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Abstract: Landsat is a fundamental data source for understanding historical change and its effect on
environmental processes. In this research we test shallow and deep convolution neural networks
(CNNs) for Landsat image super-resolution enhancement, trained using Sentinel-2, in three study
sites representing boreal forest, tundra, and cropland/woodland environments. The analysis sought
to assess baseline performance and determine the capacity for spatial and temporal extension of
the trained CNNs. This is not a data fusion approach and a high-resolution image is only needed
to train the CNN. Results show improvement with the deeper network generally achieving better
results. For spatial and temporal extension, the deep CNN performed the same or better than the
shallow CNN, but at greater computational cost. Results for temporal extension were influenced
by change potentiality reducing the performance difference between the shallow and deep CNN.
Visual examination revealed sharper images regarding land cover boundaries, linear features,
and within-cover textures. The results suggest that spatial enhancement of the Landsat archive
is feasible, with optimal performance where CNNs can be trained and applied within the same
spatial domain. Future research will assess the enhancement on time series and associated land
cover applications.

Keywords: super resolution; convolution neural network; Landsat; Sentinel-2

1. Introduction

High spatial and temporal resolution earth observation (EO) images are desirable for many remote
sensing applications, providing a finer depiction of spatial boundaries or timing of environmental
change. Landsat provides the longest record of moderate spatial resolution (30 m) data of the earth
from 1984 to present. It is currently a fundamental data source for understanding historical change and
its relation to carbon dynamics, hydrology, climate, air quality, biodiversity, wildlife demography, etc.
Landsat temporal coverage is sparse due to the 16-day repeat visit and cloud contamination. Several
studies have addressed this through time series modeling approaches [1–3]. Temporal enhancement
is a key requirement, but spatial enhancement is another aspect of Landsat that could be improved
for time series applications. Enhancement of spatial resolution has been carried out mostly based on
data fusion methods [4–7]. Studies have also shown that data fusion can lead to improvements in
quantitative remote sensing applications such as land cover [4,8,9]. Although effective, data fusion
techniques are limited by the requirement for coinstantaneous high-resolution observations. For more
recent sensors such as Landsat-8 and Sentinel-2 this requirement is met with the panchromatic band
and provides the greatest potential for spatial enhancement. However, for a consistent Landsat time
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series from 1985 to present, a method that will provide the same level of enhancement across sensors
is needed. For Landsat-5, a suitable high-resolution source is generally inadequate in space or time to
facilitate generation of an extensive spatially enhanced Landsat archive.

Numerous spatial resolution enhancement methods have been developed. However, recently,
deep learning convolution neural networks (CNNs) have been shown to outperform these, with large
improvements over bicubic and smaller gains over more advanced anchored neighborhood regression
approaches [10]. CNNs are a special form of neural network. The basic neural network is made up of
a collection of connected neurons with learnable weights and biases that are optimized through error
backpropagation [11]. The input is a vector, whereas the input to a convolution neural network is an
array or image. For each convolution layer, a set of weights are learned for a filter of size m × n × c
that is convolved over the image, where m and n are vertical and horizontal dimensions and c is the
input features to the convolution layer. Essentially, a convolution neural network can learn the optimal
set of filters to apply to an image for a specific image recognition task. Thus, one strategy has been to
use CNNs as feature extractors in remote sensing classification applications [12].

There has been significant development of CNNs for super-resolution enhancement with non-remote
sensing image benchmark databases such as CIFAR-100 [13] or ImageNet [14]. Dong et al. [10] developed
the Super-Resolution Convolutional Neural Network (SRCNN), which used small 2 and 4 layer CNNs
to show that the learned model performed better than other state of the art methods. Kim et al. [15,16]
developed two deep convolutional networks for super-resolution enhancement. The first was the
Deeply-Recursive Convolutional Network for Image Super Resolution (DRCN), which used recursive
or shared weights to reduce model parameters in a deep 20-layer network. The second was also a deep
20-layer network (Very Deep Super Resolution, VDSR), but introduced the concept of the residual
learning objective. In this approach, instead of learning the fine resolution image, the differences
between the fine and coarse resolution images are learned. This led to significant performance
gains over SRCNN. The mean squared error loss is widely used for CNN super-resolution training.
An interesting alternative was tested by Svoboda et al. [17] who used a gradient based learning
objective, where the mean squared error between spatial image gradients computed using the Sobel
operator was sought to be minimized. Performance by standard measures, however, were not
improved. Mao et al. [18] developed a deep encoder-decoder CNN with skip connections between
associated encode and decode layers. It achieved improved accuracy relative to SRCNN for both 20
and 30-layer versions. An ensemble based approach was tested in Wang et al. [19] and was found
to provide an improvement in accuracy. Other methods have focused on maintaining or improving
accuracy while reducing the total model parameters. The Efficient Sub-Pixel Convolutional Neural
Network (ESPCN) reduces computational and memory complexity, by increasing the resolution from
low to high only at the end of the network [20]. The DRCN approach [15] was extended to include
residual and dense connections by Tia et al. [21]. This provided a deep network with recursive layers
reducing the model parameters and achieving the best results for the assessment undertaken.

Residual connections in CNNs were introduced by He et al. [22] for image object recognition.
Residual connections force the next layer in the network to learn something different from the
previous layers and have been shown to alleviate the problem of deep learning models not improving
performance with depth. In addition to going deep, Zagoruyko and Komodakis [23] showed that
going wide can increase network performance for image recognition. More recently, Xie et al. [24]
developed wide residual bocks, which adds another dimension referred to as cardinality in addition
to network depth and width. The rate of new developments in network architectures is rapid with
incremental improvements in accuracy or reductions in model complexity and memory requirements.

For spatial enhancement of remote sensing imagery, much less research has been carried out
regarding the potential of CNNs. Only recently have results been presented by Collins et al. [25] who
applied networks similar to Dong et al. [10] for enhancement of the Advanced Wide Field Sensor
(AWiFS) using the Linear Imaging Self Scanner (LISS-III). Their study provides a good benchmark
for CNN performance because the two sensors have the same spectral bands and are temporally
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coincident. Results showed similar performance to other CNN based super-resolution studies for the
scaling ratio of 2.3 (56 m/24 m spatial resolution).

Advances in deep learning CNNs and the global availability of Sentinel-2 data provide a potential
option to generate an extensive spatially enhanced historical Landsat archive. Conceivably, a relatively
cloud free Landsat and Sentinel-2 image will be obtained within a suitable temporal window for most
locations across the globe. Thus, a consistent image pair suitable for training a Landsat super-resolution
transform may be obtained and could be locally optimized for this purpose following the approach
applied in Latifovic et al. [26]. However, for large area implementation, CNN performance across
a variety of landscapes needs to be evaluated in addition to temporal and spatial extension capacity.
Therefore, specific objectives of this research were to:

• Assesses the effectiveness of a shallow and deep CNN for super-resolution enhancement of
Landsat trained from Sentinel-2 data for characteristic landscape environments in Canada
including boreal forest, tundra, and cropland/woodland landscapes.

• Evaluate the potential for spatial extension over short distances of less than 100 km and temporal
extension of a trained CNN model.

2. Materials and Methods

2.1. Landsat and Sentinel-2 Datasets

For model development, Landsat-5, 8 and Sentinel-2 pairs for three study areas in Canada were
acquired. The study areas are shown in Figure 1 and included boreal forest, tundra, and cropland/
woodland ecosystems. These represent a range of ecosystem conditions found in Canada. If the
performance is acceptable across these three, it is likely that similar performance can be obtained across
the range of ecosystems found in Canada in non-complex terrain.
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Figure 1. Study site locations and Landsat scene footprints.

The date ranges of the training image pairs are given in Table 1. Landsat level 2 surface reflectance
collection 1 was acquired from the USGS. Sentinel-2 level-1C data was also acquired from the USGS
and converted to surface reflectance using the sen2cor algorithm version 2.3.1 (European Space
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Agency) [27]. Landsat-8 and Sentinel-2 have spatial misalignment that varies regionally depending
on ground control point quality [28]. It has been improved for collection 1 data in global priority
areas. More recent analysis shows that collection 1 Landsat-8 data within Canada (approximately
lower than 70 degrees latitude) has a horizontal root mean square error (RMSE) of less than 14 m [29].
The geolocation quality of all input images was checked by collecting control points and computing
the RMSE. For all scenes the RMSE was less than 10 m. The largest error was in the northern tundra
study site and areas within or close to cloud cover. This error was considered reasonable given the
expected operational geolocation accuracy and effective resolution of the spatial enhancement being
tested. Landsat data were resampled to 10 m resolution using the nearest neighbor approach. This was
selected to maintain spectral quality, allow the CNN to determine the optimal spatial weighting,
and speed local resampling for application to large images. All Landsat and Sentinel-2 scenes were
mosaiced and stacked together for analysis in each study site.

As identified in Latifovic et al. [30] and specified in the USGS documentation [31], atmosphere
correction can be problematic in the north above 64 degrees latitude. Our northern study area
was at approximately 64 degrees. However, this was not considered to be a problem as errors due
to atmosphere correction would be similar between the datasets and would not affect the relative
comparison of the methods.

Table 1. Landsat and Sentinel-2 images used for training and testing.

Region
Sentinel-2 Landsat-8 Landsat-5

Tile Reference Date Tile Reference Date Tile Reference Date

Boreal
T12VWH 8 7/19/2016 40_20 7/17/2016 42_20 7/31/1984
T12VVH 8 8/30/2016 42_20 7/15/2016 42_20 8/28/1997
T12VVJ 5 7/9/2017 42_21 8/30/2015 42_20 7/20/2011

Tundra
T17VML 5,8 8/14/2016 26_15 8/16/2016 26_15 8/1/1987

T17WMM 5,8 8/13/2016 26_15 8/4/1994
T17WMM 5,8 8/13/2016 26_15 7/15/2010

Cropland/Woodland
T18TVR 5,8 7/20/2016 15_29 8/19/2016 16_28 8/11/1987
T18TWR 5,8 7/20/2016 16_28 8/26/2016 16_28 7/3/2002

16_28 8/26/2016 16_28 8/2/2007

Tile reference for Landsat is Path_Row format. Superscripts for Sentinel-2 tiles denote which Landsat sensor was
used, 8 is Landsat-8 and 5 is Landsat 5.

2.2. Sampling and Assessment

For each study site a mask was manually developed for sampling to avoid clouds, shadows,
and land cover changes between the image mosaic pairs. However, in cropland environments the
26-day difference between the Landsat-8 and Sentinel-2 images made it impractical to manually define
areas suitable for training. Thus, for this study site an initial mask was developed, but refined by
calculating the change vector between images [32] and selecting a conservative threshold to avoid
including cropland change in the training. The local variance within sample windows of 33 by
33 pixels was computed and used define three levels of low, moderate, and high spatial complexity.
These represented homogenous areas at the low level to areas containing significant structure related
to roads, shorelines, or other boundaries at the high level. This was used in a stratified systematic
sampling scheme to ensure a range of spatial variability was selected. For each stratum, every
sixth pixel was selected not contaminated by clouds or land cover change. To assess performance,
we compute the mean error, mean absolute error (MAE), error standard deviation, and mean and
standard deviation of the spatial correlation within a sample window of 33 by 33 pixels between
the predicted image and Sentinel-2. This window size was selected to be consistent with the CNNs
used. We also compute the mean and standard deviation of the Structural Similarity Index Measure
(SSIM) [33]. This was included as it is a common measure applied to assess image quality relative to
a reference image. To provide context for the improvement obtained we also compute these metrics
directly between Landsat and Sentinel-2 without applying the CNN based transform.
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2.2.1. Hold-Out and Spatial Extension

For sampling, 75% of the study area was used for training, starting in the west to the east.
The remaining 25% in the east was used for validation as a spatially independent extension test. Of the
75% sampled for training, 30% of this was held-out to assess the ideal situation where spatial extension
is not required and high sampling rates are possible. For each study site this amounted to samples in
the range of 400,000–500,000 for training and 180,000–240,000 for testing. Samples for spatial extension
were more variable due to land cover change, clouds, and cloud shadows. Total samples were 64,000,
179,000, and 330,000 for the boreal, tundra, and cropland/woodland study sites, respectively.

2.2.2. Temporal Extension

For assessment of temporal performance, we apply the CNNs to Landsat-5 (Table 1) for different
years for each study site. The least cloud contaminated image was selected for each period between
1984–1990, 1990–2005, and 2005–2011. We computed the same set of metrics between Landsat-5 and
Sentinel-2 for areas identified as no change. No change was detected based on the maximum change
vector across all years for a study site. Before detecting change the Sentinel-2 bands were normalized to
Landsat using robust regression [34]. We also applied a band average minimum correlation threshold
of 0.55 between images for the window size of 33 by 33 pixels. The initial CNNs were trained between
Landsat-8 and Sentinel-2. To adjust these for Landsat-5 we applied a transfer learning approach where
samples of no-change were split for training and testing. Similar, to the initial model development,
we sampled 30% of the study area for training starting in the west of the image and the remaining
70% for validation in the east of image. As the models had already been trained, only 3 epochs were
used for rapid development. Only the most recent Landsat-5 image was used for training. The refined
model was used in the assessment of the independent samples (70%) for evaluation of all image dates.
The retraining was needed as image quality between the two sensors is different, with Landsat-8 being
sharper. Total samples used for each study site ranged from 30,000–80,000 for training. For testing the
total samples were 40,000, 134,000, and 84,000 for the boreal, tundra, and cropland/woodland study
sites, respectively.

2.3. CNN Super-Resolution Models

There are countless configurations for network architectures that could be employed and will
likely remain an area of significant future research. Although network design is important, for the
purpose of this study we only tested two configurations. We tested the SRCNN of Dong et al. [10]
because it is efficient with only 41,089 parameters and has shown good results (Figure 2A). We also
apply a deeper architecture using residual learning, deep connectivity, and residual connections in
attempt to integrate some of the latest improvements in the field (DCR_SRCNN). In initial exploratory
analysis we tested numerous configurations of which the best was kept. We settled on the 20-layer
configuration shown in Figure 2B inspired by Tai et al. [21]. This is a large network with 993,373 total
parameters. The rectilinear unit was used for all activations. To improve generalization, least squares
(L2) weight regularization was added to the third and second last layers of the network with a weight
of 0.0001. Regularization was only applied to the last layers to avoid reducing the learning potential in
the lower network layers. Input image size was 33 by 33 pixels. This size was selected to capture the
spatial variation in the image while keeping the size small for computational efficiency. Filter sizes
were 3 by 3, except for the first convolution layer where a 7 by 7 was used. The output features from
each convolution layer was 64, except for the first layer which output 96. Also, the convolution layer
for the residual learning objective output one result which essentially converted the input three band
image to a single band.

We trained a model for each study site to allow for regional optimization. For training, the mean
squared error loss function for the pixelwise comparison of the predicted and Sentinel-2 image was used
with the Adam optimization method. This optimization method has been shown to provide an efficient
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and stable solution [35] and has been used in other CNN based super-resolution studies [18,25].
Early stopping criteria was applied, where if the loss did not improve in 10 epochs, training stopped.
The total number of epochs was set at 80 with a batch size of 125. For all networks the input was the
red, near-infrared (NIR), and short-wave infrared (SWIR, 1.55–1.75 µm) bands. Output, was a single
band, either the red, NIR, or SWIR. All bands were input as spatial properties between bands were
expected to provide useful information for determining specific spatial transforms. To allow for the
greatest possible learning potential, a model was developed for each band. To focus the learning on
the spatial properties between the samples, the mean of the Sentinel-2 image was adjusted to match
the Landsat image.

All models were trained on a NVIDIA GeForce 1080 Ti GPU. Training time took approximately
2 days for the deep network for each study site and less than half this time for the shallow network.
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Figure 2. Configuration of the CNNs tested. (a) The SRCNN of Dong et al. [10]. (b) The deep residual
and connected CNN developed. Red lines are residual blocks and blue lines are connections between
residual blocks. Black line is the connection for the residual learning objective, which is put through
a single convolution layer to convert the input three band image to a single band. The ⊕ symbol
represents summation of the output activation layer elements.

3. Results

3.1. Hold-Out Accuracy

The results for the hold-out samples show that the DCR_SRCNN provided the best results across
all study areas (Table 2). However, both methods showed marked improvement relative to applying
no transformation for all the key metrics (MAE, SSIM, and spatial correlation). The MAE error is
an informative measure as it is in standard reflectance units, but it is related to the mean of the sample,
with a larger mean reflectance resulting in larger MAE. Further, the MAE can produce the same value
for very different image qualities [33]. Spatial correlation is not related to the mean reflectance and
gives a good indication of the spatial agreement and thus the spatial enhancement. However, it is
influenced by the data range, with a reduce range producing a lower correlation [36]. SSIM essentially
incorporates the MAE and spatial correlation measures in addition to image contrast. It is related to
the sample mean reflectance, but to a much lesser degree than the MAE. It is important to recognize
these limitations in interpreting the results when comparing bands.
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Table 2. Hold-out performance metrics.

Region Method Band MEAN STD ME MAE STDE P5E P95E SSIMm SSIMs CORm CORs

Boreal forest No Transform Red 323 166 −0.88 36.50 63.14 −77.00 76.00 0.965 0.037 0.746 0.139
Boreal forest No Transform NIR 2050 720 −1.40 201.79 292.76 −450.00 469.00 0.827 0.085 0.803 0.110
Boreal forest No Transform SWIR 1247 428 −0.66 96.45 152.28 −225.00 219.00 0.915 0.075 0.852 0.122
Boreal forest SRCNN Red 323 166 −0.84 31.45 54.02 −62.03 67.86 0.973 0.029 0.794 0.139
Boreal forest SRCNN NIR 2050 720 4.76 167.19 240.25 −365.91 384.17 0.875 0.078 0.853 0.104
Boreal forest SRCNN SWIR 1247 428 −3.73 72.95 107.91 −160.51 166.31 0.942 0.063 0.895 0.118
Boreal forest DCR_SRCNN Red 323 166 3.95 28.36 42.50 −54.50 65.81 0.978 0.017 0.811 0.131
Boreal forest DCR_SRCNN NIR 2050 720 −8.66 141.01 195.48 −322.54 301.10 0.904 0.059 0.881 0.085
Boreal forest DCR_SRCNN SWIR 1247 428 5.72 49.00 69.94 −98.04 116.91 0.967 0.033 0.931 0.084

Tundra No Transform Red 1013 720 0.49 110.46 190.91 −240.00 263.00 0.875 0.069 0.784 0.098
Tundra No Transform NIR 1948 909 −0.66 163.53 258.55 −379.00 373.00 0.845 0.065 0.804 0.090
Tundra No Transform SWIR 2363 1449 2.58 184.42 314.71 −445.00 447.00 0.893 0.056 0.864 0.082
Tundra SRCNN Red 1013 718 −2.18 72.42 116.81 −161.39 160.70 0.943 0.037 0.885 0.078
Tundra SRCNN NIR 1948 908 8.23 103.97 151.04 −222.45 242.11 0.934 0.041 0.912 0.066
Tundra SRCNN SWIR 2363 1446 −0.34 99.10 154.68 −229.38 234.23 0.961 0.042 0.948 0.075
Tundra DCR_SRCNN Red 1013 718 9.23 62.935 93.99 −123.38 158.16 0.954 0.027 0.900 0.072
Tundra DCR_SRCNN NIR 1948 908 −5.24 85.713 118.71 −196.30 185.54 0.950 0.032 0.931 0.058
Tundra DCR_SRCNN SWIR 2363 1447 6.45 59.619 85.33 −129.24 142.42 0.980 0.022 0.969 0.060

Cropland/Woodland No Transform Red 318 253 −1.16 61.43 123.19 −149.00 170.00 0.899 0.107 0.644 0.177
Cropland/Woodland No Transform NIR 3325 1256 −12.73 319.87 441.58 −714.00 684.00 0.741 0.126 0.755 0.173
Cropland/Woodland No Transform SWIR 1582 605 −4.43 123.88 187.29 −291.00 278.00 0.869 0.112 0.773 0.118
Cropland/Woodland SRCNN Red 318 253 −0.41 52.65 101.73 −129.22 142.18 0.928 0.083 0.719 0.181
Cropland/Woodland SRCNN NIR 3325 1256 0.24 258.85 351.04 −563.76 569.60 0.830 0.112 0.819 0.160
Cropland/Woodland SRCNN SWIR 1582 605 −0.79 89.03 134.10 −194.72 207.90 0.913 0.099 0.874 0.172
Cropland/Woodland DCR_SRCNN Red 318 253 4.09 45.465 82.76 −103.66 123.95 0.945 0.057 0.748 0.173
Cropland/Woodland DCR_SRCNN NIR 3325 1256 28.70 232.460 312.05 −475.67 541.73 0.860 0.089 0.845 0.142
Cropland/Woodland DCR_SRCNN SWIR 1582 605 13.58 66.388 93.63 −127.05 164.15 0.948 0.052 0.909 0.134

MEAN—observed sample mean, STD—observed sample standard deviation, ME—mean error, MAE—mean absolute error, STDE—error standard deviation, P5E—5th percentile error,
P95E—95th percentile error, SSIMm—mean SSIM, SSIMs—standard deviation SSIM, CORm—mean spatial correlation, CORs—standard deviation of spatial correlation.
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Of the bands, the NIR consistently had the higher MAE and lower SSIM values regardless of the
transformation. This is related to the high reflectance of the NIR band and associated larger variance.
The SWIR, also had high reflectance for the tundra study site, but in contrast had low MAE and higher
SSIM values. This was related to the native 20 m spatial resolution of the SWIR band in Sentinel-2,
which results in greater initial similarity with Landsat compared to the 10 m bands. The spatial
correlation showed that the red band had consistently lower values which was caused by the smaller
reflectance range and atmospheric noise.

Of the study areas, the cropland/woodland showed the lowest performance due to change
between the images despite efforts to reduce it. Change was also a potential factor in the boreal forest
study site, but to a much lesser degree. The best results, were found for the northern tundra study area
and was attributed to little change between images and less overall complexity of the land surface
relative to the 10 m target resolution. Figure 3 provides an example image result of a residential area
surrounded by mixed boreal forest conditions. It provides a good indication of the improvement that
can be obtained. Figure 4 shows the enhancement by band for a mixed forest area with some industrial
development. As evident from Figure 4, the NIR and red bands are more enhanced compared to the
SWIR as expected. The coarse texture within the cover types is of interest and could prove useful for
improving land cover discrimination or for biophysical retrieval as canopy variability or structure
appears to be enhanced.
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Boreal forest No Transform SWIR 1247 428 -0.66 96.45 152.28 -225.00 219.00 0.915 0.075 0.852 0.122

Boreal forest SRCNN Red 323 166 -0.84 31.45 54.02 -62.03 67.86 0.973 0.029 0.794 0.139

Boreal forest SRCNN NIR 2050 720 4.76 167.19 240.25 -365.91 384.17 0.875 0.078 0.853 0.104

Boreal forest SRCNN SWIR 1247 428 -3.73 72.95 107.91 -160.51 166.31 0.942 0.063 0.895 0.118

Boreal forest DCR_SRCNN Red 323 166 3.95 28.36 42.50 -54.50 65.81 0.978 0.017 0.811 0.131
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Figure 3. Examples results for a residential area surrounded by mixed boreal forest conditions; (a) Landsat
image, (b) resolution enhanced, and (c) Sentinel-2 image. Displayed as red = NIR, green = SWIR,
blue = red.

3.2. Spatial Extension Accuracy

The spatial extension accuracy shows similar or slightly reduced performance relative to the
hold-out (Table 3). Comparing the results for the two CNNs it is not evident that the deeper model
made a sufficiently large improvement to warrant its greater computational complexity. This is likely
caused by some overtraining and errors, due to temporal change, in the training and validation data
which can reduce the sensitivity of the analysis.

The cropland study site showed the greatest difference relative to the hold-out results. The difference
is in part related to the greater amount of agriculture in the extension sample. Due to the changes in
crops for the 14 to 21-day difference between images, there were limited sampling opportunities and thus,
the extension results did not perform as well. Croplands present a particular challenge for the approach as
training data is limited by the highly dynamic nature of cropland environments with dramatic reflectance
changes over a few days. With the Sentinel-2 constellation potentially more temporally coincident imagery
will be captured to ensure suitable training. Otherwise spatial extension over greater distances may be
required for large extent enhancements. The performance for bands suggests the same conclusion as the
hold-out sample results.
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Figure 4. Example results for each band for a mixed boreal forest with some industrial development;
(a,d,g,j) Landsat image, (b,e,h,k) resolution enhanced, and (c,f,i,l) Sentinel-2 image. (a–c) multi-band
image displayed as red = NIR, green = SWIR, blue = red, (d–f) NIR, (g–i) SWIR, (j–l) red.
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Table 3. Spatial extension performance metrics.

Region Method Band MEAN STD ME MAE STDE P5E P95E SSIMm SSIMs CORm CORs

Boreal forest No Transform Red 336 114 −0.53 26.17 41.53 −54.00 55.00 0.977 0.024 0.775 0.142
Boreal forest No Transform NIR 2084 921 −0.69 143.96 211.10 −317.00 332.00 0.876 0.059 0.820 0.161
Boreal forest No Transform SWIR 1420 524 −1.10 49.94 77.52 −116.00 114.00 0.955 0.024 0.880 0.166
Boreal forest SRCNN Red 336 114 4.48 24.73 39.58 −46.10 56.61 0.979 0.025 0.791 0.162
Boreal forest SRCNN NIR 2084 921 −3.57 126.70 182.72 −277.60 289.22 0.903 0.053 0.847 0.173
Boreal forest SRCNN SWIR 1420 524 −12.31 50.14 73.00 −111.35 110.59 0.969 0.025 0.902 0.177
Boreal forest DCR_SRCNN Red 336 114 −0.37 24.23 37.80 −42.17 57.03 0.981 0.020 0.807 0.152
Boreal forest DCR_SRCNN NIR 2084 921 1.20 122.82 176.15 −280.86 268.82 0.910 0.051 0.853 0.166
Boreal forest DCR_SRCNN SWIR 1420 524 −0.47 51.35 82.06 −116.80 129.43 0.961 0.029 0.885 0.176

Tundra No Transform Red 1500 962 1.74 148.04 256.00 −346.00 353.00 0.865 0.112 0.820 0.120
Tundra No Transform NIR 2275 1132 1.06 170.06 283.40 −389.00 380.00 0.870 0.075 0.840 0.101
Tundra No Transform SWIR 3101 1701 0.37 223.58 413.35 −554.00 566.00 0.896 0.099 0.872 0.104
Tundra SRCNN Red 1500 962 −3.17 97.18 180.10 −205.83 208.11 0.936 0.106 0.909 0.110
Tundra SRCNN NIR 2275 1132 −3.57 101.92 158.59 −228.87 215.30 0.949 0.057 0.934 0.076
Tundra SRCNN SWIR 3101 1701 −8.22 129.31 251.22 −291.85 297.05 0.951 0.094 0.941 0.100
Tundra DCR_SRCNN Red 1500 962 12.78 92.82 176.46 −170.22 220.73 0.941 0.106 0.914 0.110
Tundra DCR_SRCNN NIR 2275 1132 −3.47 97.39 154.86 −218.60 209.26 0.952 0.056 0.937 0.073
Tundra DCR_SRCNN SWIR 3101 1701 5.69 138.25 271.00 −311.06 347.59 0.945 0.094 0.933 0.099

Cropland/Woodland No Transform Red 328 300 0.43 79.90 159.20 −184.00 231.00 0.864 0.109 0.640 0.176
Cropland/Woodland No Transform NIR 3632 1250 −10.51 354.13 490.97 −810.00 772.00 0.721 0.125 0.720 0.181
Cropland/Woodland No Transform SWIR 1628 543 −1.61 132.12 203.57 −299.00 303.00 0.848 0.118 0.770 0.200
Cropland/Woodland SRCNN Red 328 300 −2.44 69.22 135.09 −169.95 186.18 0.902 0.086 0.721 0.176
Cropland/Woodland SRCNN NIR 3632 1250 −6.12 304.61 419.01 −678.00 672.29 0.807 0.111 0.789 0.166
Cropland/Woodland SRCNN SWIR 1628 543 −1.43 104.11 157.00 −222.85 242.84 0.896 0.104 0.844 0.193
Cropland/Woodland DCR_SRCNN Red 328 300 4.41 69.81 139.20 −163.35 195.46 0.902 0.084 0.720 0.170
Cropland/Woodland DCR_SRCNN NIR 3632 1250 26.46 300.29 412.67 −630.31 695.18 0.816 0.110 0.797 0.161
Cropland/Woodland DCR_SRCNN SWIR 1628 543 14.42 89.49 141.21 −174.24 227.41 0.909 0.101 0.856 0.191

MEAN—observed sample mean, STD—observed sample standard deviation, ME—mean error, MAE—mean absolute error, STDE—error standard deviation, P5E—5th percentile error,
P95E—95th percentile error, SSIMm—mean SSIM, SSIMs—standard deviation SSIM, CORm—mean spatial correlation, CORs—standard deviation of spatial correlation.
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3.3. Temporal Extension Accuracy

Temporal extension accuracy is an important aspect of the approach to determine if a trained
network can be applied to enhance Landsat time series. Table 4 provides the temporal extension results.
These at first glance appear to be low, particularly the spatial correlation, but assessment of temporal
extension is fraught with difficulties. The main challenge is that no-changes areas do not exist in terms
of image reflectance’s. For the purposes of land cover, no-change can be identified, but in comparing
imagery between dates there are always changes due to canopy dynamics, annual changes in canopy
configuration, moisture content, residual atmosphere effects, etc. that do not change the land cover,
but alter reflectance’s for a cover type. Thus, in interpreting these results it is important to note that the
sensitivity and accuracy is influenced by this effect. Irrespective, in all cases the metrics were improved
with either CNN.

The temporal effect is clearly seen in the boreal forest and cropland/woodland study sites, where
the performance metrics all improve as the image date gets closer to the Sentinel-2 image used as
a reference. The tundra study area is likely the most informative as changes are subtler, less frequent
and the vegetation structure is small relative to the image spatial resolution. Thus, these results are
more indicative of the temporal extension capacity. The shallow network performed similarly to the
deep network but with slightly reduced magnitude across all metrics of approximately 1%. The small
difference is in part a result of temporal changes in the test data which reduces the sensitivity of the
analysis. This is similar to the spatial extension results, but is expected to be more significant.

3.4. Visual Assessment

Visual assessment provides the more convincing evidence as the nature of the enhancement
can be clearly recognized and artifacts readily identified. Here, we provide several examples of
enhanced images for the different landscape environments and over multiple years in Figures 5–8.
In all examples, boundaries are clearer between cover types, linear features are more apparent, within
cover textures are enhanced, and the spatial structure overall is clearer. There are also no major artifacts
created within images or between image dates. Although, some speckle is introduced in a few cases.
In Figure 5, the spatial structure of forest gaps or leaf area gradients appear to be enhanced. This is
most evident in the 2011 imagery as fire damage has resulted in greater canopy variability. This could
possibly lead to improvements in biophysical retrievals or habitat analysis, but requires further study.
Figure 6 shows the northern tundra example, it more clearly defines drainage patterns and water
bodies. Figure 7 shows area of trails and roads that have become much more apparent in the broadleaf
forest area. This highlights the potential of the approach to better characterize edges which could
enhance land cover-based landscape metrics. The final example, Figure 8 shows an area of cropland
where the boundaries between crop areas and roads has been improved.
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Table 4. Temporal extension performance metrics.

Region Date Band
No Transform SRCNN DCDR_SRCNN No Transform SRCNN DCDR_SRCNN No Transform SRCNN DCDR_SRCNN

MAE STDE MAE STDE MAE STDE CORm CORs CORm CORs CORm CORs SSIMm SSIMs SSIMm SSIMs SSIMm SSIMs

Boreal forest 1984_07_23 Red 43 65 39 61 36 59 0.406 0.267 0.443 0.279 0.454 0.277 0.925 0.096 0.934 0.098 0.936 0.097
Boreal forest 1984_07_23 NIR 275 374 272 373 273 374 0.515 0.251 0.548 0.247 0.559 0.246 0.575 0.199 0.609 0.205 0.620 0.206
Boreal forest 1984_07_23 SWIR 136 186 134 183 129 179 0.488 0.288 0.527 0.295 0.538 0.298 0.702 0.179 0.721 0.184 0.726 0.184
Boreal forest 1997_08_28 Red 42 65 36 59 34 58 0.507 0.223 0.563 0.238 0.576 0.239 0.932 0.087 0.942 0.090 0.945 0.089
Boreal forest 1997_08_28 NIR 269 370 261 363 259 360 0.572 0.221 0.628 0.212 0.643 0.207 0.618 0.188 0.669 0.185 0.682 0.180
Boreal forest 1997_08_28 SWIR 120 169 116 164 111 160 0.644 0.233 0.686 0.240 0.695 0.241 0.779 0.156 0.801 0.160 0.807 0.160
Boreal forest 2011_07_20 Red 33 52 28 47 27 46 0.674 0.122 0.738 0.114 0.752 0.107 0.959 0.042 0.966 0.046 0.968 0.044
Boreal forest 2011_07_20 NIR 199 273 174 241 169 235 0.798 0.080 0.839 0.072 0.848 0.071 0.784 0.077 0.845 0.066 0.860 0.064
Boreal forest 2011_07_20 SWIR 80 114 75 107 64 92 0.855 0.061 0.899 0.057 0.913 0.057 0.907 0.049 0.932 0.048 0.940 0.048

Cropland/Woodland 1987_08_11 Red 65 121 64 126 69 127 0.527 0.229 0.576 0.236 0.582 0.243 0.866 0.125 0.870 0.124 0.870 0.122
Cropland/Woodland 1987_08_11 NIR 459 606 415 556 400 541 0.679 0.233 0.722 0.214 0.732 0.217 0.632 0.203 0.724 0.198 0.737 0.202
Cropland/Woodland 1987_08_11 SWIR 176 241 167 225 146 207 0.750 0.222 0.781 0.224 0.787 0.228 0.785 0.149 0.820 0.157 0.828 0.162
Cropland/Woodland 2002_07_30 Red 57 107 55 109 58 107 0.611 0.192 0.655 0.198 0.663 0.200 0.891 0.102 0.897 0.103 0.900 0.098
Cropland/Woodland 2002_07_30 NIR 414 551 374 505 364 499 0.763 0.166 0.796 0.160 0.805 0.159 0.725 0.152 0.799 0.150 0.807 0.152
Cropland/Woodland 2002_07_30 SWIR 149 206 143 189 119 184 0.819 0.158 0.846 0.171 0.853 0.172 0.841 0.105 0.872 0.121 0.880 0.123
Cropland/Woodland 2007_08_20 Red 57 105 47 88 46 86 0.638 0.149 0.723 0.132 0.745 0.128 0.897 0.094 0.926 0.065 0.931 0.061
Cropland/Woodland 2007_08_20 NIR 433 574 317 420 300 404 0.805 0.115 0.848 0.100 0.857 0.100 0.684 0.110 0.835 0.098 0.853 0.100
Cropland/Woodland 2007_08_20 SWIR 135 188 105 148 93 131 0.875 0.077 0.915 0.069 0.924 0.069 0.880 0.050 0.925 0.055 0.936 0.054

Tundra 1987_08_01 Red 91 136 79 114 78 111 0.749 0.142 0.804 0.134 0.806 0.135 0.877 0.067 0.906 0.061 0.908 0.061
Tundra 1987_08_01 NIR 155 230 126 180 127 183 0.813 0.100 0.878 0.088 0.878 0.090 0.853 0.067 0.907 0.057 0.907 0.058
Tundra 1987_08_01 SWIR 207 312 154 226 131 190 0.851 0.092 0.907 0.083 0.915 0.080 0.870 0.075 0.918 0.066 0.925 0.067
Tundra 1994_08_04 Red 91 135 78 111 77 110 0.757 0.142 0.810 0.135 0.811 0.137 0.875 0.067 0.907 0.060 0.907 0.060
Tundra 1994_08_04 NIR 157 230 121 172 119 171 0.816 0.107 0.881 0.097 0.882 0.095 0.846 0.078 0.906 0.067 0.908 0.065
Tundra 1994_08_04 SWIR 190 294 142 211 119 176 0.847 0.117 0.907 0.103 0.916 0.099 0.872 0.092 0.921 0.081 0.928 0.078
Tundra 2010_07_15 Red 83 139 65 98 64 94 0.801 0.103 0.876 0.080 0.881 0.078 0.895 0.076 0.939 0.045 0.942 0.041
Tundra 2010_07_15 NIR 150 226 106 150 103 148 0.829 0.085 0.910 0.063 0.913 0.061 0.859 0.063 0.930 0.042 0.934 0.040
Tundra 2010_07_15 SWIR 190 292 133 195 104 152 0.861 0.082 0.929 0.059 0.941 0.054 0.883 0.063 0.939 0.046 0.950 0.043

MAE—mean absolute error, STDE—error standard deviation, SSIMm—mean SSIM, SSIMs—standard deviation SSIM, CORm—mean spatial correlation, CORs—standard deviation of
spatial correlation.



Remote Sens. 2018, 10, 394 13 of 18

Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 16 

 

 

Figure 5. Example temporal extension result for a boreal mixedwood forest. (a,b,c) is the spatially 

enhanced result and (d,e,f) is the original Landsat. 

 

Figure 6. Example temporal extension result for a northern tundra area. (a,b,c) is the spatially 

enhanced result and (d,e,f) is the original Landsat. 

Figure 5. Example temporal extension result for a boreal mixedwood forest. (a–c) is the spatially
enhanced result and (d–f) is the original Landsat.

Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 16 

 

 

Figure 5. Example temporal extension result for a boreal mixedwood forest. (a,b,c) is the spatially 

enhanced result and (d,e,f) is the original Landsat. 

 

Figure 6. Example temporal extension result for a northern tundra area. (a,b,c) is the spatially 

enhanced result and (d,e,f) is the original Landsat. 
Figure 6. Example temporal extension result for a northern tundra area. (a–c) is the spatially enhanced
result and (d–f) is the original Landsat.
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Figure 8. Example temporal extension result for a cropland area. (a–c) is the spatially enhanced result
and (d–f) is the original Landsat.
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4. Discussion

In this research we show that CNN super-resolution can spatially enhance Landsat imagery
and can be applied to historical peak growing season time series that could improve land cover
and land cover change applications or possibly biophysical parameter retrievals. However, future
research needs to specifically evaluate the improvement for a given application with this type of
enhancement. This is important to determine if the approach is only suitable for visual enhancement
or some types of quantitative analysis. Here, we show that boundaries between land covers and linear
features are improved and likely would influence landscape metrics derived from land cover data.
There are also textural enhancements that need to be explored as a means to improve information
extraction applications.

The SSIM values obtained compare well with other studies achieving values in the range of
0.86 to 0.97, similar to what is achieved in benchmark image databases for an upscaling factor of
three [21]. However, in most studies, images are degraded from an initial high-resolution image
and thus the only differences between the fine and coarse images used for training is resolution.
This was not the case in this research as there were several additional factors other than resolution
and included changes or differences in land cover, canopy structure, phenology, moisture, residual
atmosphere effects, sun-sensor geometry, sensor spectral response functions, and residual geolocation
error. These factors need to be considered in examining the results as they reduce sensitively of the
analysis. More importantly this can cause models to learn these differences resulting in reduced spatial
and temporal generalization performance. For remote sensing data, Collins et al. [25] report SSIM
values greater than 0.98. This is the result of using coinstantaneous images avoiding many of the
factors listed above. It is also due to the upscaling factor of 2. In this study the upscaling factors were 3
for the red and near-infrared and 1.5 for the shortwave. The inferior result obtained here for the SWIR
suggests that the difference is largely related to temporal variation. However, Collins et al. do not
report band specific values.

It also of interest to compare the effects of using a more complex network. In Collins et al., going
from shallow to wider and deeper improved the SSIM by 0.0035. In this research we also see only
a small increase with the more complex deeper network, improving by about 0.006 on average for
both the spatial and temporal extension. Thus, as with other SR research finding the optimal balance
between model complexity and performance will be an important aspect of future research. In this
regard, the effective resolution of the spatial enhancement needs to be determined. That is, we do not
propose that the CCN learns a true 10 m resolution result. Future efforts need to quantify the effective
resolution to avoid storage and processing redundancy.

Other approaches to assess performance were considered, such as comparison with other high
spatial-resolution more temporally coincident images. However, finding such images is challenging
for many regions such as the north and where suitable cloud free pairs are difficult to obtain within
a few days of acquisition. This may be possible for the visible and NIR bands, but there are few
higher spatial resolution sensors that capture the SWIR band for comparison and development
with Landsat-5. SPOT-5 imagery is a suitable option, but it was not available for this analysis and
establishing an extensive database would be costly. Despite this, the visual assessment shows that
the trained networks were able to enhance the spatial properties of the images through time without
introducing any strong artifacts.

For large regional implementation, spatial extension over greater distances may be required.
For distances less than 100 km, the CNNs appeared to generalize well. However, to effectively
train Landsat-5, larger distances may be required as suitable training locations would be limited to
areas with little change or with suitable SPOT-5 images. There are several mechanisms to further
enhance the generalization of the CNNs that need to be explored in future research such as optimizing
network size, increasing weight regularization, batch normalization, and data augmentation. The deep
network employed in this research was selected to provide an indication of the upper bound on the
enhancement potential. The expectation was that a comprise between the deep and shallow network
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would be more effective for implementation. In this work we also included weight regularization for
the last layers in the network and thus better generalization may be obtained by applying regularizing
to additional layers and increasing the weight. In this research we did not use batch normalization
as it was found to slightly reduce results in Liang et al. [37]. However, for spatial and temporal
extension this may not be the case and requires further investigation. We also did not use data
augmentation as our sample sizes were large, except for retraining of Landsat-5 for the identified
no-change areas. In this case, data augmentation could provide an advantage. Data augmentation also
provides an alternative training strategy, where more stringent criteria for selecting samples could be
applied and data augmentation used to offset the reduced sample size. Improvements in the training
data is expected to improve performance.

5. Conclusions

In this research we tested a shallow and deep CNN for the purpose of super-resolution
enhancement of the Landsat archive trained from Sentinel-2 images. Results show improvement
in spatial properties of the enhanced imagery and good potential for spatial and temporal extension of
the CNNs developed in all the study areas. The deep CCN showed better performance, but it is not
clear if it is worth the additional computational complexity and memory requirements. As research in
CNN super-resolution for other applications has shown, it is possible to achieve similar performance
with simpler configurations. Significant advancement of this approach is expected with progression in
network design, training data sources, sampling strategies, and improved regularization. Despite this,
the models developed here were effective at enhancing image spatial structure which is expected to
improve land cover and land cover change applications.
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