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Abstract: Spatial regularization based sparse unmixing has attracted much attention in
the hyperspectral remote sensing image processing field, which combines spatial information
consideration with a sparse unmixing model, and has achieved improved fractional abundance
results. However, the traditional spatial sparse unmixing approaches can suppress discrete wrong
unmixing points and smooth an abundance map with low-contrast changes, and it has no concept
of scale difference. In this paper, to better extract the different levels of spatial details, rolling
guidance based scale-aware spatial sparse unmixing (namely, Rolling Guidance Sparse Unmixing
(RGSU)) is proposed to extract and recover the different levels of important structures and details
in the hyperspectral remote sensing image unmixing procedure, as the different levels of structures
and edges in remote sensing imagery have different meanings and importance. Differing from
the existing spatial regularization based sparse unmixing approaches, the proposed method considers
the different levels of edges by combining a Gaussian filter-like method to realize small-scale
structure removal with a joint bilateral filtering process to account for the spatial domain and range
domain correlations. The proposed method is based on rolling guidance spatial regularization in a
traditional spatial regularization sparse unmixing framework, and it accomplishes scale-aware sparse
unmixing. The experimental results obtained with both simulated and real hyperspectral images
show that the proposed method achieves visual effects better and produces higher quantitative results
(i.e., higher SRE values) when compared to the current state-of-the-art sparse unmixing algorithms,
which illustrates the effectiveness of the rolling guidance based scale aware method. In the future
work, adaptive scale-aware spatial sparse unmixing framework will be studied and developed to
enhance the current idea.

Keywords: sparse unmixing; rolling guidance; scale-aware; spatial regularization; hyperspectral
remote sensing imagery

1. Introduction

In the last decade, airborne and satellite hyperspectral remote sensing sensors have developed at
an enormous rate, resulting in the availability of a large volume of hyperspectral remote sensing data
with a wealth of spectral information and a higher spectral resolution, which covers a wider wavelength
region with hundreds of spectral channels at a nominal spectral resolution. The resulting hyperspectral
date cube enables precise material identification with the abundance spectral information, as each pixel
can be represented by a spectral signature or fingerprint that characterizes the underling objects [1,
2]. However, one of the challenges confronting hyperspectral remote sensing image processing is
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the presence of mixed pixels [3–5]. Spectral unmixing is a common way to solve this mixed pixel
problem, and it is aimed at estimating the fractional abundances of the pure spectral signatures or
endmembers in each mixed pixel with linear or nonlinear mixture models [6,7]. The linear mixture
model expresses the measured spectral signature as a linear combination of several distinct typical
materials or endmembers, while the nonlinear mixture model assumes that the incident radiation
interacts with more than material, and it is affected by multiple scattering effects [8]. When compared
with the nonlinear mixture model, the linear mixture model has been extensively studied as a result
of its computational tractability and its flexibility in different applications, and the fact that it also
holds in macroscopic remote sensing scenarios. Therefore, in this paper, we focus on linear spectral
unmixing analysis.

The traditional spectral unmixing approaches consist of three basic ideas to precisely estimate
the endmember signatures and the corresponding fractional abundances. One idea can be called
the supervised methods, which compute the abundances or endmember signatures based on the known
precise endmember signatures [9,10] or abundances [11,12]. The second idea is the unsupervised
methods, which are sometimes referred to as Blind Source Separation (BSS) [13–17], which assume
that the spectral components are statistically independent. The last idea is the semi-supervised
methods, which express the mixed pixels using a large standard spectral library known in advance,
and estimate the fractional abundances, as well as activating the corresponding materials’ standard
spectral signatures [18–21]. Approaches of the first series have been studied for many years,
and include the Pixel Purity Index (PPI) [22], N-FINDR [23], Fully Constrained Least Squares (FCLS) [9],
and Abundance-Constrained Endmember Extraction (ACEE) [11]. Independent Component Analysis
(ICA) [24], Non-negative Matrix Factorization (NMF) [25], and Sparse Component Analysis (SCA) [26]
belong to the second spectral unmixing idea. In recent years, the semi-supervised unmixing methods
have attracted lots of attention as they make full use of a standard spectral library, and they also
effectively circumvent the challenging endmember identification step [2], which is replaced with
activating the corresponding endmember signatures over the large standard spectral library, which is
given as prior knowledge.

Sparse unmixing, as one of the typical semi-supervised spectral unmixing methods, reformulates
the linear spectral unmixing problem as selecting endmembers from a standard spectral library
using sparse regression [8]. Since the research into sparse unmixing has progressed, a number of
sparse unmixing algorithms have been proposed, such as Sparse Unmixing via variable Splitting and
Augmented Lagrangian (SUnSAL) [27], Sparse Unmixing via variable Splitting and Augmented
Lagrangian and Total Variation (SUnSAL-TV) [28], Non-Local Sparse Unmixing (NLSU) [29],
and Collaborative SUnSAL (CSUnSAL) [19], and its variants [30,31]. Spatial sparse unmixing
incorporates the spatial information into sparse unmixing and utilizes the existing spatial correlations,
leading to a higher unmixing accuracy and a better visual effect [32]. Hence, the spatial sparse unmixing
methods should be a worthwhile approach for hyperspectral remote sensing image processing.

The current spatial-spectral unmixing methods usually use the spatial information between
each pixel and its near neighbors, e.g., the Total Variation (TV)-based regularization model [33]
and the mathematical morphological methods [34], or region-based spatial consideration,
e.g., the sliding-window based approaches [35]. Most of these approaches aim to preserve the edges
and remove detrimental or unwanted content. However, with the spatial regularization based
methods, only high-contrast edges or textures can be extracted, and low-contrast or gradual changes in
the original remote sensing images are ignored, which results in the loss of small structures, which are
usually referred to as “details”.

In this paper, a new spatial sparse unmixing algorithm based on rolling guidance as a scale-aware
operation, namely, Rolling Guidance Sparse Unmixing (RGSU), is proposed. In RGSU, the rolling
guidance scale-aware model [36] is designed as the spatial regularization by considering and
controlling the different level of details with iterations following scale-space theory. The rolling
guidance idea has been used in image denoising, detail enhancement, edge extraction, image
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segmentation, saliency detection, and so on [37–39]. Differing from the previous spatial sparse
unmixing methods, the proposed RGSU algorithm is scale-aware and can separate the different detail
levels and achieve unmixing results with clear boundaries or texture information and clear background
regions. When compared with the previous spatial sparse unmixing algorithms, the experimental
results obtained using two simulated hyperspectral datasets and two real hyperspectral images
demonstrate that the proposed RGSU can obtain improved fractional abundances images and a higher
unmixing accuracy.

The rest of this paper is organized as follows. In Section 2, the spatial sparse unmixing model
(the rolling guidance spatial regularization model) and the proposed RGSU algorithm are presented.
Section 3 provides a description of the datasets that are used in this paper and analyzes the experimental
results. The conclusion is drawn is Section 4.

2. Rolling Guidance Based Spatial Sparse Unmixing

Spatial regularization based sparse unmixing can integrate spatial information into the sparse
unmixing process and obtain improved spectral unmixing results. Differing from the previous
spatial sparse unmixing methods, such as SUnSAL-TV or NLSU, the rolling guidance based spatial
regularization method can recognize objects of different sizes and preserve structures of various scales,
which delivers diverse information. Hence, in theory, the results of the rolling guidance based spatial
sparse unmixing algorithm better preserve spatial information.

In this part, the traditional spatial sparse unmixing model is first reviewed in Section 2.1, and then
the rolling guidance spatial regularization model is described in detail in Section 2.2. Finally, based on
the aforementioned model and prior knowledge, the proposed rolling guidance based scale-aware
spatial sparse unmixing algorithm, the RGSU algorithm, is described in Section 2.3.

2.1. Spatial Sparse Unmixing

To improve the unmixing accuracy and treat the hyperspectral remote sensing datasets as
images, spatial information can be incorporated into the sparse unmixing formulation by adding
an appropriate spatial regularization, and the spatial sparse unmixing model has thus been
developed. Since the traditional sparse unmixing problem can be written, as shown in Equation (1),
which considers the Abundance Non-negative Constraint (ANC), the spatial sparse unmixing model
can be specified as a minimization function and is rewritten, as shown in Equation (2), based on
the classical sparse unmixing model:

min
x
‖x‖1 s.t.‖y−Ax‖2 ≤ δ, x ≥ 0 (1)

min
X

{
1
2
‖AX− Y‖2

F + λsps‖X‖1,1 + λspt Jspt(X) + ιRm×n
+

(X)
}

(2)

where y = (y1, y2, . . . , yL)T is a mixed pixel, and L is the number of spectral bands. A ∈ RL×m

denotes the large available spectral library, and m is the number of endmembers in A. In Equation (1),
x = (x1, x2, . . . , xm)T represents the fractional abundance vector corresponding to spectral library A.
Due to the fact that only a small number of endmembers, e.g., less than 20 [8], contribute to a mixed

pixel y, x is sparse. ‖x‖1 =
m
∑

i=1
|xi| denotes the sparse constraint of the fractional abundance vector x,

which is a relaxation of the original L0 norm [29]. δ ≥ 0 is the error tolerance derived from the noise or
modeling errors. x ≥ 0 denotes the ANC.

In Equation (2), Y ∈ RL×n denotes the observed hyperspectral dataset containing n pixels with L
bands, written in the form of a matrix. X ∈ Rm×n is the fractional abundance map, corresponding to
the input hyperspectral dataset Y. ‖AX− Y‖2

F is the data-fitting term, and ‖ ‖F denotes the Frobenius

norm. ‖X‖1,1 =
n
∑

j=1
‖xj‖1, and xj denotes the j-th column of X [40]. The last term, ιRm×n

+
(X), is aimed at
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finding the minimum element of the abundance vector xj, and it also denotes the ANC. The ιC function
in Equation (2) is defined in the set C, obeying the rule of ιC(x) = 0 when x ∈ C; otherwise, ιC(x) = ∞.

When compared with Equation (1), there is an extra term in Equation (2), the consideration
of spatial information, written as Jspt(X), which is used for incorporating the spatial information.
Different consideration of the spatial information leads to different spatial smoothness terms
Jspt(X) [33]. For example, the TV-based sparse unmixing algorithm utilizes the TV model as the spatial
regularization to account for spatial homogeneity. Nonlocal TV-based sparse unmixing also accounts
for all of the possible nonlocal spatial information in the sparse unmixing process. In general, the spatial
sparse unmixing model can be expressed, as shown in Equation (2), when only the ANC is considered.

2.2. Rolling Guidance Spatial Regularization Model

As remote sensing images contain many levels of structures, edges, and details, the important
small structures should be preserved and the anomaly objects or noise should be removed in
the hyperspectral image processing [41,42], which is also the original motivation of the spatial
sparse unmixing methods. TV-based regularization in the sparse unmixing model accounts for
the neighboring mixed pixels of the fractional abundance map with the same endmember combination.
It can better preserve and restore high-contrast edges between the current pixel and its horizontal
and vertical neighbors [33]. The nonlocal sparse unmixing method uses a nonlocal means regularizer
to utilize all of the possible self-predictions of the similar sparse distributions in the abundance
images [35], and the range for the spatial information extraction depends on a sliding window of
a fixed size. Both of these spatial consideration approaches protect most of the structural edges
in the abundance maps. However, these methods basically preserve the conspicuous changes and
efficiently remove low-level spatial stochastic noise, but they cannot separate the different levels of
details and structures [43].

Rolling guidance spatial regularization is a structure-scale-aware operation that is aimed at
controlling and preserving the different levels of details under different image processing demands.
In this paper, the structure scale [44] is defined as the smallest Gaussian standard deviation,
and the corresponding structure of this scale can be removed or smoothed when this deviation
is applied to an image. Generally, through the whole rolling guidance spatial consideration process,
only one Gaussian standard deviation will be chosen. To some extent, the scale-aware rolling guidance
spatial regularization plays the role of a Gaussian filter at the initial step, where the initialized
convolution kernel is related to the structure scale, namely, the scale parameter in scale-space theory,
which is written as shown in Equation (3):

Gv = gv ∗ X (3)

where v is referred to as the scale parameter whose value is equal to the variance of the abundance

image. gv(i, j) = 1√
2πv

exp
(
− i2+j2

2v

)
denotes the Gaussian kernel, which indexes pixels i and j, and ∗

represents the convolution operation. X is the input abundance image, and Gv represents the initial
result at scale v in the first step of the scale-aware rolling guidance process. When different Gaussian
standard deviations (

√
v) are applied as the image spatial regularization, different scales of structures

can be suppressed according to their actual sizes.
In the second step, the edges that are processed by the Gaussian filter are retained according

to their input guidance map. Here, the rolling guidance process provides the scale-aware spatial
regularization, which is aimed at recovering the important edges iteratively, and the input guidance
map forms the major contribution of this scale-aware method. We denote Rt as the t-th iteration
guidance map, and R1 is initialized as Gv. The output of this second step, which is written as Rt+1 for
the t-th iteration rolling guidance result, can be obtained as follows:
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Rt+1(i) = Wi,j
(
Rt) ∗ X(j) (4)

with

Wi,j
(
Rt) = 1

Kt
i

∑
j∈N(i)

exp

(
−‖i− j‖2

2v
− ‖R

t(i)−Rt(j)‖2

2r

)
(5)

Kt
i = ∑

j∈N(i)
exp

(
−‖i− j‖2

2v
− ‖R

t(i)−Rt(j)‖2

2r

)
(6)

where i and j represent the i-th and j-th pixels, N(i) denotes a local window of size
(
2×
√

v + 1
)
×(

2×
√

v + 1
)

around pixel i, Wi,j is the weight for the rolling guidance method, and Kt
i is

a normalization term, which is computed, as shown in Equation (6). The value of Rt+1 is
obtained in the form of joint bilateral filtering [45,46], considering the distance in the image plane
(the two-dimensional (2-D) spatial domain of the abundance map) and the distance in the intensity
axis (the range domain). In addition, v is the scale parameter, and r defines the weight of the intensity
decrease degree. The weight of the rolling guidance filter is computed in the form of a joint bilateral
filter guided by the structure of Rt, which is iteratively changed in the processing. This is the reason
why this scale-aware iterative operation is named “rolling guidance”, and it is also the key difference
with the classical joint bilateral filter. The flowchart of the scale-aware rolling guidance method is
provided in Figure 1.
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2.3. Rolling Guidance Based Spatial Sparse Unmixing

To better address the different scales of spatial information in sparse unmixing, the Rolling
Guidance based Sparse Unmixing method (RGSU) is proposed for the scale-aware spatial consideration
of hyperspectral remote sensing unmixing. Based on rolling guidance spatial regularization and
the spatial sparse unmixing model, the rolling guidance based spatial sparse unmixing method is built
up as follows:

min
X

{
1
2
‖AX− Y‖2

F + λsps‖X‖1,1 + λRGRG(X) + ιRm×n
+

(X)
}

(7)

where the first term is denoted as the data-fitting term, and the second one, the L1,1 norm of
the abundance, is used for sparse constraint, which corresponds to the fact that the observed
hyperspectral image signature can be expressed in an efficient linear sparse regression with potentially
very large endmember dictionary [8], denoted as A. The last term is represented by the ANC.
In addition, the third term, rolling guidance spatial regularization, can be written as:
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RG(X) = WX (8)

where the weight matrix is defined for different spatial considerations, and is obtained following
the original rolling guidance method, as Equation (9):

Wt =


1

Kt ∑ exp
(
− i2+j2

2v

)
t = 1

1
Kt ∑ exp

(
− ‖i−j‖2

2v − ‖R
t(i)−Rt(j)‖2

2r

)
t ≥ 2

(9)

with
Rt = Wt−1 ∗ X (10)

In this scale-aware spatial regularization sparse unmixing procedure, the weight matrix [47,48]
accounts for filtering and averaging the differences in a local window, such as outliers and noise,
which can remove structures in different scales. The input abundance map, X, is the guidance map,
which is used to recover shapes of different scales. Whether an edge is preserved or not is dependent
solely on its magnitude, making this method inherently different to the other edge-preserving methods.
By setting different scale values, this scale-aware spatial sparse unmixing algorithm can contain
different-scale levels of spatial information. The basic schematic of the proposed method can be
depicted, as shown in Figure 2.

Remote Sens. 2017, 9, 218 6 of 21 

 

where the first term is denoted as the data-fitting term, and the second one, the L1,1 norm of the 
abundance, is used for sparse constraint, which corresponds to the fact that the observed 
hyperspectral image signature can be expressed in an efficient linear sparse regression with 
potentially very large endmember dictionary [8], denoted as A. The last term is represented by the 
ANC. In addition, the third term, rolling guidance spatial regularization, can be written as: 

( ) =X WXRG  (8) 

where the weight matrix is defined for different spatial considerations, and is obtained following the 
original rolling guidance method, as Equation (9): 

( ) ( )

  
  

 
  

  ≥
 
 




W R R

t

t
t t

t

i j t
K v

i ji j
K v r

2 2

22

+1 exp - = 1
2

= --1 exp - - t 2
2 2

 (9) 

with 

∗R W Xt t-1=  (10) 

In this scale-aware spatial regularization sparse unmixing procedure, the weight matrix [47,48] 
accounts for filtering and averaging the differences in a local window, such as outliers and noise, 
which can remove structures in different scales. The input abundance map, X, is the guidance map, 
which is used to recover shapes of different scales. Whether an edge is preserved or not is dependent 
solely on its magnitude, making this method inherently different to the other edge-preserving 
methods. By setting different scale values, this scale-aware spatial sparse unmixing algorithm can 
contain different-scale levels of spatial information. The basic schematic of the proposed method can 
be depicted, as shown in Figure 2. 

 
Figure 2. Basic schematic of the proposed Rolling Guidance Sparse Unmixing (RGSU) method. 

Based on the above constructed objective function, the main process of how to compute the 
RGSU model is introduced below. 

Given the objective function (Equation (7)) and following the classical split Augmented 
Lagrangian method of Multipliers (ALM) for solving the sparse representation problem, a few 
intermediate variables are introduced in Equation (7) for convenient representation. We first develop 
the augmented objective function, as shown as Equation (11). In addition, the Alternating Direction 
Method of Multipliers (ADMM) strategy is also adopted. 

Figure 2. Basic schematic of the proposed Rolling Guidance Sparse Unmixing (RGSU) method.

Based on the above constructed objective function, the main process of how to compute the RGSU
model is introduced below.

Given the objective function (Equation (7)) and following the classical split Augmented
Lagrangian method of Multipliers (ALM) for solving the sparse representation problem, a few
intermediate variables are introduced in Equation (7) for convenient representation. We first develop
the augmented objective function, as shown as Equation (11). In addition, the Alternating Direction
Method of Multipliers (ADMM) strategy is also adopted.

L(X, V1, V2, V3, V4, V5, D1, D2, D3, D4, D5)

= 1
2‖V1 − Y‖2

F + λsps‖V2‖1,1 + λRG‖V4‖1,1 + ιR+(V5)

+ µ
2 ‖AX−V1 −D1‖2

F +
µ
2 ‖X−V2 −D2‖2

F +
µ
2 ‖X−V3 −D3‖2

F
+ µ

2 ‖WV3 −V4 −D4‖2
F +

µ
2 ‖X−V5 −D5‖2

F

(11)

with 

V1 = AX
V2 = X
V3 = X

V4 = WX
V5 = X

(12)
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where µ
2 ‖AX−V1 −D1‖2

F and the other terms multiplied by the multiplier µ
2 (µ > 0) are the augmented

terms related to the terms of the main function, such as ‖V1 − Y‖2
F. D1, D2, D3, D4, D5 are also parts of

the ADMM strategy satisfying:


Dk+1

1 ← Dk
1 −AXk+1 + Vk+1

1
Dk+1

i ← Dk
i − Xk+1 + Vk+1

i (i = 2, 3, 5)
Dk+1

4 ← Dk
4 −WVk+1

3 + Vk+1
4

.

The main steps for solving the RGSU problem are listed in Algorithm 1.

Algorithm 1

(1) Initialization:

set k = 0, ε = 2e− 5, Max_Iter, λsps, λRG, and µ, and initially estimate X(0), V(0)
1 , . . . ,V(0)

5 , D(0)
1 , . . . ,

and D(0)
5 , where X0 ←

(
ATA + 3I

)−1(ATY
)

, computed with the least-squares method, V(0)
1 = AX(0),

V(0)
2 = X(0), V(0)

3 = X(0), V(0)
4 = X(0), V(0)

5 = X(0), D(0)
1 = D(0)

2 = D(0)
3 = D(0)

4 = D(0)
5 = zeros(size(X)),

and Y is the observed data.
(2) Repeat:

(2.1) The update of the abundance matrix X:

X(k+1) ←
(
ATA + 3I

)−1(ATφ1 +φ2 +φ3 +φ5
)

where φ1 = Vk
1 + Dk

1; φ2 = Vk
2 + Dk

2;
φ3 = Vk

3 + Dk
3; φ5 = Vk

5 + Dk
5; and I is the identity matrix.

(2.2) The optimization of V1, V2, V3, V4, V5:

(2.2.1)
V(k+1)

1 ← argmin
V1

1
2‖V1 − Y‖2

F +
µ
2 ‖AX(k) −V1 −D(k)

1 ‖
2

F

V(k+1)
1 ← 1

1+µ

[
Y + µ

(
AX(k) −D(k)

1

)] ;

(2.2.2)
V(k+1)

2 ← argmin
V2

λsps‖V2‖1,1 +
µ
2 ‖X(k) −V2 −D(k)

2 ‖
2

F

V(k+1)
2 ← soft

(∣∣∣D(k)
2 − X(k)

∣∣∣, λsps
µ

) ;

(2.2.3)
V(k+1)

3 ← argmin
V3

µ
2 ‖X(k) −V3 −D(k)

3 ‖
2

F +
µ
2 ‖WV3 −V(k)

4 −D(k)
4 ‖

2

F

V(k+1)
3 ←

(
WTW + I

)−1
[(

X(k) −D(k)
3

)
+ WT

(
V(k)

4 + D(k)
4

)] ;

(2.2.4)
V(k+1)

4 ← argmim
V4

λRG‖V4‖1,1 +
µ
2 ‖WV(k)

3 −V4 −D(k)
4 ‖

2

F

V(k+1)
4 ← soft

(∣∣∣D(k)
4 −WV(k)

3

∣∣∣, λRG
µ

) ;

(2.2.5)
V(k+1)

5 ← argmin
V5

ιR+(V5) +
µ
2 ‖X(k) −V5 −D(k)

5 ‖
2

F

V(k+1)
5 = max

(
X(k) −D(k)

5 , 0
) .

(2.3) Update the Lagrange multipliers:

(2.3.1)D(k+1)
1 ← D(k)

1 −AX(k+1) + V(k+1)
1 ;

(2.3.2)D(k+1)
i ← D(k)

i − X(k+1) + V(k+1)
i (i = 2, 3, 5);

(2.3.3)D(k+1)
4 ← D(k)

4 −WV(k+1)
3 + V(k+1)

4

(3) Update iteration: k← k + 1 ;
(4) Until the stopping condition is satisfied (the norm of residual is below a preset threshold ε or

the iteration is reaching the maximum number Max_Iter) and output the final abundance X.

3. Experiments and Analysis

To evaluate the performance of the proposed method, two simulated hyperspectral datasets
and two real hyperspectral images were used to illustrate the different unmixing performances.
The proposed method was compared with three state-of-the-art sparse unmixing algorithms: Sparse
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Unmixing via variable Splitting and Augmented Lagrangian (SUnSAL), Sparse Unmixing method
based on Noise Level Estimation (SU-NLE) [49], Sparse Unmixing via variable Splitting and
Augmented Lagrangian and Total Variation (SUnSAL-TV), and Non-Local Sparse Unmixing (NLSU).
The accuracy assessment of all the experiments in this paper was made by the Signal-to-Reconstruction
Error (SRE) [50], which is defined as follows:

SRE = E
[
‖x‖2

2

]
/E
[
‖x− x̂‖2

2

]
(13)

SRE(dB) = 10log10(SRE) (14)

3.1. Experimental Datasets

The first simulated dataset was generated following the methodology described in [50],
with 75 × 75 pixels and 224 bands per pixel, using randomly selected spectral signatures from library
A, which is denoted as splib06 (http://speclab.cr.usgs.gov/spectral.lib06). In addition, the abundance
sum-to-one constraint and ANC were both imposed in the simulation process. Finally, i.i.d. Gaussian
noise was added with a Signal-to-Noise Ratio (SNR) of 30 dB. In the final simulated hyperspectral
image, there were pure regions as well as mixed regions that were constructed using two to five
endmembers, distributed in different distinct square regions. The background pixels were also highly
mixed, with five endmembers. Figure 3 shows the selected spectral signatures of this dataset, as well
as the true abundance maps corresponding to the five endmembers.
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Figure 3. True fractional abundances of simulated dataset 1. (a) Five spectra; (b) True abundance images.

Simulated dataset 2, with 100 × 100 pixels and 224 bands, was provided by Dr. M. D. Iordache
and Prof. J. M. Bioucas-Dias. The fractional abundances of this dataset follow a Dirichlet distribution
uniformly over the probability simplex. Since this image exhibits a good spatial homogeneity and
can be used to verify the different effects of the spatial regularization spectral unmixing methods,
this dataset has been widely used to test many spatial sparse unmixing algorithms. Figure 4 displays
the nine spectral signatures that were used to simulate this dataset and the true abundance images.
Gaussian noise of 30 dB was also added in the data simulation process.

The first real hyperspectral remote sensing image we chose was the Cuprite dataset, which has
been widely used in hyperspectral unmixing analysis. This image was collected in 1997 from
the Cuprite mining district in west-central Nevada by the Airborne Visible InfraRed Imaging
Spectrometer (AVIRIS), and comprises 224 bands ranging from 0.4 to 2.5 µm. The spatial resolution
of this image is 20 m per pixel, which leads to the mixture of different minerals. In our experiment,
the test area was of 250 × 191 pixels, with 188 bands remaining after removing the bands of strong
water absorption and low SNR vales. The standard spectral library used for all of the sparse unmixing
algorithms was the United States Geological Survey (USGS) spectral library, which contains 498 pure
mineral signatures. After essential calibration was undertaken, the final dataset that was used in our
experiment is shown in Figure 5.

http://speclab.cr.usgs.gov/spectral.lib06
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Figure 4. True abundance maps of simulated dataset 2. (a) Endmember 1; (b) Endmember 2;
(c) Endmember 3; (d) Endmember 4; (e) Endmember 5; (f) Endmember 6; (g) Endmember 7;
(h) Endmember 8; (i) Endmember 9; and, (j) Spectral signatures.

The second real hyperspectral image (Nuance data) [51], with 50 × 50 pixels and 46 bands,
was obtained by a Nuance NIR imaging spectrometer, whose spectral wavelength ranges from
650 nm to 1100 nm, with a spectral resolution of about 10 nm. This dataset was collected in our
outdoor experiment, and the corresponding land-cover material signatures, which contain 52 materials,
were also observed and collected during the same time period. In order to undertake a quantitative
assessment, a higher spatial resolution multi-spectral image, denoted as HR (Higher-Resolution RGB
image), was also captured on the same day using a digital camera. The HR data image was of
150 × 150 pixels, with red, green, and blue bands. In our experiment, the geometrical calibration,
classification, and down-sampling were undertaken on the HR image in advance so as to obtain
the approximate reference abundance maps. The original hyperspectral image data, the spectral library
for this dataset, the HR data, and the approximate reference abundance map are shown in Figure 6.
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Figure 5. Cuprite dataset. (a) Cuprite data; (b) United States Geological Survey (USGS) mineral
spectral library.
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Figure 6. Nuance data: (a) Nuance data; (b) Spectral_lib; (c) Higher-Resolution RGB image (HR) data;
and (d) the approximate reference abundances, from left to right: dead leaves, fresh grass, background.

The basic information about the above four datasets can be concluded in Table 1, as follows,
which includes the type of sensors, image size and the corresponding number of bands, as well as
the Signal-to-Noise Ratio (SNR) values.

Table 1. Basic information about the four experimental datasets.

Datasets Simulated Dataset 1 Simulated Dataset 2 Cuprite Dataset Nuance Data

Sensor AVIRIS AVIRIS AVIRIS Nuance NIR
Image size 75 × 75 100 × 100 250 × 191 50 × 50

Number of bands 224 224 188 46
SNR value (dB) 30 30 — —

3.2. Results and Analysis

The results obtained using SUnSAL, SU-NLE, SUnSAL-TV, NLSU, and the proposed RGSU
with the two simulated datasets and the two real hyperspectral images are shown in Figures 7–10,
respectively. Qualitative and quantitative assessments were made from both visual comparisons and
SRE values. The quantitative results, as well as the parameters, are listed in Table 2.

The different estimated abundances obtained by different sparse unmixing algorithms for
simulated dataset 1 are shown in Figure 7. It can be observed that the spatial regularization based
sparse unmixing obtains significantly better results than the classical sparse unmixing method,
SUnSAL and SU-NLE. Spatial regularization based sparse unmixing approaches can strongly suppress
the wrong unmixing abundances, which illustrates the effectiveness of the spatial consideration.
When compared with SUnSAL-TV and NLSU, RGSU displays more a homogeneous background and
foreground (the small squares), which is the direct result of rolling guidance method, controlling and
preserving the structure-scales of the original hyperspectral image. Moreover, RGSU outperforms
the other methods, especially in preserving the edges of the details and suppressing the outliers
in small-scale noise. For example, as compared with SUnSAL-TV and NLSU, the square edges
of the fractional abundance map of endmember 2 obtained by RGSU are more clearly defined.
In addition, as the background of the abundance map for one specific endmember has a fixed fractional
abundance value, the ideal unmixing result for the background should be one solid color. After spatial
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consideration and the denoising-type unmixing processing, the fractional abundances that are obtained
by RGSU show the best results in Figure 7.

Figure 8 shows a visual comparison of the estimated abundance maps for simulated dataset 2.
Since this dataset exhibits a good spatial homogeneity, the different spatial regularization based
sparse unmixing methods show different processing effects. Due to the lack of spatial consideration,
the abundance maps that are obtained by SUnSAL and SU-NLE have many outliers left, which are
distributed as discrete noise points. In our simulated datasets experimental settings, since the noise
levels added to the simulated dataset are simple and the intensities of different bands are same,
the advantage of SU-NLE algorithm has not been revealed, as SU-NLE can better alleviate the impact
of different noise levels at different band during the sparse unmixing process and enhance the unmixing
performance. SUnSAL-TV, NLSU, and RGSU effectively suppress the outliers owning to the adequate
spatial consideration. However, among the different spatial regularization based sparse unmixing
approaches, RGSU obtains better unmixing results, both in suppressing the wrong unmixing points of
the background and in processing the edge changes. It can be seen that RGSU successfully handles
the different scales of structures and edges in the images.Remote Sens. 2017, 9, 218 12 of 21 
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Figure 7. Estimated abundances of endmembers 1, 2, and 5 for simulated dataset 1.
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Figure 8. Estimated abundances of endmembers 1, 2, and 5 for simulated dataset 2.

Similarly, a qualitative comparison for cuprite data between the abundance images was made
with SUnSAL, SU-NLE, SUnSAL-TV, NLSU, and RGSU for alunite and buddingtonite. Different from
the simulated datasets and the following Nuance data, due to the lack of ground truth for the Cuprite
dataset, Figure 9 just shows a visual comparison of the estimated abundance maps for this data.
The fractional abundance images obtained by RGSU are generally consistent with the abundance of
images that are obtained by the other different methods, but there are some differences in the details.
For example, the homogeneity of the RGSU result is more obvious, which can be observed in
the buddingtonite component, as the minerals locating in the background are suppressed due to the small
scale. The abundance map of alunite appears to be similar to the result of SUnSAL-TV, which preserves
more information than the abundance that is obtained by NLSU. After comprehensive analysis and
judgment, this can be attributed to the rolling guidance spatial regularization in sparse unmixing.



Remote Sens. 2017, 9, 1218 13 of 20

Remote Sens. 2017, 9, 218 14 of 21 

 

analysis and judgment, this can be attributed to the rolling guidance spatial regularization in sparse 
unmixing. 

Algorithm Alunite Buddingtonite 

SUnSAL 

  

SU-NLE 

  

SUnSAL-TV 

  

NLSU 

  

RGSU 

  

Figure 9. Estimated abundances of alunite and buddingtonite for the Cuprite dataset. 

From Figure 10, it can be observed that the fractional abundance maps that are obtained by 
NLSU and the proposed RGSU are quite similar, especially in the homogeneous regions, such as the 
area of the leaves in component 1 or the background in component 3. However, since RGSU deals 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
 

0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.05

0.1

0.15
 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.02

0.04

0.06

0.08

0.1

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0

0.05

0.1

0.15
 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0

0.02

0.04

0.06

0.08

0.1

 

0

0.02

0.04

0.06

0.08

0.1

Figure 9. Estimated abundances of alunite and buddingtonite for the Cuprite dataset.

From Figure 10, it can be observed that the fractional abundance maps that are obtained by
NLSU and the proposed RGSU are quite similar, especially in the homogeneous regions, such as
the area of the leaves in component 1 or the background in component 3. However, since RGSU deals
with spatial information in different ways, it exploits different structures, as well as different scales



Remote Sens. 2017, 9, 1218 14 of 20

differently. For example, in the background of component 3, there are some details of the thin leaves
with low fractional abundance values in the NLSU result, while these small differences are wiped off
and the significant edges are clearly preserved in the result of RGSU. When compared with RGSU
and NLSU, the abundances of SUnSAL, SU-NLE, and SUnSAL-TV both reveal obvious defects and
limitations. Hence, the scale-aware rolling guidance based sparse unmixing algorithm shows some
advantages over the traditional spatial regularization based sparse unmixing approaches.
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Figure 10. Estimated abundances of different components for the Nuance data.
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Table 2. Performance comparison for the different methods with the three datasets.

Data SUnSAL SU-NLE SUnSAL-TV NLSU RGSU

Simulated
dataset 1

SRE
(dB)

15.1471
(λsps = 1e− 3)

15.7062
(λ = 1)

25.8333
(λsps = 1e− 5;
λtv = 3e− 2)

29.6743
(λsps = 5e− 1;

λspt = 300; µ = 4.1;
h = 0.05)

33.3420
(λsps = 1e− 3;

λspt = 1e− 3; µ = 3;
h = 0.001)

Time(s) 0.4281 13.0313 30.4375 19.5000 47.5469

Simulated
dataset 2

SRE
(dB)

15.8856
(λsps = 5e− 4)

15.88
(λ = 1)

18.7186
(λsps = 1e− 5;
λtv = 1e− 2)

21.3335
(λsps = 5e− 2;

λspt = 300; µ = 0.4;
h = 0.05)

23.4529
(λsps = 5e− 2;

λspt = 10; µ = 0.85;
h = 0.001)

Time(s) 2.7813 50.9219 62.7969 39.3750 88.5000

Nuance
data

SRE
(dB)

4.9281
(λsps = 500)

4.8570
(λ = 10)

5.3092
(λsps = 200;
λtv = 500)

6.0017
(λsps = 1e− 3;

λspt = 300; µ = 140;
h = 0.5)

6.0385
(λsps = 5e− 2;

λspt = 30;
µ = 145;h = 0.3)

Time(s) 2.9219 3.6563 4.4531 12.2188 24.3146

Note: The highest SRE values in the table are marked with bold.

Table 2 displays a quantitative comparison of SUnSAL, SU-NLE, SUnSAL-TV, NLSU, and RGSU
for the above three datasets, i.e., simulated dataset 1, simulated dataset 2, and the Nuance data.
Since there is no reference abundance map or ground truth for Cuprite dataset, Nuance data is
set as an example for real hyperspectral dataset and the fractional abundances that are obtained
by Cuprite data are just for qualitative comparison between the abundance images by applying
different sparse unmixing methods. When compared with the classical sparse unmixing method,
the spatial regularization based sparse unmixing methods obtain a much better unmixing accuracy with
significantly higher SRE values. For example, for simulated dataset 1, the SRE values of the SUnSAL
and SU-NLE algorithm are around 15 dB, while the SRE values increases to 30 dB after taking
spatial information into consideration. Meanwhile, the different spatial regularization approaches
lead to different spatial consideration and different spatial sparse unmixing effects. The TV-based
spatial regularization sparse unmixing methods are better able to extract the spatial homogeneity
of the first-order pixel neighborhood system, and the nonlocal TV-based spatial sparse unmixing
algorithm accounts for all of the possible self-predictions of the similar sparse distributions. These two
methods both incorporate spatial information of the abundance images into the sparse unmixing
process, but the different methods both have their limitations. The proposed rolling guidance based
sparse unmixing algorithm reconsiders the spatial information in the form of scale, and the quantitative
results demonstrate the advantages over the TV-based and nonlocal TV-based sparse unmixing
methods, especially in the datasets with significant scale differences. In the quantitative comparison,
the proposed method has obtained higher SRE values and the highest increase is about 3.6677 dB when
compared with the NLSU algorithm. The visual effects are also constant with the quantitative results.

The running times of the different algorithms for these three datasets are also provided in
Table 2 with an Intel Core i7-6700 CPU @3.4 GHz and 16 GB RAM, using MATLAB R2014a.
Since the different coding strategies would lead to different running times, Table 2 just gives us
a relative time consumption. From this table, it can be observed that the proposed algorithm, RGSU,
needs more time to compute structure-scale values. In future work, more study should be made to
enhance the computational efficiency of the proposed method.

3.3. Sensitivity Analysis

3.3.1. Discussion on Sensitivity Analysis for the Inner Parameters, v and r

In the proposed method, there are two important inner parameters in the rolling guidance
scale-aware spatial regularization term, v and r, where v is denoted as the scale parameter and r is
used to define the weight of the intensity decrease degree. Different values of the scale parameter
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affect the spatial extraction performance and the different weights of intensity decrease degree lead
to different spatial processing results. To better understand the effect of these two parameters,
we analyzed the selection of v and r with simulated dataset 1. The SRE (dB) values obtained with
the different combinations of v and r for RGSU are shown in Figure 11, with multiple color-map
surfaces. The three-dimensional (3D) color-map surfaces represent the different results of the different
combinations of v and r in this algorithm.

Remote Sens. 2017, 9, 218 17 of 21 

 

3.3. Sensitivity Analysis 

3.3.1. Discussion on Sensitivity Analysis for the Inner Parameters, v and r 

In the proposed method, there are two important inner parameters in the rolling guidance scale-
aware spatial regularization term, v and r, where v is denoted as the scale parameter and r is used to 
define the weight of the intensity decrease degree. Different values of the scale parameter affect the 
spatial extraction performance and the different weights of intensity decrease degree lead to different 
spatial processing results. To better understand the effect of these two parameters, we analyzed the 
selection of v and r with simulated dataset 1. The SRE (dB) values obtained with the different 
combinations of v and r for RGSU are shown in Figure 11, with multiple color-map surfaces. The 
three-dimensional (3D) color-map surfaces represent the different results of the different 
combinations of v and r in this algorithm. 

 
Figure 11. Signal-to-Reconstruction Error (SRE) (dB) values of RGSU with different combinations of 
inner parameters v and r. 

The relationship between the SREs and these two inner parameters is shown in Figure 11. This 
figure gives us empirical ranges for these two important inner parameters, i.e., parameter v should 
be set around 3 and parameter r should be set around 0.01. In our experiments, parameters v and r 
were set around 3 and 0.01, respectively, which controls the extraction scales of spatial details and 
the intensity decrease degree in spatial scale recovery process. In our future research, an adaptive 
method of parameter selection will be studied and developed to enhance the scale-aware spatial 
regularization based sparse unmixing method. 

3.3.2. Discussion on Sensitivity Analysis for the Regularization Parameters, λsps and λRG 

In spatial regularization based sparse unmixing approaches, there are always two regularization 
parameters, λsps and λRG, which play important roles in the objective functions. As they can tradeoff 
the weights of the different terms, it is a necessary step to properly set these two values. Figure 12 
analyzes the impact of these two parameters with a series of different combination of λsps and λRG in 
the RGSU algorithm for the simulated dataset 1 as an example. 

As shown in Figure 12, it can be observed that the best combination of parameters, λsps and λRG 
in RGSU with simulated dataset 1 can be chosen in a wide range for simulated dataset 1, and most of 
them lead to relatively optimal SRE dB values of about 33.30 dB. However, improper combination of 
these two regularization might also fail to obtain normal solution, 12.40 dB or 15.04 dB, for example. 
Because of the small number and the locations of the abnormal values, it is not quite obvious in Figure 
12. Since different datasets may have different characters in real circumstances, to achieve a relatively 
better quantitative results, or higher SRE dB values, and to exploit the more precisely scale spatial 
information, appropriate regularization parameters’ combination should be chosen according to the 
quality of hyperspectral imagery, as well as the spatial information in the scene. 

1

2

3

4

5

10

15

20

25

30

1E-3

0.01

0.1

1

SR
E

rv

9.900

12.83

15.75

18.68

21.60

24.53

27.45

30.38

33.30

Figure 11. Signal-to-Reconstruction Error (SRE) (dB) values of RGSU with different combinations of
inner parameters v and r.

The relationship between the SREs and these two inner parameters is shown in Figure 11.
This figure gives us empirical ranges for these two important inner parameters, i.e., parameter v
should be set around 3 and parameter r should be set around 0.01. In our experiments, parameters v
and r were set around 3 and 0.01, respectively, which controls the extraction scales of spatial details
and the intensity decrease degree in spatial scale recovery process. In our future research, an adaptive
method of parameter selection will be studied and developed to enhance the scale-aware spatial
regularization based sparse unmixing method.

3.3.2. Discussion on Sensitivity Analysis for the Regularization Parameters, λsps and λRG

In spatial regularization based sparse unmixing approaches, there are always two regularization
parameters, λsps and λRG, which play important roles in the objective functions. As they can tradeoff
the weights of the different terms, it is a necessary step to properly set these two values. Figure 12
analyzes the impact of these two parameters with a series of different combination of λsps and λRG in
the RGSU algorithm for the simulated dataset 1 as an example.

As shown in Figure 12, it can be observed that the best combination of parameters, λsps and λRG
in RGSU with simulated dataset 1 can be chosen in a wide range for simulated dataset 1, and most of
them lead to relatively optimal SRE dB values of about 33.30 dB. However, improper combination of
these two regularization might also fail to obtain normal solution, 12.40 dB or 15.04 dB, for example.
Because of the small number and the locations of the abnormal values, it is not quite obvious in
Figure 12. Since different datasets may have different characters in real circumstances, to achieve a
relatively better quantitative results, or higher SRE dB values, and to exploit the more precisely scale
spatial information, appropriate regularization parameters’ combination should be chosen according
to the quality of hyperspectral imagery, as well as the spatial information in the scene.
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Figure 12. Sensitivity analysis for regularization parameters λsps and λRG in RGSU algorithm with
simulated dataset 1.

3.3.2.1. Discussion on Sensitivity Analysis for the Lagrangian Multiplier, µ

The Lagrangian multiplier µ is also an important inner parameter in solving the spatial
regularization sparse unmixing algorithm with alternating direction method of multipliers (ADMM)
strategy. To better understand the effect of the Lagrangian multiplier, we have also analyzed
the selection of the Lagrangian multiplier parameter µ with simulated dataset 1. The quantitative
results measured by SRE dB values that are obtained with different values of µ for RGSU are shown in
Figure 13.

It can be noticed from Figure 13 that the SRE dB values are the highest when µ is set as 4,
as compared with the other values. For simulated dataset 1, the performance of RGSU algorithm seems
poorly when µ is set as a small value, such as 0.1 or 0.3. In the experimental settings, to achieve a good
result, multiple attempts should be made according to the feedbacks.
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Figure 13. Sensitivity analysis for the Lagrangian multiplier, µ in RGSU with simulated dataset 1.

4. Conclusions

In this paper, a Rolling Guidance based Sparse Unmixing algorithm, namely RGSU, has been
proposed for hyperspectral remote sensing imagery. In RGSU, a scale-aware spatial regularization
model, the rolling guidance spatial consideration method is designed as the spatial regularization
term to utilize the extraction or recovery of spatial information in the unmixing procedure. Differing
from the previous spatial regularization based sparse unmixing methods, such as TV-based sparse
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unmixing or the nonlocal sparse unmixing method, RGSU considers the different levels of details by
controlling the structure and outlier removal and the edge/detail recovery. This method combines
a Gaussian filter-like approach to realize the small-scale structure removal and a joint bilateral
filtering process to account for the spatial domain and range domain correlations. The experimental
results that are obtained using both simulated datasets and real hyperspectral images confirm
the effectiveness of the proposed algorithm, which outperforms the other spatial regularization
based methods in controlling the different scales of spatial information. RGSU can obtain better
visual effects, and a higher SRE quantitative evaluation result than the current state-of-the-art sparse
unmixing algorithms.

Acknowledgments: The authors would like to thank the research group supervised by J. M. Bioucas-Dias and
A. Plaza for sharing the simulated datasets and the source code of the latest sparse algorithms with the community,
together with the free downloads of the AVIRIS image data. The author would also like to thank C. Li and J. Ma for
sharing their latest sparse unmixing algorithm source code and their good suggestions as to how we could improve
our paper. The author also highly appreciate the time and consideration of the editors and four anonymous referees
for their constructive suggestions that greatly improved the paper. This work was supported by the Fundamental
Research Funds for the Central Universities, China University of Geosciences (Wuhan) (grant No. CUG170625);
and the National Natural Science Foundation of China (grant No. 41701429 and 41371344).

Author Contributions: All the authors made significant contributions to the work. Ruyi Feng, Wenjuan Lin and
Yanfei Zhong designed the research, analyzed the results, and accomplished the validation work. Lizhe Wang
provided advice for the preparation and revision of the paper.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; and in
the decision to publish the results.

References

1. Tong, Q.; Xue, Y.; Zhang, L. Progress in hyperspectral remote sensing science and technology in China over
the past three decades. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 70–91. [CrossRef]

2. Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.M.; Chanussot, J. Hyperspectral
remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [CrossRef]

3. Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.;
Fauvel, M.; Gamba, P.; Gualtieri, A.; et al. Recent advances in techniques for hyperspectral image processing.
Remote Sens. Environ. 2009, 113, 110–122. [CrossRef]

4. Ghasrodashti, E.K.; Karami, A.; Heylen, R.; Scheunders, P. Spatial resolution enhancement of hyperspectral
images using spectral unmixing and Bayesian sparse representation. Remote Sens. 2017, 9, 154. [CrossRef]

5. Xu, X.; Tong, X.; Plaza, A.; Zhong, Y.; Xie, H.; Zhang, L. Joint sparse sub-pixel mapping model with
endmember variability for remote sensing imagery. Remote Sens. 2017, 9, 15. [CrossRef]

6. Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral
unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2012, 5, 354–379. [CrossRef]

7. Wei, Q.; Chen, M.; Tourneret, J.Y.; Godsill, S. Unsupervised nonlinear spectral unmixing based on a
multilinear mixing model. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4534–4544. [CrossRef]

8. Iordache, M.D.; Bioucas-Dias, J.M.; Plaza, A. Sparse unmixing of hyperspectral data. IEEE Trans. Geosci.
Remote Sens. 2011, 49, 2014–2039. [CrossRef]

9. Heinz, D.C.; Chang, C.-I. Fully constrained least squares linear spectral mixture analysis method for material
quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 529–545. [CrossRef]

10. Kizel, F.; Shoshany, M.; Netanyahu, A.S.; Even-Tzur, G.; Benediktsson, J.A. A stepwise analytical projected
gradient descent search for hyperspectral unmixing and its code vectorization. IEEE Trans. Geosci. Remote
Sens. 2017, 55, 4923–4925. [CrossRef]

11. Xu, M.; Du, B.; Zhang, L. Spatial-spectral information based abundance-constrained endmember extraction
methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2004–2015. [CrossRef]

12. Williams, M.; Kerekes, J.P.; Aardt, J. Application of abundance map reference data for spectral unmixing.
Remote Sens. 2017, 9, 793. [CrossRef]

http://dx.doi.org/10.1109/JSTARS.2013.2267204
http://dx.doi.org/10.1109/MGRS.2013.2244672
http://dx.doi.org/10.1016/j.rse.2007.07.028
http://dx.doi.org/10.3390/rs9060541
http://dx.doi.org/10.3390/rs9010015
http://dx.doi.org/10.1109/JSTARS.2012.2194696
http://dx.doi.org/10.1109/TGRS.2017.2693366
http://dx.doi.org/10.1109/TGRS.2010.2098413
http://dx.doi.org/10.1109/36.911111
http://dx.doi.org/10.1109/TGRS.2017.2692999
http://dx.doi.org/10.1109/JSTARS.2013.2268661
http://dx.doi.org/10.3390/rs9080793


Remote Sens. 2017, 9, 1218 19 of 20

13. Ma, W.K.; Bioucas-Dias, J.M.; Tsung-Han, C.; Gillis, N.; Gader, P.; Plaza, A.; Ambikapathi, A.; Chong-Yung, C.
A signal processing perspective on hyperspectral unmixing: Insights from remote sensing. IEEE Signal
Process. Mag. 2014, 31, 67–81. [CrossRef]

14. Ammanouil, R.; Ferrari, A.; Richard, C.; Mary, D. Blind and fully constrained unmixing of hyperspectral
images. IEEE Trans. Image Process. 2014, 23, 5510–5518. [CrossRef] [PubMed]

15. Qian, Y.; Xiong, F.; Zeng, S.; Zhou, J.; Tang, Y. Matrix-vector nonnegative tensor factorization for blind
unmixing of hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1776–1792. [CrossRef]

16. Jia, S.; Qian, Y. Spectral and spatial complexity-based hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens.
2007, 45, 3867–3879.

17. Lu, X.; Wu, H.; Yuan, Y.; Yan, P.; Li, X. Manifold regularized sparse NMF for hyperspectral unmixing.
IEEE Trans. Geosci. Remote Sens. 2013, 51, 2815–2826. [CrossRef]

18. Salehani, Y.E.; Gazor, S.; Kim, I.-K.; Yousefi, S. l0-norm sparse hyperspectral unmixing using arctan smoothing.
Remote Sens. 2016, 8, 187. [CrossRef]

19. Iordache, M.D.; Bioucas-Dias, J.M.; Plaza, A. Collaborative sparse regression for hyperspectral unmixing.
IEEE Trans. Geosci. Remote Sens. 2014, 52, 341–354. [CrossRef]

20. Iordache, M.D.; Bioucas-Dias, J.M.; Plaza, A.; Somers, B. MUSIC-CSR: Hyperspectral Unmixing via Multiple
Signal Classification and Collaborative Sparse Regression. IEEE Trans. Geosci. Remote Sens. 2014, 52,
4364–4382. [CrossRef]

21. Ma, Y.; Li, C.; Mei, X.; Liu, C.; Ma, J. Robust sparse hyperspectral umixing with l2,1-norm. IEEE Trans. Geosci.
Remote Sens. 2017, 55, 1227–1239. [CrossRef]

22. Boardman, J.W.; Kruse, F.A.; Green, R.O. Mapping target signatures via partial unmixing of AVIRIS
data. In Proceedings of the Fifth Annual JPL Airborne Earth Science Workshop, Pasadena, CA, USA,
23–26 January 1995.

23. Winter, M.E. N-FINDR: An algorithm for fast autonomous spectral end-member determination in
hyperspectral data. Proc. SPIE 2003, 3753, 266–275.

24. Nascimento, J.M.P.; Bioucas-Dias, J.M. Does independent component analysis play a role in unmixing
hyperspectral data? IEEE Trans. Geosci. Remote Sens. 2005, 43, 175–187. [CrossRef]

25. Miao, L.; Qi, H. Endmember extraction from highly mixed data using minimum volume constrained
nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens. 2007, 45, 765–777. [CrossRef]

26. Zhong, Y.; Wang, X.; Zhao, L.; Feng, R.; Zhang, L.; Xu, Y. Blind spectral unmixing based on sparse component
analysis for hyperspectral remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2016, 119, 49–63.
[CrossRef]

27. Bioucas-Dias, J.M.; Figueiredo, M. Alternating direction algorithms for constrained sparse regression:
Application to hyperspectral unmixing. In Proceedings of the 2nd IEEE GRSS Workshop on Hyperspectral
Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Reykjavik, Iceland, 14–16 June 2010.

28. Iordache, M.D.; Bioucas-Dias, J.M.; Plaza, A. Total variation spatial regularization for sparse hyperspectral
unmixing. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4484–4502. [CrossRef]

29. Zhong, Y.; Feng, R.; Zhang, L. Non-local sparse unmixing for hyperspectral remote sensing imagery. IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1889–1909. [CrossRef]

30. Altmann, Y.; Pereyra, M.; Bioucas-Dias, J.M. Collaborative sparse regression using spatially correlated
supports-application to hyperspectral unmixing. IEEE Trans. Image Process. 2015, 24, 5800–5811. [CrossRef]
[PubMed]

31. Li, C.; Ma, Y.; Mei, X.; Liu, C.; Ma, J. Hyperspectral unmixing with robust collaborative sparse regression.
Remote Sens. 2016, 8, 588. [CrossRef]

32. Feng, R.; Zhong, Y.; Zhang, L. Adaptive spatial regularization sparse unmixing strategy based on joint MAP
for hyperspectral remote sensing imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5791–5805.
[CrossRef]

33. Rudin, L.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithm. Phys. D 1992, 60,
259–268. [CrossRef]

34. Haralick, R.M.; Sternbery, S.R.; Zhuang, X. Image analysis using mathematical morphology. IEEE Trans.
Pattern Anal. Mach. Intell. 1987, PAMI-9, 532–550. [CrossRef]

35. Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. 2005, 2, 60–65.

http://dx.doi.org/10.1109/MSP.2013.2279731
http://dx.doi.org/10.1109/TIP.2014.2362056
http://www.ncbi.nlm.nih.gov/pubmed/25312929
http://dx.doi.org/10.1109/TGRS.2016.2633279
http://dx.doi.org/10.1109/TGRS.2012.2213825
http://dx.doi.org/10.3390/rs8030187
http://dx.doi.org/10.1109/TGRS.2013.2240001
http://dx.doi.org/10.1109/TGRS.2013.2281589
http://dx.doi.org/10.1109/TGRS.2016.2616161
http://dx.doi.org/10.1109/TGRS.2004.839806
http://dx.doi.org/10.1109/TGRS.2006.888466
http://dx.doi.org/10.1016/j.isprsjprs.2016.04.008
http://dx.doi.org/10.1109/TGRS.2012.2191590
http://dx.doi.org/10.1109/JSTARS.2013.2280063
http://dx.doi.org/10.1109/TIP.2015.2487862
http://www.ncbi.nlm.nih.gov/pubmed/26452285
http://dx.doi.org/10.3390/rs8070588
http://dx.doi.org/10.1109/JSTARS.2016.2570947
http://dx.doi.org/10.1016/0167-2789(92)90242-F
http://dx.doi.org/10.1109/TPAMI.1987.4767941


Remote Sens. 2017, 9, 1218 20 of 20

36. Zhang, Q.; Shen, X.; Xu, L.; Jia, J. Rolling guidance filter. Proc. Eur. Conf. Comput. Vis. 2014, 8691, 815–830.
37. Xia, J.; Bombrun, L.; Adali, T.; Berthoumieu, Y.; Germain, C. Classification of hyperspectral data with

ensemble of subspace ICA and edge-preserving filtering. In Proceedings of the 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 20–25 March 2016.

38. Lillo-Saavedra, M.; Gonzalo-Martin, C.; Garcia-Pedrero, A.; Lagos, O. Scale-aware pansharpening algorithm
for agricultural fragmented landscapes. Remote Sens. 2016, 8, 870. [CrossRef]

39. Wang, P.; Fu, X.; Tong, X.; Liu, S.; Guo, B. Rolling guidance normal filter for geometric processing. ACM Trans.
Graphics (TOG) 2015, 34, 173. [CrossRef]

40. Feng, R.; Zhong, Y.; Zhang, L. Adaptive non-local Euclidean medians sparse unmixing for hyperspectral
imagery. ISPRS J. Photogramm. Remote Sens. 2014, 97, 9–24. [CrossRef]

41. Li, X.; Wang, G. Optimal band selection for hyperspectral data with improved differential evolution.
J. Ambient Intel. Hum. Comput. 2015, 6, 675–688. [CrossRef]

42. Pan, S.; Wu, J.; Zhu, X.; Zhang, C. Graph ensemble boosting for imbalanced noisy graph stream classification.
IEEE Trans. Cybern. 2015, 45, 954–968.

43. Wang, L.; Song, W.; Liu, P. Link the remote sensing big data to the image features via wavelet transformation.
Cluster Comput. 2016, 19, 793–810. [CrossRef]

44. Lindeberg, T. Scale-space theory: A basic tool for analyzing structures at different scales. J. Appl. Stat. 1994,
21, 225–270. [CrossRef]

45. Tomasi, C.; Manduchi, R. Bilateral filtering for grey and color images. In Proceedings of the Sixth
International Conference on Computer Vision, Bombay, India, 7 January 1998; pp. 839–846.

46. Kang, X.; Li, S.; Benediktsson, A. Spectral-spatial hyperspectral image classification with edge-preserving
filtering. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2666–2677. [CrossRef]

47. Wu, J.; Wu, B.; Pan, S.; Wang, H.; Cai, Z. Locally weighted learning: How and when does it work in bayesian
networks? Int. J. Comput. Int. Sys. 2015, 8, 63–74. [CrossRef]

48. Wu, J.; Pan, S.; Zhu, X.; Cai, Z.; Zhang, P.; Zhang, C. Self-adaptive attribute weighting for Naive Bayes
classification. Expert Syst. Appl. 2015, 42, 1478–1502. [CrossRef]

49. Li, C.; Ma, Y.; Mei, X.; Fan, F.; Huang, J.; Ma, J. Sparse unmixing of hyperspectral data with noise level
estimation. Remote Sens. 2017, 9, 1166. [CrossRef]

50. Iordache, M.D. A Sparse Regression Approach to Hyperspectral Unmixing. Ph.D. Thesis, School of Electrical
and Computer Engineering, Ithaca, NY, USA, 2011.

51. Xu, X.; Zhong, Y.; Zhang, L.; Zhang, H. Sub-pixel mapping based on a MAP model with multiple shifted
hyperspectral imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 580–593. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs8100870
http://dx.doi.org/10.1145/2816795.2818068
http://dx.doi.org/10.1016/j.isprsjprs.2014.07.009
http://dx.doi.org/10.1007/s12652-015-0285-8
http://dx.doi.org/10.1007/s10586-016-0569-6
http://dx.doi.org/10.1080/757582976
http://dx.doi.org/10.1109/TGRS.2013.2264508
http://dx.doi.org/10.1080/18756891.2015.1129579
http://dx.doi.org/10.1016/j.eswa.2014.09.019
http://dx.doi.org/10.3390/rs9111166
http://dx.doi.org/10.1109/JSTARS.2012.2227246
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Rolling Guidance Based Spatial Sparse Unmixing 
	Spatial Sparse Unmixing 
	Rolling Guidance Spatial Regularization Model 
	Rolling Guidance Based Spatial Sparse Unmixing 

	Experiments and Analysis 
	Experimental Datasets 
	Results and Analysis 
	Sensitivity Analysis 
	Discussion on Sensitivity Analysis for the Inner Parameters, v and r 
	Discussion on Sensitivity Analysis for the Regularization Parameters, sps and RG 


	Conclusions 

