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Abstract: Land cover mapping in mountainous areas is a notoriously challenging task due to
the rugged terrain and high spatial heterogeneity of land surfaces as well as the frequent cloud
contamination of satellite imagery. Taking Southwestern China (a typical mountainous region) as
an example, this paper established a new HC-MMK approach (Hierarchical Classification based on
Multi-source and Multi-temporal data and geo-Knowledge), which was especially designed for land
cover mapping in mountainous areas. This approach was taken in order to generate a 30 m-resolution
land cover product in Southwestern China in 2010 (hereinafter referred to as CLC-SW2010). The
multi-temporal native HJ (HuanJing, small satellite constellation for disaster and environmental
monitoring) CCD (Charge-Coupled Device) images, Landsat TM (Thematic Mapper) images and
topographical data (including elevation, aspect, slope, etc.) were taken as the main input data sources.
Hierarchical classification tree construction and a five-step knowledge-based interactive quality
control were the major components of this proposed approach. The CLC-SW2010 product contained
six primary categories and 38 secondary categories, which covered about 2.33 million km2 (accounting
for about a quarter of the land area of China). The accuracies of primary and secondary categories
for CLC-SW2010 reached 95.09% and 87.14%, respectively, which were assessed independently by a
third-party group. This product has so far been used to estimate the terrestrial carbon stocks and
assess the quality of the ecological environments. The proposed HC-MMK approach could be used
not only in mountainous areas, but also for plains, hills and other regions. Meanwhile, this study
could also be used as a reference for other land cover mapping projects over large areas or even the
entire globe.

Keywords: land cover mapping; hierarchical classification; knowledge; quality control; multi-source
data; HC-MMK approach; CLC-SW2010 product; Southwestern China
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1. Introduction

Land cover data is essential for a variety of studies such as global change [1,2], ecological
environments [3,4] and resource management. It plays a critical role in improving the performance
of hydrological, ecological, biogeochemical and atmospheric models [5]. Satellite remote sensing
has been widely applied and recognized as a powerful and effective tool for producing land cover
products [6]. A series of land cover products at global and regional scales, such as the IGBP-DIS global
1-km land cover product [7], MODIS global 500-m land cover product (MCD12Q1) [8], GlobCover 2009
at 300 m-resolution [9], global 30-m land cover products (FROM-GLC [5,10] and GlobeLand30 [11])
and Chinese land use datasets at 1:100,000 scale (CLUDs) [12,13], have been derived from remotely
sensed data in response to the policy- and science-driven need for land cover data. Currently, land
cover products at 30 m-resolution over large regions or even the globe are highlighted, since most
significant human activities on the land surface can be captured at this scale [11,14]. However, the
spatial agreement of multiple existing land cover products tends to be low in regions with complex,
heterogeneous land cover [15]. Especially in mountainous areas, severe challenges arise for land cover
mapping, such as the rugged terrain, the high spatial heterogeneity of land surfaces and the frequent
cloud contamination of satellite imagery [16], having an enormous impact on scientific research and
applications related to land cover over mountainous areas.

Multi-temporal satellite imagery can improve our ability to distinguish between vegetation types
by leveraging variability in phenological patterns across the landscape [17,18], such as distinguishing
between evergreen forests and deciduous forests [19] and identifying rubber plantations from natural
forests [20]. It is natural to consider the use of multi-temporal satellite imagery in enhancing the quality
of land cover products over mountainous areas with a wide variety of vegetation heterogeneities. The
Landsat TM image is ideal input data for 30 m-resolution land cover mapping due to its long-term
archive (over four decades) [21] and free availability. The native HJ-CCD sensors have a distinct
advantage to acquire more high-quality satellite images due to the wide range (700 km ˆ 700 km)
and short repeat cycle (2–4 days) [22,23]. Meanwhile, they have the same spatial resolution (30 m)
and similar spectrum range in the visible and near-infrared band [24]. Therefore, the combination
of Landsat TM images and native HJ-CCD images offers a feasible approach for the collection
of multi-temporal satellite images needed for 30 m-resolution land cover mapping over largely
mountainous areas.

The spatial distribution of some land cover classes in mountainous areas often follow certain
geographical rules and is constrained by various topographical factors (such as elevation, aspect and
slope). For example, the distribution of natural vegetation displays distinct vertical stratification in
mountainous areas, while the distribution of cropland is constrained by terrain slope, and the tree
line represents the highest elevation that forests can grow. These rules and topographical factors
play an important role in improving the accuracy of land cover mapping in mountainous areas [16].
Meanwhile, some existing thematic maps (such as land use maps, vegetation maps and soil maps), field
photos and records, as well as relevant research results and statistical data could also provide some
useful information for enhancing the quality of land cover products from different perspectives. We
refer to these rules and information as geo-knowledge in this paper. Although geo-knowledge is central
to decision-making and discovering classification errors for land cover mapping in mountainous areas,
how to translate this geo-knowledge into computer language and maximize its potential is a practical
problem. Additionally, due to the high spatial heterogeneity and rugged terrain, the geographical
rules vary from region to region, and it is advisable to try to construct an optimal rule for each region.
Moreover, uncertainties and errors are inevitable for various auxiliary data, and how to make best use
of them and avoid any negative impacts caused by such uncertainties needs to be considered.

Pixel-based and object-oriented classification are two different approaches for land cover mapping.
The object-oriented classification method was found to be able to avoid the “Salt and Pepper Noise”
often existing in pixel-based classification results [25], taking fully into consideration spectral, shape
and texture features [26] as well as topographical features, and produced more accurate land cover
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products in highly heterogeneous areas. Most importantly, it will be the optimal classification method
for the next generation of global land cover products [5,14]. This study should be treated as a
reference for other object-oriented land cover mapping projects over large areas or even the globe in
the future. Currently, many artificial intelligence algorithms have been applied in the field of land
cover mapping, such as Support Vector Machine [27,28], decision tree [29], neural network [30] and
genetic algorithms [31]. In these algorithms, decision tree is a “white box” model, and this helps to
understand the relationship between the inputs and outputs. Meanwhile, it provides a convenient way
to represent the geographical rules used in classification. Therefore, the object-oriented classification
approach and the decision tree algorithm were chosen for land cover mapping in mountainous areas.

Since 2010, the Chinese government has launched the Strategic Priority Research Program
“Climate Change: Carbon Budget and Relevant Issues” (hereinafter referred to as “Carbon Special
Program”) [32] and “National Ecosystem Survey and Assessment of China (2000–2010)” Project
(hereinafter referred to as “Ecological Decade Project”) [33], aiming to answer relevant scientific
questions about the terrestrial carbon budget and to assess the quality of eco-environments in China.
Southwestern China, where more than 90% of land is mountains and hills, is one of the core regions
in the Carbon Special Program and Ecological Decade Project due to its enormous carbon storage
capacities and a fragile ecological environment. The specific objectives of this research were to
(1) develop an operable object-oriented land cover hierarchical classification method based on the
multi-source and multi-temporal satellite images for the largely mountainous area; (2) provide an
interactive quality control approach based on a variety of geo-knowledge to further improve the
quality of land cover products over mountainous areas; and (3) generate a new 30 m-resolution land
cover product in Southwestern China (CLC-SW2010) based on the proposed approach according to a
pre-defined time schedule.

2. Study Area

Southwestern China (78˝251–110˝211E, 21˝091–36˝321N) in this study includes the Chongqing
municipality, the Sichuan, Yunnan and Guizhou provinces and the Tibet autonomous region (Figure 1),
with an area of 2.33 million km2, accounting for about a quarter of the total land area of China. It
is bordered by Vietnam, Laos, Myanmar, India and Bhutan to the south, India and Nepal to the
west, Xinjiang, Qinghai, Gansu and Shanxi provinces to the north, and the Guangxi, Hunan and
Hubei provinces of China to the east. Southwestern China is one of most complicated terrain sections,
including plateaus, mountains, hills, basins and plains, and can be divided into four geomorphic
units: Qing-Tibet plateau, Hengduan mountain, Yunnan-Guizhou plateau and Sichuan basin [34]. The
elevation ranges from less than 500 m (Yangtze River) to 8844 m (Mt. Everest in Qing-Tibet plateau) in
this region. There are various types of climates in this area, mainly subtropical, temperate and alpine
climates. A variety of land cover types and distinct vertical stratification of vegetation classes can be
found in this place.

3. Methodology

3.1. Overall Description

A new HC-MMK approach (Hierarchical Classification based on Multi-source and Multi-temporal
data and geo-Knowledge) was proposed in this study to produce the 30 m-resolution CLC-SW2010
product, which is essentially an object-oriented classification method. The multi-source and
multi-temporal satellite images and field data were firstly collected and preprocessed. After
object-oriented multiresolution segmentation, a series of hierarchical classification trees for each
mapping unit were built by decision tree algorithm and were then conducted to produce the
preliminary classification results. Then, five-step knowledge-based interactive quality control was used
to further improve the quality of classification results. The CLC-SW2010 product was independently
validated by a third-party group. The construction of hierarchical classification trees and the five-step
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knowledge-based interactive quality control are the major components of this proposed approach. The
flowchart of this proposed approach can be seen in Figure 2.
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3.2. Land Cover Classification System

The classification system of China land cover for carbon budget [35] was adopted in this study,
which includes two levels (Table 1). The first level has six land cover classes, including woodlands,
grasslands, wetlands, croplands, artificial surface lands and bare lands. The basic 38 classes at the
second level are formed by taking into full consideration the interpretation abilities of satellite imagery
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and the application demands of the Carbon Special Program and Ecological Decade Project. The land
cover classes in this system are able to easily reorganize according to application requirements, and
also are compatible with international land cover classification systems, such as FAO LCCS [35]. For
more details on each land cover class, refer to the article by Zhang et al. [35].

Table 1. Land cover classification system of the CLC-SW2010 product.

Code I Category I Code II Category II Code I Category I Code II Category II

1 Woodlands

101 Evergreen Broadleaf Forests

3 Wetlands

34 Lakes
102 Deciduous Broadleaf Forests 35 Reservoirs
103 Evergreen Needleleaf Forests 36 Rivers
104 Deciduous Needleleaf Forests 37 Canals

105 Mixed Forests 4 Croplands 41 Paddy Fields
106 Evergreen Broadleaf Shrubs 42 Dry Lands

107 Deciduous Broadleaf Shrubs

5
Artificial
Surface
Lands

51 Residential Lands
108 Evergreen Needleleaf Shrubs 52 Industrial Lands
109 Woody Plantations 53 Transportation Lands
110 Shrub Plantations 54 Mineral Land

111 Woody Greenland

6 Bare Lands

61 Sparse Forests
112 Shrub Greenland 62 Sparse Shrubs

2 Grasslands

21 Meadows 63 Sparse Grasslands
22 Steppes 64 Lichens/Mosses
23 Herbosa 65 Bare Rocks
24 Herbaceous Greenland 66 Bare Soils

3 Wetlands
31 Woody Wetlands 67 Deserts
32 Shrub Wetlands 68 Saline Lands

33 Herbaceous Wetlands 69 Permanent Snow and
Ices

3.3. Remote Sensing Data Collection and Mapping Units

A total of 170 Landsat TM scenes and 202 HJ-CCD scenes were collected respectively from the
USGS EarthExplorer and the China Center for Resources Satellite Data and Application. These images
were acquired in 2009, 2010 and 2011 (Figure 3). For each mapping unit, at least two free-cloud
satellite images (cloud coverage below 10%), one acquired in leaf-on conditions (May to October) and
the other acquired in leaf-off conditions (November to following April), were selected to form the
multi-temporal satellite images.

The acquired Landsat TM images have been calibrated radiometrically and geometrically. The
atmospheric correction for the Landsat images were processed by the Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS, [36]). Although systematic geometric correction has been
conducted, there are still some residual geometric errors existing in the acquired HJ-CCD images.
The precise geometric correction for these HJ-CCD images was conducted by Auto-Registration and
Orthorectification Algorithm [23], which was specially designed for satellite images over mountainous
areas. After processing, the geometric errors between HJ-CCD images and Landsat TM images were
less than one pixel [37].

The topographical data were incorporated in the classification, including elevation, aspect and
slope. Despite some geo-location errors (approximately 1–3 pixels) existing in the 30-m ASTER GDEM
in this region [38], it was still used in this study having less missing data, higher spatial resolution
and better topographic representation than other elevation data (Such as SRTM) [39]. Using the
ASTER GDEM data, the slope and aspect were calculated by the ERDAS software. The high spatial
resolution Google Earth images and existing thematic maps, including the Vegetation Map of the
People's Republic of China (1:1,000,000) and the Chinese Land Use Database at 1:100,000 scale, were
also used for generating the CLC-SW2010 product. Although these thematic maps and high spatial
resolution images were not directly used in the automatically classification due to the scale and
quality, they could provide lots of useful reference information for sample selection and classification
error identification.

To conveniently and efficiently organize a large number of satellite images and relevant auxiliary
data, the study area needs to be partitioned into a series of mapping units according to the image
scenes. Because distinct differences have existed between the HJ image scenes and the Landsat image
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scenes, neither Landsat image scenes nor HJ image scenes, but rather the intersection regions between
HJ and Landsat image scenes were chosen to divide Southwestern China into 190 mapping units. All
satellite images and ancillary data were clipped by these mapping units. Meanwhile, all processes
including segmentation, automatic classification and quality control were conducted in these mapping
units. Notably, a part of the overlapping regions needed to be retained to meet the requirements for
mosaicking the final classification results for each neighboring mapping unit.
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Figure 3. The temporal distribution (DOY, day of year) of Landsat TM images and HJ-CCD images for
each tile in Southwestern China. The X-axis was the scenes (path-row) of the Landsat TM images and
the HJ-CCD images.

3.4. Field Data Collection

Three collection modes of field land cover samples have been designed at the initial phase of the
Carbon Special Program and the Ecological Decade Project to collect as many field samples as possible.
A total of 35,792 field samples have been collected in this area. For each field sample, the predominant
land cover class, the geographical position and the field photos were recorded.

The first mode was designed to collect the field samples located around 2 km from the main road
and the distance of two neighbor field samples was less than 3 km. Based on this mode, 16,721 field
samples were collected in 2011 and 2012 by the mapping group. Meanwhile, the independent validation
group collected 4546 field validation samples in 2011 by the same mode, which were only used to
assess the accuracy of the CLC-SW2010 product. All field samples collected by the first mode are
shown by solid red dots in Figure 4.
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The second mode was used to collect the field samples in the predefined plots, including forest
plots, grassland plots, shrub plots and cropland plots. More than 10 field samples were randomly
distributed in each sample plot. These field investigation tasks were conducted by scientific survey
teams from the Carbon Special Program, including forest survey teams, grassland survey teams,
remote sensing survey teams, etc. A total of 6772 field samples (shown by solid green dots in Figure 4)
were provided to the mapping group, 1378 of which were not provided until the accuracy assessment
was completed.

The purposes of the third mode for collecting field samples were neither to train rule sets nor to
evaluate the accuracy, but rather to discover the classification errors in the preliminary classification
results. In this mode, about 20 field verification points were randomly chosen by the stratified sampling
method for each county-level administrative division. Supported by local governments, a total of
7553 verification points (shown by solid blue dots in Figure 4) were collected by hundreds of staff from
the local environmental authorities.
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Figure 4. The spatial distribution of field samples used for generating the CLC-SW2010 product. The
pictures (a–k) represent respectively the deciduous broadleaf shrubs, meadows, herbaceous wetlands,
evergreen needleleaf forests, tea garden (shrub plantations), paddy fields, karst vegetation (herbosa),
bare soils, permanent snow and ices, rubber plantations (woody plantations) and eucalyptus plantations
(woody plantations).

3.5. Object-Oriented Multi-Resolution Segmentation

Image segmentation is a crucial step in object-oriented classification, which groups homogenous
neighboring pixels into meaningful objects. In this study, a wide-used multi-resolution segmentation
algorithm [40,41] embedded in the platform Cognition 8.7 was adopted to segment satellite images.
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The scale, shape and compactness are three critical parameters. The optimal values of these parameters
were determined by the trial-and-error method and visual assessment of the segmentation results. For
the highly heterogeneous landscape, the scale parameter was set as 25, the shape parameter was set as
0.1 and compactness as 0.7. All of the Landsat images and the HJ images were incorporated in the
segmentation process, except the topographical data and available thematic maps.

3.6. Hierarchical Classification Trees Construction by Decision Tree Algorithms

The hierarchical classification improved the quality of the land cover product in mountainous
areas by increasing the classification times and decreasing the number of land cover classes within
a single classification process. The whole classification process was divided into multiple stages
according to the conceptual hierarchical structure in this study. For each classification stage, an optimal
classification tree was constructed from the given training sample sets and classification feature sets by
using the decision tree classifier (See5 software, https://www.rulequest.com/see5-info.html). Then,
it was conducted to assign a unique land cover class for each object. Inevitably, this process was
executed iteratively by adjusting the input training sample sets and feature sets until a satisfactory
classification result was achieved in each classification stage. The hierarchical classification trees of
each mapping unit were constructed independently. Training sample sets, classification feature sets
and the conceptual hierarchical structure are the critical parts for classification tree construction.

3.6.1. Training Sample Sets

A total of 22,115 field samples collected by field investigations (detailed description shown in
Section 3.4) were conducted to build the classification trees. For each mapping unit, because the
assigned field samples are usually limited and unevenly distributed in space, many supplementary
training samples were appended. These samples came from the visual interpretation of selected
satellite images by the experienced mappers. Meanwhile, the existing field samples and high spatial
resolution Google Earth images also provided references for the visual interpretation.

3.6.2. Multi-Type Classification Feature Sets

In this study, more than 40 features, including spectral features, topographic features, texture
features and shape features, were conducted for constructing classification trees and automatically
classifying for each mapping unit, which are shown in Table 2. Some satellite-derived indices were also
involved in classification feature sets, including the Normalized Difference Vegetation Index (NDVI),
the Modified Normalized Difference Water Index (MNDWI, [42]), and the Normalized Difference
Built-Up Index (NDBI, [43]). All of selected features were calculated in the eCognition 8.7 platform. For
spectral features, the mean value and the standard deviation of each band of multi-temporal satellite
images were involved.

3.6.3. Conceptual Hierarchical Structure

Identifying the main land cover characteristics in each mapping unit and establishing a proper
conceptual hierarchical structure are essential for the construction of hierarchical classification trees.
Because the spectral signatures and the distinguishing capabilities of land cover class varied with the
acquisition time of satellite images, the conceptual hierarchical structure needs to vary with mapping
units. Figure 5 shows a representative conceptual hierarchical structure used for classification in a
randomly selected mapping unit. It is noted that the structure in Figure 5 will not always be suitable
for other mapping units.

For each hierarchical structure in Figure 5, the classification errors were hard to avoid in the
classification results, which could be introduced into the following hierarchical levels. Therefore, these
errors in the following hierarchical level needed to be revised. For example, some non-vegetation
might be confused with vegetation, so the misclassified non-vegetation needed to be extracted in
the vegetation division stage as well as following stages (Dish line in Figure 5). Owing to spatial
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limitations, Figure 5 only shows the handling of non-vegetation and vegetation, and the handling of
other land cover classes is the same.

Table 2. The multi-type features used in land cover classification. The b1, b2, b3, b4 and b5 denote
respectively the blue, green, red, near infrared and mid-infrared band of satellite images. The GLCM
is gray level co-occurrence matrix, which has a good ability to distinguish texture features of natural
objects. The bv is the border length of image object, and the pv is the area of image object.

Types Features Calculation Method

Spectral features

The mean value of each band
The standard deviation of each band

Brightness Brightness = (b1 + b2 + b3 + b4)/4 [44]
NDVI NDVI = (b4 ´ b3)/(b4 + b3) [45]

MNDWI MNDWI = (b2 ´ b5)/(b2 + b5) [42]
NDBI NDBI = (b5 ´ b4)/(b5 + b4) [43]

Topographic features
Elevation

Slope
Aspect

Texture features

GLCM-mean
Calculated in the eCognition 8.7

platform [44]
GLCM-standard deviation

GLCM-entropy
GLCM-contrast

Shape features Shape index (SI) SI = bv/pv [44]
Length/Width
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3.7. Five-Step Interactive Quality Control Based on Knowledge

3.7.1. Step One: Interactive Quality Control Based on Geographical Rules

The geographical rules, including the single-temporal rules and the multi-temporal geographical
rules (list in Table 3), were used for inspecting the obvious errors in preliminary classification results.
If the assigned land cover class of an object broke these rules, it would be revised by an automatic or
manual method. The single-temporal rules were mainly concerned with the relationships between
the land cover classes and the relevant geographical environment. For example, open waters usually
reside in relatively flat or low relief areas. The multi-temporal rules paid more attention to those
land cover classes which changed frequently with seasons. For instance, if an object was assigned as
deciduous vegetation, but its spectral signatures did not demonstrate an obvious change within a year,
this object was obviously misclassified and needed further revision.

Table 3. The geographical rules used in the interactive quality control.

Types Detailed Description

Single-temporal rules

Open waters and wetlands reside in a relatively flat or low relief areas
The spatial distribution of each forest class commonly below the tree line
The spatial distribution of glaciers and permanent snow usually under the snow line
Croplands rarely distribute in the high-elevation region, such as above 4000 m
Paddy fields locate close to the water source and relatively flat areas

Multi-temporal rules
The deciduous vegetation has obvious different spectral characteristics between leaf-on and
leaf-off season, but the evergreen vegetation does not have this differences
Open waters have great fluctuations in rainy season, the boundary of open water is the
maximum boundary in rainy season
Snow and ices have great fluctuation in winter, the boundary of ice and permanent snow is
the minimum boundary in summer

3.7.2. Step Two: Interactive Quality Control Based on Available Thematic Maps

The available thematic maps provided a lot of useful reference information, such as the
predominated land cover class, the area ratio and spatial distribution of each land cover class, which
were useful for discovering potential classification errors in the preliminary classification result. To
effectively use this information, a series of comparisons between the CLC-SW2010 product and
available thematic maps were conducted. Once any inconsistencies occurred and were caused by the
classification errors, the mapper would further revise classification errors by an automatic or manual
method according to the area of classification errors, until any significant differences did not appear in
the comparison results.

The location map of the township government (hereinafter referred to as township map) was
used to discover the omitted residential land in the preliminary classification result in this study. It is
difficult to extract automatically the residential land only relying on the spectral features, because the
residential land in mountainous areas are usually composed by dispersed rural houses. The township
governments are an important indicator for the residential land because they are usually situated in
the concentrated regions of residential land. In this study, under the guidance of the township map
and leaf-on satellite images, the omission residential lands were added artificially.

3.7.3. Step Three: Spatial Consistency Verification

The spatial discontinuity phenomena of land cover often occurred at the junction regions of
the neighbor mapping units in classification results, which were mainly caused by the following
differences: the acquisition time of selected satellite images in neighboring mapping units and the
cognitive level of mappers. Therefore, the spatial consistency verification is indispensable to assuring
the quality of the CLC-SW2010 product. To avoid any inspection omission, the whole of Southwestern
China was divided into 24,130 grids with a side length of 10 km. The experienced mapper carefully
checked and revised the spatial discontinuous phenomena grid by grid.
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3.7.4. Step Four: Interactive Quality Control with Field Verification Points

To discover any further residual classification errors in the CLC-SW2010 product, a new round of
field investigation was enforced to collect independent verification points (Section 3.4). The experienced
mappers were carefully compared with the classification results of each verification point and its
surrounding regions with the field records, photos and satellite images. Once the classification errors
were determined, further revisions were needed.

3.7.5. Step Five: Interactive Quality Control with Statistics Reports

Some recognized statistical information, such as forest coverage, grassland area and cropland
area, was recorded in government statistics reports and relevant documents, which were helpful for
verification of the quality of the CLC-SW2010 product. Unfortunately, the differences of the definition
for the same land cover classes have existed between the statistics report and the CLC-SW2010 product.
Only when the differences of the area of a certain land cover class exceeded a predefined threshold
value (10% of its area), should further revision be considered.

4. Results

4.1. Hierarchical Decision Tree

For each mapping unit, a series of classification trees generated by the decision tree classifier
(See Section 5) were conducted to produce the CLC-SW2010 product in this study. Owing to spatial
limitations, this paper only shows three typical decision trees, which were conducted for distinguishing
between vegetation and non-vegetation, vegetation divisions and forest divisions, respectively, in the
junction zone (path/row: 138/38, WRS2) of the Sichuan province and Tibet autonomous region.

4.1.1. The Decision Tree for Distinguishing Vegetation and Non-Vegetation

Figure 6 shows a typical decision tree for distinguishing vegetation and non-vegetation. Generally,
the differences of NDVI between vegetation and non-vegetation in the leaf-on season are obvious.
Therefore, the mean value of NDVI derived from the HJ image in leaf-on season was used to distinguish
between non-vegetation and vegetation. Then the MNDWI derived from the same image was used to
identify open waters misclassified as vegetation, because it is sensitive to open waters.
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Figure 6. The decision tree for distinguishing vegetation and non-vegetation. The HJ-CCD image 
acquired on 24 July 2010. The ellipsis represents the land cover class needed for further division. 
Figure 6. The decision tree for distinguishing vegetation and non-vegetation. The HJ-CCD image
acquired on 24 July 2010. The ellipsis represents the land cover class needed for further division.
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4.1.2. The Decision Tree for Vegetation Division

The vegetation extracted by above decision tree were further divided into forests, shrubs,
grasslands, wetlands (covered with herbaceous and woody vegetation) and croplands by the decision
tree shown in Figure 7. Obvious differences between the herbaceous vegetation (including withered
grasslands and harvest croplands) and the woody vegetation (including shrubs and forests) existing in
spectral reflectance of green band of leaf-on satellite images. Therefore, the feature of HJ_B2_Mean was
used to distinguish them. In leaf-on season, the NDVI values (HJ_NDVI_Mean) between croplands and
grasslands have differences, which were chosen to separate grasslands and croplands. The standard
deviation of red and mid-infrared bands (TM_B3_Std and TM_B5_Std) was applied to reduce the
commissions between grasslands and croplands because cropland objects usually have a higher degree
of dispersion of spectral reflectance than grassland objects. Using the absorption feature of forest
canopy in the red band (HJ_B3_Mean), the forests were extracted from the woody vegetation. The
wetlands have relatively low reflectance in the near-infrared band (HJ_B4_Mean) due to the absorption
feature of water, which was adopted to distinguish between wetlands and shrubs. The forests confused
with the shrubs were extracted again by the spectral reflectance of blue band in leaf-off satellite
images (TM_B1_Mean), and the grasslands confused with the croplands were extracted again by the
spectral reflectance of mid-infrared band in leaf-off satellite images (TM_B7_Mean). Above all, each
satellite image played a unique role and the multi-temporal satellite images contributed to effectively
discriminating between each vegetation type.
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4.1.3. The Decision Tree for Forests Division 

Usually, the distinct differences existed in the near-infrared band of leaf-on satellite images 
among broadleaf forests, the needleleaf forests and the mixed forests, which were used to separate 
forests into broadleaf forests, needleleaf forests and mixed forests (Figure 8). The spatial distributions 
of each forest display distinct vertical stratification in mountainous areas, which was useful for 
discovering and revising classification errors of vegetation types. For example, the shrubs misclassified 
as needleleaf forests and broadleaf forests were extracted by the Elevation in Figure 8. 

Figure 7. The decision tree for vegetation division. The Landsat TM image acquired on 28 September
2010. The Bx denotes x-th band of satellite image, the Std denotes the standard deviation.

4.1.3. The Decision Tree for Forests Division

Usually, the distinct differences existed in the near-infrared band of leaf-on satellite images among
broadleaf forests, the needleleaf forests and the mixed forests, which were used to separate forests into
broadleaf forests, needleleaf forests and mixed forests (Figure 8). The spatial distributions of each forest
display distinct vertical stratification in mountainous areas, which was useful for discovering and
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revising classification errors of vegetation types. For example, the shrubs misclassified as needleleaf
forests and broadleaf forests were extracted by the Elevation in Figure 8.Remote Sens. 2016, 8, 305 13 of 22 
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4.2. Effectiveness of Interactive Quality Control

The five steps of knowledge-based interactive quality control were not conducted simultaneously.
The steps based on geographical rules and the thematic maps were applied firstly in the automatic
classification stage, and then the spatial consistency checking was conducted after forming a whole
land cover map. The steps based on the verification points and statistics information were used in the
last stage. Although all five steps were conducted to revise the classification errors contained in the
CLC-SW2010 product, this section only shows two representative examples due to space limitations.

Figure 9 shows a typical example for revising residential land at high altitude by using a township
map. The residential land in mountainous areas was often omitted by automatic classification
approaches, but this omitted residential land was artificially added with the help of the township map
and the high-resolution Google Earth images.
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Figure 9. Interactive quality control based on the existing thematic map (township map). (a) and (b) are
the results of unrevised and revised residential lands, respectively; (c) is the Landsat TM images and
the locations of township; (d) is the additional residential lands with the help of the township map and
high-resolution satellite images; (e) is the high-resolution Google Earth images.
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A typical spatial discontinuous phenomenon is shown in Figure 10c,g, which mainly comes from
confusing the evergreen shrubs with the deciduous shrubs. In this case, the classification trees used for
distinguishing the evergreen shrubs and the deciduous shrubs needed to be reconstructed by adjusting
training sample sets and feature sets for each mapping unit until a satisfactory result was obtained.
After revision, the spatial discontinuous phenomenon was removed in the post-checking classification
results (Figure 10d,h).
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4.3. The CLC-SW2010 Product and Product Accuracy

Taking the multi-temporal native HJ-CCD images and Landsat TM images as main input data, the
30 m-resolution CLC-SW2010 product (Figure 11) was produced by the proposed HC_MMK approach
over the last three years.

In the CLC-SW2010 product, the grasslands and woodlands are the predominant land cover
classes, accounting for 45.01% and 34.92% of the land area of Southwestern China, respectively. The
areas of croplands and bare lands are less than that of grasslands and woodland, accounting for 10.45%
and 6.10%, respectively. Artificial surfaces and wetlands are rarely found in Southwestern China, only
accounting for 0.55% and 2.97%, respectively. The grasslands (including sparse grasslands) are mainly
distributed on the Tibet plateau (81.06%), Western Sichuan plateau (11.21%) and the Karst region
(7.73%). The woodlands are mainly found in Hengduan Mountain, Daba Mountain, Southeastern
Tibet and Yunnan province. The cropland is mainly located in Sichuan Basin, Anning River valley and
the “bazi” regions of Yunnan-Guizhou Plateau.

A total of 5924 validation points, which have been collected independently by a third-party group,
were conducted to assess the accuracy of the CLC-SW2010 product. After independent validation,
the accuracy of the primary categories and secondary categories of the CLC-SW2010 product reached
95.09% and 87.14%, respectively, and the kappa coefficients were 0.9345 and 0.8573 respectively. The
detailed precision information of the CLC-SW2010 product is shown in Tables 4 and 5.
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Table 4. The confusion matrix of primary categories in the CLC-SW2010 product. The codes of each
primary category are the same as the ones listed in Table 1.

Reference
Classification

Total
Producer’s

Accuracy (%)
1 2 3 4 5 6

1 2204 64 1 50 2 1 2322 94.92
2 42 744 2 27 1 816 91.18
3 6 665 1 672 98.96
4 35 13 3 1349 8 1 1409 95.74
5 7 3 1 20 474 505 93.86
6 1 2 197 200 98.50

Total 2294 824 673 1449 484 200 5924
User’s accuracy (%) 96.08 90.29 98.81 93.10 97.93 98.50

Overall accuracy: 95.09%; Kappa coefficient: 0.9345

The wetlands and bare lands have a higher accuracy (>98%) than other land cover classes, and the
accuracy of the grasslands is in the end in CLC-SW2010 (Table 4). Confusing with croplands and shrubs
is the main reason for grassland inaccuracy. Because the grasslands were usually accompanied by
shrubs, especially in the Karst mountainous area, it is difficult to accurately distinguish the grasslands
and the shrubs [46]. They have a similar spectral signature between the grassland and the returned
farmlands with 15–25 degree slopes. Therefore, these returned farmlands were frequently classified as
croplands rather than grasslands in the CLC-SW2010 product.

The evergreen needleleaf forests, herbaceous wetlands, rivers, lakes, reservoirs, paddy fields,
residential lands and permanent snow and ice have a higher user’s accuracy and producer’s accuracy
than other secondary categories (Table 5). The multi-source and multi-temporal satellite images,
geo-knowledge, objected-oriented method and hierarchical classification played its roles in the accuracy
of the CLC-SW2010 product. For instance, the spectral and shape signatures of the lakes were highly
similar to the reservoirs. However, obvious differences existed in the spatial distribution between the
lakes and the reservoirs in Southwestern China, the former mainly distributed in the plateau, and the
latter mainly located in the agricultural region, which were useful for exactly distinguishing the lakes
and the reservoirs.
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Table 5. The confusion matrix of secondary categories in the CLC-SW2010 product.

Code Area
Ratio

Number of
Samples

Producer’s
Accuracy

User’s
Accuracy Code Area

Ratio
Number of

Samples
Producer’s
Accuracy

User’s
Accuracy

101 5.30% 347 83.29% 88.38% 35 0.14% 142 95.77% 95.77%
102 0.80% 127 79.53% 82.11% 36 0.38% 195 95.90% 95.90%
103 15.49% 1303 90.82% 91.89% 37 0.00% 2 100.00% 100.00%
105 0.43% 36 66.67% 75.00% 41 2.64% 508 92.72% 91.99%
106 4.38% 266 81.20% 77.42% 42 7.81% 785 89.68% 88.33%
107 6.60% 243 75.72% 65.25% 51 0.47% 356 93.26% 94.05%
109 0.44% 74 87.84% 86.67% 52 0.01% 68 79.41% 87.10%
110 1.09% 42 85.71% 76.60% 53 0.06% 48 87.50% 93.33%
111 0.01% 3 100.00% 100.00% 54 0.01% 29 65.52% 95.00%
21 6.42% 316 73.42% 87.55% 63 17.39% 111 77.48% 67.19%
22 17.84% 217 62.21% 62.50% 65 2.03% 68 89.71% 98.39%
23 3.86% 173 84.39% 71.92% 66 2.42% 60 91.67% 88.71%
33 1.03% 117 99.15% 97.48% 68 0.18% 4 100.00% 57.14%
34 1.41% 216 99.54% 100.00% 69 1.32% 68 100.00% 98.55%

Overall accuracy: 87.14%; Kappa coefficient: 0.8573

5. Discussions

5.1. Comparison with Existing 30 m-Resolution Land Cover Products

The CLC-SW2010 product were compared with other existing 30 m-resolution land cover products
in 2010 over Southwestern China, including CLUDs (the third row of Figure 12), FROM-GLC
(the fourth row of Figure 12) and GlobeLand30 (the fifth row of Figure 12). It was found that the quality
of CLC-SW2010 was superior to these products according to the respective preliminary validation
results, the accuracy of FROM-GLC and GlobeLand30 reached 71.54% [5] and 80.33% ˘ 0.2% [11],
respectively. The lack of leveraging variability in phenological patterns is an important factor for
the quality of GlobeLand30 and FROM-GLC [18]; however, it has been avoided in CLC-SW2010 by
introducing multi-temporal satellite images and a variety of geo-knowledge. Although the total area of
each land cover class is closer to reality, the boundary of land cover is vague and inaccurate in CLUDs
(the third row of Figure 12).

Four typical mountainous regions that are hard to map (a: Plateau regions host mostly grasslands;
b: low mountains mainly consist of croplands; c: Karst regions with complex land cover and d: steep
mountainous areas mostly covered with forests) were taken as examples (Figure 12) to present the comparison
results of four land cover products in detail. The CLC-SW2010 product showed more distinctly the
vertical stratification of vegetation (Figure 12a) and the fragmentized landscape (Figure 12b,c) in
mountainous areas than the other three products, and the proposed HC-MMK approach especially
designed for land cover mapping in mountainous areas was the main contributor. There was also
many classification errors identified between mountain shadow and water in FROM-GLC (the fourth
row of Figure 12), which were eliminated by some simple geographical rules in CLC-SW2010.

5.2. The Contribution of Each Component in the HC-MMK Approach

5.2.1. The Multi-Source and Multi-Temporal Data

In this paper, the native HJ-CCD images and Landsat TM images have been combined to provide
more high-quality satellite images (Figure 3) for generating the CLC-SW2010 product. This combination
can maximize the advantages of the native HJ-CCD images (wide-covered and short repeat cycle) and
the Landsat TM images (plentiful spectral information and excellent quality). The multi-temporal
satellite images were useful for distinguishing the evergreen vegetation and the deciduous vegetation,
because they have differences in changes of spectral signature between leaf-on season and leaf-off
season [19]. Meanwhile, the temporal signatures were used for identifying the dry lands, paddy fields
and other land cover classes, and their spectral signatures frequently varied with season in this study.
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Figure 12. The comparison of classification results among four land cover products in four typical
regions. The regions of (a–d) are located in Southeast Tibet, the middle part of Yunnan province,
the Karst region of Guizhou province and the upper reaches of Minjiang River, respectively. For the
consistency of pixels, the full agreement denotes all four products have a same land cover class, high
agreement denotes there are two land cover classes among four products, low agreement denotes there
are three land cover classes among four products and no agreement denotes there are a unique class in
each product.
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5.2.2. Knowledge

The importance of knowledge for producing land cover products has been well
acknowledged [11,16,47,48]. Subject to the availability, scale and quality of knowledge, at present,
limited knowledge has been drawn upon to enhance the accuracy of land cover products, such as
terrain knowledge [16,49], spatial distribution knowledge [11], and temporal signature [18,50,51]. In
this paper, a variety of available knowledge, including geographical rules, existing thematic maps,
field samples and statistical information, were applied together in the HC-MMK approach. Each type
of knowledge played a unique role and all knowledge together contributed to quality improvement of
the CLC-SW2010 product (Figures 9 and 10). The attempt to draw upon of variety of knowledge in
this study offered a recommendable method for other land cover mapping projects.

5.2.3. Hierarchical Classification

Hierarchical classification is an effective land cover mapping method for those areas with complex
and heterogeneous landscapes by increasing classification time and decreasing the number of land
cover classes in a single classification process [52–54]. The conceptual hierarchical structure is the core
of this approach. A unique conceptual hierarchical structure was built in most research [53,54], which
cannot meet the demands for land cover mapping over large regions with complex terrain, such as
Southwestern China, because there are 38 land cover classes, 190 mapping units and various land cover
classes. To solve this problem, a series of conceptual hierarchical structures aimed for each unique
mapping unit were built in this study, which obviously improved the accuracy of the CLC-SW2010
product. This strategy also provided a useful reference for future research on land cover mapping over
large areas.

5.2.4. Quality Control

Quality control is a critical step for producing a widely-used land cover product [11,55,56]. The
procedures need to be applied to the whole classification process, including satellite image collection
and preprocessing, field data collection, automatic classification and accuracy assessment. Only if
each sub-step obtained a high-precision result could a high accuracy land cover product be achieved.
This paper proposed a practical, interactive quality control method based on prior knowledge, which
obviously eliminated many classification errors and spatial discontinuity phenomena (Figures 9 and 10)
and improved the quality of the CLC-SW2010 product. In addition, many strict criteria were also
developed in the other stages; for instance, the accuracy of image-to-image co-registration was less
than 2 pixels in mountainous areas for data preprocessing, and the total cloud cover was less than 10%
for each selected satellite image.

5.3. The Merits and Limitations of the Current Work

The land cover classification system used in the CLC-SW2010 was more suitable for various
ecological applications than other classification systems, because it gave adequate consideration to life
form, vegetation height, leaf type, vegetation phenology, vegetation cover, and so on [35]. In addition,
this classification system was easy to interoperate with multiple land cover classification systems, such
as FAO LCCS, which will help to widen the application scope of the CLC-SW2010 product. A full set
of automatic mapping processes, including satellite image preprocessing, classification and quality
control, were proposed in this study. They were conducted to generate the CLC-SW2010 product,
which obviously shortened the mapping cycle. The main users, including the local environmental
authorities and the research teams of the Carbon Special Program, have been involved in the process
of generating the CLC-SW2010 product. They not only provided the field land cover samples, but also
discovered potential classification errors existing in the CLC-SW2010 according to their experiences.

Using the proposed HC-MMK approach, the overall accuracy of the CLC-SW2010 reached 87.14%.
However, there are still some limitations in the current mapping work. Due to the lack of floodplain
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wetlands in land cover classification systems, the floodplain wetlands were classified as bare soils in
the CLC-SW2010 product. They will limit its applications because distinct differences of ecological
structure and functions existed between the floodplain wetlands and the bare soils. Meanwhile, some
land cover classes have a lower producer’s accuracy and user’s accuracy in the CLC-SW2010 product,
especially for mixed forests, steppes and meadows. The vague and non-quantitative definition and
various spectral signatures are the main causes for the low accuracy of the mixed forests. The spectral
signatures of the steppes and the meadows are easy to vary with the species, coverage, biomass and
moisture content, which impacted distinguishing between steppes and meadows in the CLC-SW2010
product. Therefore, it is worth exploring how to further improve the accuracy of the mixed forests,
steppes and meadows and optimize the land cover classification system according to application
demands in the future.

6. Conclusions

This paper mainly introduced the proposed HC-MMK approach and the 30 m-resolution
CLC-SW2010 product. The multi-temporal native HJ-CCD images, Landsat TM images and
topographical data were taken as the main input data in this study. Hierarchical classification tree
construction and a five-step knowledge-based interactive quality control were the key components
of this proposed approach. Based on independent accuracy assessment by a third-party group, the
overall accuracy of primary and secondary categories of the CLC-SW2010 product reached 95.09% and
87.14%, respectively, and the Kappa coefficients were 0.9345 and 0.8573, respectively.

To address critical issues for land cover mapping in mountainous areas, four key steps were
taken in this study. Firstly, a combination of the native HJ-CCD images and Landsat TM images were
taken as input data to construct the multi-temporal satellite images. Secondly, the satellite images
with complex terrain were segmented with as much detail as possible in the image segmentation
stage. Thirdly, for each mapping unit, a series of unique hierarchical classification trees were built to
make the land cover classification as accurate as possible. Finally, a variety of prior geo-knowledge,
including geographical rules, existing available thematic maps, verification samples and statistical
information, was extensively used in the classification and quality control stage to improve the accuracy
of the product.

The proposed HC-MMK approach can be used not only in mountainous areas, but also in plains,
hills and other regions, because land cover mapping in mountainous areas is more complex than
other regions. Overall, this study proposed an operable land cover mapping method and produced a
30 m-resolution CLC-SW2010 product. Most importantly, it provided an important reference point for
other land cover mapping studies conducted over large areas or even the entire globe in the future.
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