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Abstract: Wireless sensor network (WSN) applications are rapidly growing and are widely used in
various disciplines. Deployment is one of the key issues to be solved in WSNs, since the sensor nodes’
positioning affects highly the system performance. An optimal WSN deployment should maximize
the collection of the desired interest phenomena, guarantee the required coverage and connectivity,
extend the network lifetime, and minimize the network cost in terms of energy consumption. Most of
the research effort in this area aims to solve the deployment issue, without minimizing the network
cost by reducing unnecessary working nodes in the network. In this paper, we propose a deployment
approach based on the gradient method and the Simulated Annealing algorithm to solve the sensor
deployment problem with the minimum number of sensor nodes. The proposed algorithm is able
to heuristically optimize the number of sensors and their positions in order to achieve the desired
application requirements.

Keywords: WSN deployment; coverage; system connectivity; minimum sensor nodes; simulated
annealing; gradient method

1. Introduction

Nowadays, WSNs are employed in many applications designed for different purposes such
as: environment and habitat monitoring [1,2], traffic control [3], health care application [4], home
automation [5] etc. The main purpose of WSN applications is the event detection in a Region of Interest
(RoI), where sensor nodes are deployed to monitor any ongoing events. Besides the sensing function,
communication is another major function of a sensor network [6]. Generally, when sensor nodes
are spread out, they start to sense the information and forward it to the sink node using multi-hop
paths [7], then to the base station (BS), where intelligent decisions can be made. Figure 1 shows the
network architecture of a WSN application dedicated to monitor an area.

WSN deployment is one of the major challenges of WSN research. It affects almost all its
performance metrics, such as the connectivity between sensor nodes, the coverage, and the network’s
lifetime. These factors are the essential criteria to evaluate a WSN’s performance in order to choose a
WSN design from a number of candidates. Consequently, a considerable amount of research in the
field of WSNs is dedicated to address the WSN deployment issue [8,9]. Generally, deployment can
be deterministic, namely pre-determined, or non-deterministic [9]. The pre-determined deployment,
where the locations of sensor nodes are specified, is usually used in a friendly environment and
when nodes are expensive. When the environment is dangerous and inaccessible, e.g., the only

Algorithms 2017, 10, 80; doi:10.3390/a10030080 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://dx.doi.org/10.3390/a10030080
http://www.mdpi.com/journal/algorithms


Algorithms 2017, 10, 80 2 of 19

way of deployment is using helicopters or automatic vehicles, as in this case, the deployment is
non-deterministic or in other words random [9].

Algorithms 2017, 10, 80  2 of 19 

inaccessible, e.g., the only way of deployment is using helicopters or automatic vehicles, as in this 
case, the deployment is non-deterministic or in other words random [9]. 

 
Figure 1.Typical wireless sensor network (WSN) architecture. 

WSN applications can only operate for a given period of time or as long as possible, due to 
sensor nodes’ limited supply of energy from batteries. Hence, the network lifetime becomes a very 
important issue [10]. In the phase of deployment, if nodes are too close to each other, coverage 
overlapping and redundant nodes could occur, which generates unnecessary data transfer and more 
traffic load, and if the distance between nodes is too large, nodes will consume more energy to 
distribute data through the network. This constraint deeply affects the energy consumption of 
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cost [11]. 
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WSN applications can only operate for a given period of time or as long as possible, due to sensor
nodes’ limited supply of energy from batteries. Hence, the network lifetime becomes a very important
issue [10]. In the phase of deployment, if nodes are too close to each other, coverage overlapping and
redundant nodes could occur, which generates unnecessary data transfer and more traffic load, and if
the distance between nodes is too large, nodes will consume more energy to distribute data through
the network. This constraint deeply affects the energy consumption of nodes. Consequently, it’s very
important to determine the optimal distance between nodes. Hence, network designers should not
only be concerned about the basic requirements, such as the network connectivity and coverage, but
also try to improve the network lifetime and reduce the network cost [11].

The Simulated Annealing (SA) algorithm is a classical meta-heuristic global optimization method
inspired by the annealing process of material in metallurgy and is widely used for global optimization
problems. Several approaches were developed to improve coverage and connectivity using the SA
algorithm [12–15]. In this article, we propose a hybrid algorithm based on the Gradient method and
the SA algorithm to solve the WSN placement problem while defining the optimal number of nodes
to deploy, to ensure the required coverage and connectivity in the case of a deterministic deployment,
where all sensor nodes positions are well controlled. The main contributions of this paper are as follows:

• A Hybrid algorithm based on the gradient and the SA algorithm is demonstrated for the sensor
deployment problem, with the selection of the minimal number of nodes.

• Simulation results are shown to prove the efficiency of the proposed technique.
• A comparison with other approaches is concluded in order to evaluate the efficiency of the

proposed algorithm.

This paper is organized as follows, in Section 2, we overview some basic concepts of WSN.
In Section 3, the related works are discussed. Then in Section 4, we explain how the SA algorithm can
optimize the deployment process. A problem description and formulation is presented in Section 5.
Finally and before concluding, simulation results using MATLAB are explained and discussed.



Algorithms 2017, 10, 80 3 of 19

2. WSN Basic Concepts and Preliminaries

2.1. Preliminary Definitions

There are several types of coverage and connectivity problems in WSN, so depending on the
application requirements, we distinguish: area coverage where the goal is to cover an area, point
coverage that aims to monitor only a set of points with known locations, and path or barrier coverage,
where a barrier must be fully covered to detect any intruders that attempt to penetrate a protected
area. An area is fully covered only if every point of the RoI is within the sensing range of at least one
sensor node. The network is said to be connected only when every sensor can reach and transmit data
to the desired destination. Each and every WSN application requires a certain degree of coverage and
connectivity. An area is k-coverage if each physical point in the area is covered by at least k (k ≥ 1)
active sensor nodes. The term k-connectivity (k ≥ 1) means that there are at least k disjoint paths
between any pair of nodes in the network [8,16].

Based on the type of nodes, WSN can be heterogeneous or homogeneous. Heterogeneous WSN
contains sensor nodes with different abilities such as battery energy and sensing range, while in
homogeneous WSN all nodes are similar [6,9]. Sensor nodes can be static or mobile. Static nodes are
fixed and can’t move after deployment, while the mobile nodes possess all the features of the fixed
nodes, and can relocate themselves after deployment [6,17]. Deployment is either deterministic or
random. Deterministic solvers can guarantee the best possible sensor placement is found only for
a small sized WSN, but they have difficulty with large-scale network cases. By contrast, heuristic
solvers cannot generally guarantee the optimal solution but are known to quickly find a near-optimal
solution [18]. In [10], the authors developed a classification scheme for sensor node deployment
strategies. The primary classification of static deployments is based on non-corona-based and
corona-based deployments. Further classification is based on the desired objectives. The first category
non-corona based sensor node deployment strategies are categorized as follows:

• A random-uniform deployment, where sensor nodes are uniformly distributed;
• Engineered-uniform deployment strategy where the sensor nodes are distributed in an

engineered-uniform fashion;
• Random-Gaussian deployment strategy considers an incremental deployment model such that

the number of sensor nodes keeps on increasing near the sink vicinity.

In a corona based sensor node deployment, the sensor nodes are arranged in a circular fashion of
radius r with a static sink positioned at the center. The classification of each corona based deployment
strategy is based on the required objectives.

• Engineered Gaussian deployment strategy, where the density of sensor nodes in the first corona is
higher than the other coronas, treats the energy hole problem;

• In the second Engineered corona-based sensor node deployment strategy, the sensor node
distribution should achieve the maximum coverage using the minimum number of sensor nodes;

• For optimized, balanced energy consumption, the third and the fourth categories use, respectively,
arithmetic/geometric proportion, to find the optimum number of nodes in Corona;

• Finally, the engineered corona-based sensor nodes deployment strategy, using relay nodes for
transmission that aim to reduce redundant data transmission.

2.2. WSN Basic Concepts

We consider the perception model of a sensor, as shown in Figure 2, where two circles are
surrounding the sensor; the first one is the sensing area with RS as the disk radius. RT is the radius of
the communication range. We consider RT = 2× RS, it is proven that if the communication range is at
least twice the sensing range, it’s a sufficient condition to ensure that a full coverage of a convex area
implies connectivity among active nodes [17]. However, this assumption of omni-directional sensing
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ability does not hold true for some types of sensor nodes, such as cameras, ultrasonic sensors, etc.,
which have a directional sensing region [8]. Figure 3 shows that if the circular area of the sensing range
is a square, the diameter of the circle becomes the diagonal of the square.
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Sensors get charged up by batteries, thus they can be used for a limited period. Hence, to make
the battery work longer, energy conservation and coverage protocols are required [19]. The event
detection probability is inversely proportional to the Euclidian distance separating the sensor from the
event. There are two sensor detection models in WSN to find effective coverage. The binary detection
model which assumes that there is no uncertainty, and the probabilistic sensing model with stochastic
detection [6,20]. A probabilistic coverage better complies with the performance of real sensors in
the environment [8]. The binary sensing model is the simplest and most widely analyzed model of
coverage provided by a sensor [21,22]. In this model, a sensor detects all events within its sensing
range. In this paper, we use the binary detection model shown by Equation (1):

Pd
(
ps, pe

)
=


1 if ‖pe − ps‖ < RS

0 if RS < ‖pe − ps‖
(1)

where: Pd is the detection probability of an event occurred at position pe, and detected within the
sensing range of a sensor placed at location ps. ‖pe − ps‖ is the Euclidian distance between the sensor
and the event.

For simplicity, and as considered in many related works such as [7,9–11], we assume
omni-directional sensing ability of the sensor, and a binary detection model. The choice of the
sensor detection model does not limit the applicability of the proposed approach. The detection model
is simply an input parameter to the proposed placement algorithm.

3. Related Work

A wide variety of meta-heuristic methods have been applied to the placement problem, ranging
from the genetic algorithm (GA) [23], evolution algorithm with specialized operators [24], particle
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swarm optimization algorithm (PSO) [25], simulated annealing algorithm (SA) [12–15], virtual force
algorithm (VF) [26], and the virtual force oriented particles algorithm [27]. Other algorithms are
analyzed in [16] like the artificial bee colony algorithm (ABC), ant colony optimization algorithm (ACO),
and PSO for the sensor deployment problem with the target coverage. An efficient sensor placement
optimization model using the Gradient Descent method (GD) was developed in [8]. To evaluate
its performance, the proposed method was compared with two optimization methods that were
already applied to the sensor placement problem, namely SA and the covariance matrix adaptation
evolution strategy (CMA-ES). The results show that GD performed significantly better on larger maps,
with much less processing time, while the CMA-ES performed slightly better on smaller maps [8].
SA provides very good and stable results close to GD results on larger maps, and close to CMA-ES
performance on smaller maps. These algorithms are adequate only for off-line applications where
the sensor nodes need no adaptation after deployment. Based on [10], only the authors in [28], have
presented a Corona-based deployment approach using optimum sensor nodes to achieve balanced
energy consumption, and to maximize the area coverage and the network lifetime.

As mentioned in [10], each and every approach has its limitations and considers the coverage and
connectivity problem to be solved under certain circumstances. Only a few have considered solving
the issue of the optimal number of nodes while optimizing coverage and connectivity. Based on [29],
estimating the number of nodes can be done basically by dividing firstly the network area into a
number of subsets of nodes, called cover sets, as shown in Figure 4. If the cover sets are disjointed,
one sensor node can be present in only one cover set. As demonstrated in Figure 3, the diagonal is
the diameter of the circular area of the sensord = 2 × the radius of coverage. Since this diagonal
divides the square into two isosceles triangles, then the sides of the square can be easily calculated
using trigonometric functions. Sin θ= perpendicular/hypotenuse = L/d; where θ = 45◦. So, the side of
the square is L = d× sin 45◦. Assuming the area to supervise is a square with sides A and B. Thus, the
number of nodes is decided N = A

L ×
B
L .
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Generally, this method is used to determine the initial number of sensor nodes, and based on
the results obtained by the sensor deployment method, we can choose to increase or to decrease the
number of nodes to deploy. In Figure 4, the area to supervise was divided into six cover sets, which
means that six nodes are needed to cover the area. However, this method is far from providing the
optimal coverage, connectivity, and network cost. Node deployment is simply a matter of choosing
the best locations for the optimal number of nodes to cover the RoI. In addition, to calculate the
node placement, composite factors, which are combinations of environmental factors, should be
considered such as the relationship between the sensing range, the communication range, and the
node deployment type [30]. Our approach is based on the SA algorithm, because, based on [12–15],
it provides a good and implementable response for network design and better energy efficiency by
organizing the sensor nodes.
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4. WSN Deployment Approaches Based on the SA Algorithm

In reality, temperature is the controlling mechanism used to convert material from a high energy
state into a low energy, in solid conditions. This process is imitated in SA, where the temperature
controls the number and spread of accessible solutions from a given solution in the search space.
SA begins with a high initial temperature to allow a random walk in the search space. As the
temperature gradually decreases, the system becomes more focused, only allowing moves in the search
space which improve the performance of the solution. The process terminates when a temperature
close to zero is reached [8]. If the temperature is not high enough, the SA approximates a local optimum,
instead of the global optimum of the objective function.

In our approach, we use the simulated annealing algorithm as an optimization method in order
to find the optimal deployment. Two approaches were presented in [13] and in [14] using the same
algorithm. In those approaches, the authors assumed that each point of the ROI is different from
another since each point has its own importance, thus they used the term “interest” to refer to the
importance given to supervise a point. In the first one, the objective was to find the optimal topology
guaranteeing coverage, connectivity, and a maximum interest with a fixed number of nodes. In the
second one, the objective was how to deploy a fixed number of nodes with the purpose of providing
coverage, a maximum interest, and ensuring connectivity with the minimum number of hops between
all nodes and the sink. Our goal is to find the minimum number of sensor nodes with the best
topology providing the maximum interest with at least 1-coverage and 1-connectivity. In the approach
presented in [13], the objective function computes the value of the interest collected by every set of
nodes, guarantees connectivity, then provides the optimal topology, ensuring the maximum interest in
the area.

{
If fK(X∗) ≥ fK(X), with fK(X∗) the new output of fK(X)

}
the function’s output is saved to

C, otherwise it’s equal to the optimum solution stored in C. As shown in Equation (2) this function
has two sub-functions. The first one computes the minimal distance between nodes and the second
calculates the joint interest collected in all the regions of nodes.

fK(X) =


γ.fmin (X) + fs (X) , if X is K− survivable

C, otherwise
(2)

where: X is a set of N nodes. X= (x1, x2, . . . xi . . . xN) ∈ R2. C is a constant ensuring that only survivable
solutions will be accepted. γ controls the dispersion of nodes, a small value makes sensor nodes to
stick together, a larger one disperses nodes regardless of the importance of the RoI. fs(X) is the
sub-function representing the joint interest of the sensor nodes and penalizes coverage overlapping:
fs(X) = ∑N

i =1 αi.area(Si) − β. area
⋂N

i =1 Si. αi is the given importance of location xi, β a penalty on
sensor coverage overlapping and rs is the sensing range. Sidenotes the open ball with center xi and radius rs,
and δ(x∗, xi) = ‖x∗ − xi‖ is the Euclidean distance between points x∗ and xi. Si = {x∗ ∈ Z : δ(x∗, xi)≤ rs}.
fmin(X): Measures the minimum separation between a sensor whose position is shifted d units in R2 and
all the others: xi, xj ∈ X, ∀ i 6= jfmin( (X\ {xi})∪ {xi + d}) = min(δ(xi + d, xj))

X is K-survivable if for any simultaneous failure of K nodes in X, every surviving node xi lies at
least within the coverage of another surviving node xj, and each one must be able to communicate
with the sink either directly or indirectly. Maximizing fK(X) implies the maximization of fmin(X), and
ensures that the set of nodes of the solution will be separated by the maximum distance allowed.
The sub-function fs(X) computes the interest collected and penalizes the overlapping which occurs by
the intersections of the sensing regions of the nodes.

In [14] another approach was developed to provide maximum coverage with improved
connectivity properties, allowing a minimum number of hops between all nodes and the sink. Based on
the objective function in [8], and as shown in Equation (3), a new sub-function was added to compute
the average of the number of hops between all the nodes and the sink. In this case, maximizing the
objective function will minimize the function of average hops.
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fK(X) =


γ.fmin(X)− σ. fα(X) + fs (X) , if X is K− survivable

C, otherwise
(3)

fα(X) is the function of the average number of hops defined by Equation (4) as follows:

fα
(

X− {xi, s} ∪
{

xj + d
} )

=
1

N− 1
×

N−1

∑
j =1

∑
pj
j = 1 nbr_hops

(
s, xj

)
pj

(4)

where, s is the sink node, pj represents the total number of paths between s and xj, d is an arbitrary
distance oriented in a random direction, and nbr_hops (s, xj) computes the number of hops between
the sink and the node xj. While the first algorithm based on SA in [13] tries to optimize deployment
only by maximizing coverage, the second approach in [14], searches for the optimal placement of nodes
by maximizing coverage while ensuring a k-connected graph. Moreover, both approaches consider
a fixed number of sensor nodes.

5. Model Formulation and Description

5.1. Model Formulation

Assuming that the field of interest is a two-dimensional square region with area Z = A × B/Z ∈ R2,
and the network to be homogenous, N sensor nodes are deployed in the target region Z, and the
location of sensor i is denoted xi. We consider that every colored pixel represents a point with interest,
a point has no interest when its color is white. A set of points with interest represents a Region
of interest as demonstrated in Figure 5. We need to deploy an adequate number of sensor nodes
X = (x1, x2, . . . xN) that will fulfill at least 1-coverage and 1-connectivity. Based on the triangular
deployment grid, sensor nodes are deployed line by line while the first is placed randomly on the
map. Each node that collects an interest different than zero is selected and saved. Using the gradient
method, all sensor nodes on the RoI boundary are detected and set to seek more interest. Finally, the
joint interest collected by the given set of sensor nodes X is calculated.

Algorithms 2017, 10, 80  7 of 19 

f (X) = 	 γ. f (X) − σ. f (X) + f (X) , if X is K − survivableC, otherwise  (3) 

f (X) is the function of the average number of hops defined by Equation (4) as follows: 

f ( X − {x , s} ∪ x + d ) = 1N − 1 × ∑ nbr_hops(s, x )p  (4) 

where, s is the sink node, p  represents the total number of paths between s and x , d is an arbitrary 
distance oriented in a random direction, and nbr_hops (s, x ) computes the number of hops between 
the sink and the node x . While the first algorithm based on SA in [13] tries to optimize deployment 
only by maximizing coverage, the second approach in [14], searches for the optimal placement of 
nodes by maximizing coverage while ensuring a k-connected graph. Moreover, both approaches 
consider a fixed number of sensor nodes. 

5. Model Formulation and Description 

5.1. Model Formulation 

Assuming that the field of interest is a two-dimensional square region with area Z = A × B/Z ∈R , and the network to be homogenous, N sensor nodes are deployed in the target region Z, and the 
location of sensor i is denoted x . We consider that every colored pixel represents a point with 
interest, a point has no interest when its color is white. A set of points with interest represents a 
Region of interest as demonstrated in Figure 5. We need to deploy an adequate number of sensor 
nodes X = (x , x , … x ) that will fulfill at least 1-coverage and 1-connectivity. Based on the triangular 
deployment grid, sensor nodes are deployed line by line while the first is placed randomly on the 
map. Each node that collects an interest different than zero is selected and saved. Using the gradient 
method, all sensor nodes on the RoI boundary are detected and set to seek more interest. Finally, the 
joint interest collected by the given set of sensor nodes X is calculated.  

 
Figure 5.Description of the cluster in the supervised area. 

With every iteration, the minimal distance between sensor nodes, which is the distance between 
each node and its first-degree neighbors’, is updated, and the adequate number of nodes is 
recalculated. If the recalculated joint interest is equal or greater than the previous one, the positions 
are updated. In order to minimize the processing time, the collection of interest for each sensor node 
is done using a clustering technique so the search will focus on a cluster which is a square, instead of 
the whole supervised area. Each cluster’s center is a sensor node position. Let (Xi,Yi) be the Cartesian 
coordinates of a point Pi, and (Xs,Ys) the sensor node coordinates. The cluster is defined as 
follows	C = {	(Xi, Yi) ∈ ℝ²/|Xs − Xi| 	≤ 	R &|Ys − Yi| 	≤ 	R }. 
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With every iteration, the minimal distance between sensor nodes, which is the distance between
each node and its first-degree neighbors’, is updated, and the adequate number of nodes is recalculated.
If the recalculated joint interest is equal or greater than the previous one, the positions are updated.
In order to minimize the processing time, the collection of interest for each sensor node is done
using a clustering technique so the search will focus on a cluster which is a square, instead of
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the whole supervised area. Each cluster’s center is a sensor node position. Let (Xi,Yi) be the
Cartesian coordinates of a point Pi, and (Xs,Ys) the sensor node coordinates. The cluster is defined as
follows Ck =

{
(Xi, Yi) ∈ R2/|Xs− Xi| ≤ Rs&|Ys− Yi| ≤ Rs

}
.

The new objective function described in Equation (9) is developed based on Equation (2)
developed in [13]. { If f (X∗) ≥ f (X), with f (X∗) the new output of f (X)} the function’s output is
saved to C, otherwise it’s equal to the optimum solution stored in C. We updated the interest function
given by Equation (8), and we added new sub functions given by Equations (5)–(7). The new sub
functions are defined, as follows:

fG(X) = ∇ fref(x, y).
→
u (5)

fTX(X) = xi +

(
k.step.

xi − xj

dmax

)
(6)

fN(X) =
A

dmin
.

B
dmin

(7)

where, the gradient function ∇ fref = 〈∂ fref∂x, ∂ fref∂y〉 and (fref) is the class function, the class of
covered point is {1}, while uncovered point has {−1}.

→
u is a unit vector. dmax is the distance between

unconnected nodes xiand xj. dmin is the distance between close nodes. k is the number of nodes
needed to achieve connection, step is the distance between new nodes: step = a× RT.

fS(X) = ∑N
i =1 [αi.area(Si)− area

(⋂N

j = i
Sj

)
] (8)

f(X) =


fmin(X) + fS(X) + fG(X) + fTX(X)− fN(X)

C, otherwise
(9)

where: X is a set of N nodes. C is a constant ensuring that only survivable solutions will be
accepted. fmin(X) denotes the minimum distance between sensor nodes given by Equation (1) where
d = dmin and increases by ν in every iteration. fS(X) is the sub function that collects the interest
detected by every node in the area given by Equation (8). fG(X), given by Equation (5), is the sub
function that allows sensor nodes on the RoI boundary to move with µ in the right direction to
maximize the collected interest. By using the derivate of the reference function in the direction of
→
i and

→
j . fTX(X), given by Equation (6), one finds the minimum number of nodes needed to ensure

connectivity. fN(X) is given by Equation (7), to define the number of the nodes to deploy.
In Algorithm 1, the number of iterations T depends on the application parameters, such as the

size of the map, the sensing range, the initial minimal distance of deployment d0, and the final desired
distance dN between a sensor node and its first-degree neighbors. It can be calculated as follows:
n = (dN − d0)/ ν, with ν the added value to the actual minimal distance between nodes each time.
We initialize the distance between close sensor nodes with RS, then we calculate the number of nodes
needed to monitor the whole area. Since the nodes are too close to each other and overlapping between
sensor nodes is penalized, the maximum value of the joint interest is achieved in the first iteration, and
full coverage and connectivity are ensured. This method has allowed us to approach a multi-objective
optimization problem by solving a mono-objective optimization problem, which maximizes the joint
interest. The other objectives can be automatically reached by an upgrade of their values. Thus, the
proposed algorithm allows finding the maximum joint interest that can be collected by all sensor nodes
in the network while minimizing their number, and maximizing the distance between close nodes.
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Algorithm 1: Gradient—SA Hybrid Algorithm for Sensor Deployment

1. T = T0, is the initial temperature and d = d0 the initial distance of deployment. ν and µ denote respectively
the added value to the actual distance of deployment d and the transition value for nodes at the boundary.
2. Let compute the initial number of nodes, N0 = A

d0
× B

d0

X0 = {x1, x2, . . . , xN0 } (i) corresponds to the index of the current node. Initial interest function value is
fS(X0) = 0 and fS(X) = 0.
3. While T > 0
\\Let distribute nodes line by line and save those with a collected interest value Si ≥ 0, then compute fS(X).
The first position is chosen randomly.
3.1 While k < sensor nodes on x-axis,
3.1.1 While j < sensor nodes on y-axis
3.1.1.1 Define the cluster
3.1.1.2 Calculate the collected interest Si per node then the joint interest.
3.1.1.3 If Si > 0 then xi ε (X); fS(X) = fS(X) + Si End
3.1.1.4 Shift the sensor position horizontally by ν;
3.1.1.5 Update j
3.1.1.6 end
3.1.2 Shift the sensor position vertically by ν.

√
3/2;

3.1.3 Update k
3.1.4 End
\\Let search for sensors on the RoI boundary, shift their positions and calculate the sum of collected interest of
sensor nodes.
3.2 t =

(
d− Rs

4

)
/µ , is the number of iterations needed for a node to move from its position on the Roi

boundary until approximating its neighbour by Rs/4.
3.3 While t > 0
3.3.1 While I < N sensor
3.3.1.1 Detect sensors on the RoI boundary SE
3.3.1.2 Shift SE positions by µ using fG(X)
3.3.1.3 Define the cluster then calculate the collected interest
3.3.1.4 End
3.3.2 Calculate the joint interest fS(X);
3.3.3 t = t − γ

3.3.4 End
3.4 If fs(X0 − fs(X) ≤ Q then fS(X0) = fS(X) End; fS(X) = 0
\\Q is the accepted tolerance: For 100% coverage Q = 0
3.5 Let detect unconnected nodes, and add nodes by using fTX(X).
3.6 Upgrade the values of the functions fmin(X) and fN(X)
3.7 T = T − δ.
3.8 End

5.2. Model Description

5.2.1. Step One: Searching for Interest

For the purpose of simplifying the calculation and minimizing the processing time, we seek the
interest that should collect every sensor only within a cluster where the majority of the points are
within the sensing range of the sensor. This cluster is a square, with L as its length L ≥ 2× RS, and the
sensor position as its center.

We use the triangular grid deployment technique, because based on [10], when RT = 2× RS the
triangular lattice is the best deployment pattern.

Firstly, we began by putting sensor nodes line by line, dmin is the distance between nodes.
Assuming that for the initial deployment dmin = d0, the initial number of nodes to deploy is
N0 = A

d0
× B

d0
. When dmin increases, the number of sensor nodes N to deploy decreases. Figure 6a,b

show this process at two different time steps. For each deployed sensor, we calculate the collected
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interest. In Figure 7, nodes in gray gathering no interest are removed, then the selected nodes collecting
information are chosen to be saved (Figure 8).Algorithms 2017, 10, 80  10 of 19 
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5.2.2. Step Two: RoI-Boundary Sensor Optimization

The objective of this step is to move nodes placed on the boundary, in the right direction to collect
more interest. We decided to use the gradient method. Two classes are defined and represent the class
matrix. Class {1} represents points with interest, class {−1} represents points without interest. After we
use the clustering technique and creating the reference matrix, we apply the gradient function so we
can detect nodes on the boundary, and secondly decide the movement direction to seek more interest.
Figure 9a,b show an example of this process where blue sensor nodes are the boundary nodes that
should be relocated.
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needed to achieve full connectivity. We assume that the sink node connects the whole network to the 
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distance of these nodes to point zero. Secondly we calculate the distance of every sensor to all the 
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Figure 9. Positions of the sensor nodes on the boundary: (a) before and (b) after applying the
gradient method.

At each step, the gradient of the reference matrix is calculated and the sensor location is updated
to make a small step in the right direction to gather more interest. The joint interest will be recalculated
for the new solution, and this step is repeated until the maximum number of iterations is reached.
When the distance between two nodes is less than the sensing range, in our case Rs/4, the sensor on
the RoI boundary is deleted. In this case, the maximum number of iterations needed for a node to
move from its position on the Roi boundary until approximating its neighbor by Rs/4, should be at
least t =

(
d− Rs

4

)
/µ, as already described in the pseudo-code. Figure 10 shows that better sensor

positions were found after applying this method to the design presented in Figure 8.Distance is an
important factor for sensing. When the distance between the node and the event increases, the sensing
power decreases and battery consumption increases [30,31]. One of the most important requirements
of WSNs is to reduce the energy consumption [32,33]. Hence, this technique allows not only seeking
better positions for nodes to monitor more events but also getting close to the RoI so energy saving can
be achieved.
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5.2.3. Step Three: Ensuring Connectivity

In this step, we define the unconnected sensor nodes and the minimum number of sensors needed
to achieve full connectivity. We assume that the sink node connects the whole network to the base
station. Firstly, we sort X, the set of nodes, in ascending order according to the Euclidean distance of
these nodes to point zero. Secondly we calculate the distance of every sensor to all the others, only
in one direction, as shown in Table 1, where di,j is the Euclidean distance between nodes xi, xj, then
we seek the minimum distance between nodes line by line.If the minimum distance di,j > 2× RT,
new sensor nodes are to be deployed between nodes xi and xj and Equation (6) is used to calculate
their number.
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Table 1. Euclidean distance between sensor nodes in one direction.

Sensors xN xN − 1 ------ x3 x2 x1

x1 d1,N d1,N − 1 ------ d1,3 d1,2
x2 d2,N d2,N − 1 ------ d2,3

------ ------ ------ ------
xN − 1 dN − 1,N

Figure 11 proposes a WSN design that collects a maximum interest and ensures full coverage and
full connectivity. The sink node is decided in a way to avoid network congestion.
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6. Results and Discussion

Using MATLAB, we tested our approach on a 100 × 100 pixel picture that represents the
distribution of the interest in a given area. The RoI is colored in yellow, green pixels represent
no interest. Based on the developed equation given by Equation (9), the algorithm computes
the collected interest, and optimizes the objective function f (X). We define two parameters that
can confirm if our approach chooses the optimal topology. The first one is the ratio of interest
Rics = Calculated interest/Maximum Interest, and Rips = Rics/Number of nodes is the second ratio
that shows the average of the interest collected per sensor. Rips is at its minimal value when the area
is over-covered, or in other words, the number of deployed nodes is more than sufficient, since the
same interest is collected while the number of nodes decreases in time, which makes the Rips ratio
increasing in time, meaning that the average of interest calculated per each node increases with time.
Otherwise, if the area is less covered, Rips reaches its maximum. Two scenarios are presented where
the coverage problem is to be solved while finding the adequate number of nodes. The first one is the
case of the area coverage problem. We define three regions RoI.1/2/3 within the area to supervise, at
least 97% of the joint interest must be satisfied. The second case is a barrier coverage problem where
100% of the joint interest must be collected. Then a comparison is made between our results and those
obtained in [3].

6.1. Scenario 1: Area Coverage with RoI.1/2/3

These simulations had been performed with precise parameters which provides better
performance: d0 = RS the initial distance, ν = 0.5 the distance to add between nodes after every
iteration, µ = 0.05 the transition distance for sensor nodes on the boundary, RS = 7 the sensing range
and the communication range RT = 14.

Initial deployment is illustrated in Figure 12. The Initial number of sensors needed to monitor
the area is calculated based on the initial distance d0, N0 = 54. The model decides to add one sensor
between RoI.2–RoI.3, and another one between RoI.1–RoI.2, so full connectivity can be achieved.
After many iterations, the algorithm decides whether to save the proposed design or not based on the
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value of the objective function. At the end, the best topology was found at iteration 6673, shown below
in Figure 13.Algorithms 2017, 10, 80  13 of 19 
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Figure 14b is an illustration of the network after ensuring the connection between all sensor nodes
and defining the sink node. Full connectivity is achieved, as demonstrated by all the green links
passing through all sensor nodes. Figure 15 illustrates that the required degree of the joint interest is
satisfied using only 26 nodes instead of 54 nodes used in the first deployment, and it shows that the
best deployment was found at iteration It = 6673, where the topology provides a joint interest of 97.09%
coverage ratio, with a minimum number of sensor nodes. During the first 400 iterations, the maximum
joint interest was approximately satisfied and Rips values were increasing while the numbers of nodes
were decreasing, meaning that the area was over-covered. The processing time of the application was
around 60 s but only if the first and the optimal deployment topology are displayed, otherwise it
exceeds 10 min.
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6.2. Scenario 2: Barrier Coverage

In this Scenario, we monitor a barrier within the area in order to detect any intruders. We used a
picture with 100 × 100 pixels, where the barriers are colored in yellow. In this simulation, we use the
same parameters: µ = 0.05, d0 = RS ; RS = 7 ; RT = 14; except for ν = 0.1, so better performance could
be achieved.Figure 16 shows the initial deployment with N0 = 37. After optimization, the algorithm
found the best deployment of nodes at iteration 6485, achieving the collection of the maximum joint
interest with N = 16 nodes, as illustrated in Figure 17.
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6.3. Comparisons

In order to compare our method to the GD method developed in [8] and the CMA-ES method, we
used an area with the same properties as the map of the Campus of Laval University, Canada used
in [8]. The same sensing range is defined, however, in our case, the sensing area is considered to be
isotropic, while in [8] the sensing angle is between 60◦ and 120◦. This constraint shows no limitations
since the isotropic sensing model plays the role of the directive sensing model. We defined two images.
The first one represents a small map with dimensions of 100× 100 pixels, named UL-A, and the second
represents a larger map with dimensions of 500× 500 pixels, named UL-B.

Black pixels are points with a very low interest and they are assumed to have no interest. The white
pixels are points with interest. For better results, we define ν = 0.1 and µ = 0.1. Figure 20 shows
the optimal placement of sensor nodes on the first map, UL-A. 100% coverage is reached and the
maximum interest is achieved. Figure 21 demonstrates that full connectivity is reached.
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On the second map, UL-B, the optimal deployment described in Figure 22 achieves 89.48% of the
joint interest. The proposed topology ensures full connectivity as shown in Figure 23. Table 2 regroups
the results of three methods, the proposed model, the GD algorithm developed in [8], and the CMA-ES
algorithm used in [8].
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Table 2 proves that the proposed algorithm provides competitive results especially on smaller
maps, where the maximum coverage value is achieved with fewer sensor nodes. On larger maps, the
algorithm provides good results since it offers approximately the same coverage, but with more nodes
than is needed in the other methods. In both cases, the processing time of the proposed algorithm is
far less than that of CMA-ES.

Table 2. Coverage percentage, number of sensors, and processing time of the different methods.
(Time is reported in seconds (s), minutes (m), and hours (h)).

Method Method’s Properties Map1 UL-A Map2 UL-B

The proposed algorithm
Number of sensors 9 78

Average 100% 89.48%
CPU Time 6 m 42 s 5.2 h

GD Algorithm
Number of sensors 12 60

Average 91.38% 83.17%
CPU Time 72 s 22.2 m

CMA-ES Algorithm
Number of sensors 12 60

Average 90.44% 87.63%
CPU Time 15.9 m 11.1 h

7. Conclusions

In this paper we propose an optimization model to solve one of the major concerns of WSN,
the sensor placement problem, and to answer one the most popular research questions: What is the
minimum number of sensor nodes to achieve full coverage? The proposed approach is based on the
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combination of the gradient method and the SA algorithm, and can solve both the area coverage
problem and the barrier coverage problem, for applications with coverage and connectivity degree
equal to one.

The simulation results of the two scenarios (area coverage and barrier coverage problem tested
in Sections 6.1 and 6.2 on small maps with 100 × 100 pixels) show that the model selects the optimal
deployment design from all the generated models. The selected deployment design meets the
application requirements in the two cases, in terms of coverage and connectivity, while defining
the optimum number of sensor nodes. Another scenario was implemented in Section 6.3 in order to
compare the proposed method to other optimization methods implemented in [8]. The CMA-ES and
the GD algorithms were proposed by authors in [8] for the sensor placement optimization problem
on the Laval Campus University. The same map specifications were used. The first sub-part, UL-A,
is a small map with 100 × 100 pixels and the second sub-part, UL-B, is larger with 500 × 500 pixels.
In comparison with results in [8], the proposed model shows better performance on the smaller map
in terms of obtaining the maximum coverage with the optimum number of sensor nodes, while the
processing time is acceptable, 5 times superior to the GD method and two times inferior to the CMA-ES
method. However, on the larger map, it performs slightly better than average by reaching a slightly
better coverage but with more sensor nodes than those needed by the two other methods, while the
processing time is 13 times superior to the GD algorithm and 2 times inferior to the CMA-ES method.

Future work could involve using another optimization method for nodes on the boundary of the
region of interest in order to minimize the processing time. We will continue our research on WSN
deployment strategies in order to provide solutions for k-coverage and k-connectivity problems while
minimizing the network cost and maximizing the network lifetime.
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