111/j.1745-9125.1997.tb01236.x
http://dx.doi.org/10.3138/cjccj.2012.E13
http://dx.doi.org/10.1080/00420980050003982
http://dx.doi.org/10.1093/bjc/41.2.309
http://dx.doi.org/10.1016/j.jenvp.2005.07.002
http://dx.doi.org/10.1111/j.1467-9671.2010.01194.x
http://dx.doi.org/10.1111/j.1467-9671.2011.01255.x
http://dx.doi.org/10.1016/j.apgeog.2008.12.004
http://dx.doi.org/10.1111/j.1745-9125.2004.tb00521.x
http://dx.doi.org/10.1007/s10940-009-9081-y
http://dx.doi.org/10.1016/j.sste.2009.12.001
http://www.ncbi.nlm.nih.gov/pubmed/22749467


ISPRS Int. J. Geo-Inf. 2016, 5, 162 14 of 16

17. Grubesic, T.H.; MacK, E.A. Spatio-temporal interaction of urban crime. J. Quant. Criminol. 2008, 24, 285–306.
[CrossRef]

18. Rey, S.J.; Mack, E.A.; Koschinsky, J. Exploratory space-time analysis of burglary patterns. J. Quant. Criminol.
2012, 28, 509–531. [CrossRef]

19. Warner, B.D.; Pierce, G.L. Reexamining social disorganization theory using calls to the police as a measure of
crime. Criminology 1993, 31, 493–517. [CrossRef]

20. Craglia, M.; Haining, R.; Signoretta, P. Modelling high-intensity crime areas in english cities. Urban Stud.
2001, 38, 1921–1941. [CrossRef]

21. McCord, E.S.; Ratcliffe, J.H. A micro-spatial analysis of the demographic and criminogenic environment of
drug markets in Philadelphia. Aust. N. Z. J. Criminol. 2007, 40, 43–63. [CrossRef]

22. Braga, A.A.; Bond, B.J. Policing crime and disorder hotspots: A randomized controlled trial. Criminology
2008, 46, 577–607. [CrossRef]

23. Marshall, R.J. A review of methods for the statistical analysis of spatial patterns of disease. J. R. Stat. Soc. Ser.
A Stat. Soc. 1991, 154, 421–441. [CrossRef]

24. Johnson, S.D.; Bowers, K.J. The stability of space-time clusters of burglary. Br. J. Criminol. 2004, 44, 55–65.
[CrossRef]

25. Mburu, L.; Helbich, M. Communities as neighborhood guardians: A spatio-temporal analysis of community
policing in nairobi’s suburbs. Appl. Spat. Anal. Policy 2015, 1–22. [CrossRef]

26. Li, S.; Dragicevic, S.; Castro, F.A.; Sester, M.; Winter, S.; Coltekin, A.; Pettit, C.; Jiang, B.; Haworth, J.;
Stein, A.; et al. Geospatial big data handling theory and methods: A review and research challenges. ISPRS J.
Photogramm. Remote Sens. 2015, 115, 119–133. [CrossRef]

27. Chun, Y. Analyzing space-time crime incidents using eigenvector spatial filtering: An application to vehicle
burglary. Geogr. Anal. 2014, 46, 165–184. [CrossRef]

28. Blangiardo, M.; Cameletti, M.; Baio, G.; Rue, H. Spatial and spatio-temporal models with R-INLA.
Spat. Spatiotemporal. Epidemiol. 2013, 7, 39–55. [CrossRef] [PubMed]

29. Besag, J.; York, J.; Mollie, A. Bayesian image restoration, with two applications in spatial statistics. Ann. Inst.
Stat. Math. 1991, 43, 1–20. [CrossRef]

30. Congdon, P. Monitoring suicide mortality: A bayesian approach. Eur. J. Popul. 2000, 16, 251–284. [CrossRef]
31. Gruenewald, P.J.; Ponicki, W.R.; Remer, L.G.; Waller, L.A.; Zhu, L.; Gorman, D.M. Mapping the spread of

methamphetamine abuse in california from 1995 to 2008. Am. J. Public Health 2013, 103, 1262–1270. [CrossRef]
[PubMed]

32. Cerda, M.; Messner, S.F.; Tracy, M.; Vlahov, D.; Goldmann, E.; Tardiff, K.J.; Galea, S. Investigating the effect
of social changes on age-specific gun-related homicide rates in New York City during the 1990s. Am. J.
Public Health 2010, 100, 1107–1115. [CrossRef] [PubMed]

33. Luan, H.; Law, J.; Quick, M. Identifying food deserts and swamps based on relative healthy food access:
A spatio-temporal Bayesian approach. Int. J. Health Geogr. 2015, 14, 37. [CrossRef] [PubMed]

34. Zhu, L.; Waller, L.A.; Ma, J. Spatial-temporal disease mapping of illicit drug abuse or dependence in the
presence of misaligned ZIP codes. GeoJournal 2013, 78, 463–474. [CrossRef] [PubMed]

35. Law, J.; Quick, M.; Chan, P. Bayesian spatio-temporal modeling for analysing local patterns of crime over
time at the small-area level. J. Quant. Criminol. 2013, 30, 57–78. [CrossRef]

36. Quick, M.; Law, J.; Luan, H. The Influence of on-premise and off-premise alcohol outlets on reported violent
crime in the region of Waterloo, Ontario: Applying Bayesian spatial modeling to inform land use planning
and policy. Appl. Spat. Anal. Policy 2016. [CrossRef]

37. Richardson, S.; Abellan, J.J.; Best, N. Bayesian spatio-temporal analysis of joint patterns of male and female
lung cancer risks in Yorkshire (UK). Stat. Methods Med. Res. 2006, 15, 385–407. [CrossRef] [PubMed]

38. Abellan, J.J.; Richardson, S.; Best, N. Use of space time models to investigate the stability of patterns of
disease. Environ. Health Perspect. 2008, 116, 1111–1119. [CrossRef] [PubMed]

39. Best, N.; Richardson, S.; Thomson, A. A comparison of Bayesian spatial models for disease mapping.
Stat. Methods Med. Res. 2005, 14, 35–59. [CrossRef] [PubMed]

40. Blangiardo, M.; Cameletti, M. Spatial and Spatio-Temporal Bayesian Models with R-INLA; John Wiley & Sons:
West Sussex, UK, 2015.

41. Banerjee, S.; Carlin, B.P.; Gelfand, A.E. Hierarchical Modeling and Analysis for Spatial Data, 2nd ed.; CRC Press:
Boca Raton, FL, USA, 2014.

http://dx.doi.org/10.1007/s10940-008-9047-5
http://dx.doi.org/10.1007/s10940-011-9151-9
http://dx.doi.org/10.1111/j.1745-9125.1993.tb01139.x
http://dx.doi.org/10.1080/00420980120080853
http://dx.doi.org/10.1375/acri.40.1.43
http://dx.doi.org/10.1111/j.1745-9125.2008.00124.x
http://dx.doi.org/10.2307/2983152
http://dx.doi.org/10.1093/bjc/44.1.55
http://dx.doi.org/10.1007/s12061-015-9178-7
http://dx.doi.org/10.1016/j.isprsjprs.2015.10.012
http://dx.doi.org/10.1111/gean.12034
http://dx.doi.org/10.1016/j.sste.2013.07.003
http://www.ncbi.nlm.nih.gov/pubmed/24377114
http://dx.doi.org/10.1007/BF00116466
http://dx.doi.org/10.1023/A:1026587810551
http://dx.doi.org/10.2105/AJPH.2012.300779
http://www.ncbi.nlm.nih.gov/pubmed/23078474
http://dx.doi.org/10.2105/AJPH.2008.158238
http://www.ncbi.nlm.nih.gov/pubmed/20395590
http://dx.doi.org/10.1186/s12942-015-0030-8
http://www.ncbi.nlm.nih.gov/pubmed/26714645
http://dx.doi.org/10.1007/s10708-011-9429-3
http://www.ncbi.nlm.nih.gov/pubmed/23898219
http://dx.doi.org/10.1007/s10940-013-9194-1
http://dx.doi.org/10.1007/s12061-016-9191-5
http://dx.doi.org/10.1191/0962280206sm458oa
http://www.ncbi.nlm.nih.gov/pubmed/16886738
http://dx.doi.org/10.1289/ehp.10814
http://www.ncbi.nlm.nih.gov/pubmed/18709143
http://dx.doi.org/10.1191/0962280205sm388oa
http://www.ncbi.nlm.nih.gov/pubmed/15690999


ISPRS Int. J. Geo-Inf. 2016, 5, 162 15 of 16

42. Carroll, R.; Lawson, A.B.; Faes, C.; Kirby, R.S.; Aregay, M.; Watjou, K. Comparing INLA and OpenBUGS
for hierarchical Poisson modeling in disease mapping. Spat. Spatiotemporal. Epidemiol. 2015, 14–15, 45–54.
[CrossRef] [PubMed]

43. Rue, H.; Martino, S. Approximate Bayesian inference for latent Gaussian models by using integrated nested
Laplace approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 2009, 71, 319–392. [CrossRef]

44. Knorr-Held, L. Bayesian modelling of inseparable space-time variation in disease risk. Stat. Med. 1999, 19,
2555–2567. [CrossRef]

45. Felson, M.; Poulsen, E. Simple indicators of crime by time of day. Int. J. Forecast. 2003, 19, 595–601. [CrossRef]
46. Statistics Canada Dissemination Area (DA). Available online: http://www12.statcan.gc.ca/census-

recensement/2011/ref/dict/geo021-eng.cfm (accessed on 17 April 2015).
47. Skogan, W.G. Efficiency and effectiveness in big-city police departments. Public Adm. Rev. 1976, 36, 278–286.

[CrossRef]
48. Waterloo Regional Police Service Appendix C: WRPS 9000 Call Types. Available online: http://www.wrps.

on.ca/inside-wrps/corporate-planning-systems (accessed on 6 April 2016).
49. Law, J.; Chan, P.W. Monitoring residual spatial patterns using Bayesian hierarchical spatial modelling for

exploring unknown risk factors. Trans. GIS 2011, 15, 521–540. [CrossRef]
50. Lawson, A.B. Bayesian Disease Mapping: Hierarchical Modelling in Spatial Epidemiology, 1st ed.; CRC Press:

Boca Raton, FL, USA, 2009.
51. Bernardinelli, L.; Clayton, D.; Pascutto, C.; Montomoli, C.; Ghislandi, M.; Songini, M. Bayesian analysis of

space-time variation in disease risk. Stat. Med. 1995, 14, 2433–2443. [CrossRef] [PubMed]
52. Haining, R.; Law, J.; Griffith, D. Modelling small area counts in the presence of overdispersion and spatial

autocorrelation. Comput. Stat. Data Anal. 2009, 53, 2923–2937. [CrossRef]
53. Richardson, S.; Thomson, A.; Best, N.; Elliott, P. Interpreting posterior relative risk estimates in

disease-mapping studies. Environ. Health Perspect. 2004, 112, 1016–1025. [CrossRef] [PubMed]
54. Schrodle, B.; Held, L. Spatio-temporal disease mapping using INLA. Environmetrics 2011, 22, 725–734.

[CrossRef]
55. Choi, J.; Lawson, A.B.; Cai, B.; Hossain, M.M. Evaluation of Bayesian spatiotemporal latent models in small

area health data. Environmetrics 2011, 22, 1008–1022. [CrossRef] [PubMed]
56. Kelsall, J.E.; Wakefield, J.C. Discussion of: Best, N.G.; Arnold, R.A.; Thomas, A.; Waller, L.A.; Conlon, E.M.

Bayesian models for spatially correlated disease and exposure data. In Bayesian Statistics 6; Bernardo, J.M.,
Berger, J.O., Dawid, A.P., Eds.; Oxford University Press: Oxford, UK, 1999; pp. 131–156.

57. Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; van der Linde, A. Bayesian measures of model complexity and fit.
J. R. Stat. Soc. Ser. B Stat. Methodol. 2002, 64, 583–616. [CrossRef]

58. Congdon, P. Applied Bayesian Modelling, 2nd ed.; Wiley & Sons: West Sussex, UK, 2014.
59. Cowles, M.K. Model comparison, model checking, and hypothesis testing. In Applied Bayesian Statistics:

With R and OpenBUGS Examples; Springer Texts in Statistics; Springer New York: New York, NY, USA, 2013;
pp. 207–224.

60. Law, J.; Haining, R. A Bayesian approach to modeling binary data: The case of high-intensity crime areas.
Geogr. Anal. 2004, 36, 197–216. [CrossRef]

61. Meng, C.Y.K.; Dempster, A.P. A Bayesian approach to the multiplicity problem for significance testing with
binomial data. Biometrics 1987, 43, 301–311. [CrossRef] [PubMed]

62. Cohen, L.E.; Felson, M. Social change and crime rate trends: A routine activity approach. Am. Sociol. Rev.
1979, 44, 588–608. [CrossRef]

63. Sherman, L.W.; Gartin, P.R.; Buerger, M.E. Hot spots of predatory crime: Routine activities and the
criminology of place. Criminology 1989, 27, 27–56. [CrossRef]

64. Brantingham, P.J.; Brantingham, P.L. Crime pattern theory. In Environmental Criminology and Crime Analysis;
Willan Publishing: Portland, OR, USA, 2008; pp. 78–93.

65. Groff, E.R.; Lockwood, B. Criminogenic facilities and crime across street segments in Philadelphia:
Uncovering evidence about the spatial extent of facility influence. J. Res. Crime Delinq. 2014, 51, 277–314.
[CrossRef]

66. Malleson, N.; Andresen, M.A. The impact of using social media data in crime rate calculations: Shifting hot
spots and changing spatial patterns. Cartogr. Geogr. Inf. Sci. 2015, 42, 112–121. [CrossRef]

http://dx.doi.org/10.1016/j.sste.2015.08.001
http://www.ncbi.nlm.nih.gov/pubmed/26530822
http://dx.doi.org/10.1111/j.1467-9868.2008.00700.x
http://dx.doi.org/10.1002/1097-0258(20000915/30)19:17/18&lt;2555::AID-SIM587&gt;3.0.CO;2-
http://dx.doi.org/10.1016/S0169-2070(03)00093-1
http://www12.statcan.gc.ca/census-recensement/2011/ref/dict/geo021-eng.cfm
http://www12.statcan.gc.ca/census-recensement/2011/ref/dict/geo021-eng.cfm
http://dx.doi.org/10.2307/974585
http://www.wrps.on.ca/inside-wrps/corporate-planning-systems
http://www.wrps.on.ca/inside-wrps/corporate-planning-systems
http://dx.doi.org/10.1111/j.1467-9671.2011.01276.x
http://dx.doi.org/10.1002/sim.4780142112
http://www.ncbi.nlm.nih.gov/pubmed/8711279
http://dx.doi.org/10.1016/j.csda.2008.08.014
http://dx.doi.org/10.1289/ehp.6740
http://www.ncbi.nlm.nih.gov/pubmed/15198922
http://dx.doi.org/10.1002/env.1065
http://dx.doi.org/10.1002/env.1127
http://www.ncbi.nlm.nih.gov/pubmed/22184483
http://dx.doi.org/10.1111/1467-9868.00353
http://dx.doi.org/10.1111/j.1538-4632.2004.tb01132.x
http://dx.doi.org/10.2307/2531814
http://www.ncbi.nlm.nih.gov/pubmed/3607202
http://dx.doi.org/10.2307/2094589
http://dx.doi.org/10.1111/j.1745-9125.1989.tb00862.x
http://dx.doi.org/10.1177/0022427813512494
http://dx.doi.org/10.1080/15230406.2014.905756


ISPRS Int. J. Geo-Inf. 2016, 5, 162 16 of 16

67. Malleson, N.; Andresen, M.A. Exploring the impact of ambient population measures on London crime
hotspots. J. Crim. Justice 2016, 46, 52–63. [CrossRef]

68. Hagan, J.; Gillis, A.R.; Chan, J. Explaining official delinquency: A spatial study of class, conflict, and control.
Sociol. Q. 1978, 19, 286–398. [CrossRef]

69. Cohen, J.; Gorr, W.L.; Olligschlaeger, A.M. Leading indicators and spatial interactions: A crime-forecasting
model for proactive police deployment. Geogr. Anal. 2007, 39, 105–127. [CrossRef]

70. Fitterer, J.L.; Nelson, T.A. A review of the statistical and quantitative methods used to study
alcohol-attributable crime. PLoS ONE 2015, 10, 1–24. [CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jcrimjus.2016.03.002
http://dx.doi.org/10.1111/j.1533-8525.1978.tb01183.x
http://dx.doi.org/10.1111/j.1538-4632.2006.00697.x
http://dx.doi.org/10.1371/journal.pone.0139344
http://www.ncbi.nlm.nih.gov/pubmed/26418016
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Region 
	Police Call-for-Service Data 
	Spatio-Temporal Modeling 
	Prior Distributions 
	Hyperprior Distributions 
	Model Implementation and Goodness-of-Fit 

	Results 
	Main Temporal Effects 
	Main Spatial Effects 
	Space-Time Interaction 

	Discussion 
	Interpreting Results of Spatio-Temporal Analysis 
	Modeling Bigger Spatio-Temporal Datasets with INLA 

	Conclusions 

