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Featured Application: This review not only benefits researchers to develop strong research
themes and identify gaps in the field but also helps practitioners for DM and Big Data application
system development.

Abstract: Data mining (DM) with Big Data has been widely used in the lifecycle of electronic products
that range from the design and production stages to the service stage. A comprehensive analysis of
DM with Big Data and a review of its application in the stages of its lifecycle will not only benefit
researchers to develop strong research themes and identify gaps in the field but also help practitioners
for DM application system development. In this paper, a brief clarification of DM-related topics is
presented first. A flowchart of DM and the main content of the flowchart steps are given in which
commonly used data preparation and preprocessing approaches, DM functions and techniques, and
performances indicators are summarized. Then, a comprehensive review covering 105 articles from
2007 to 2017 on DM or Big Data applications in the electronics industry is provided according to
the flowchart from various points of view such as data handling, applications of DM, or Big Data
at different lifecycle stages, and the software used in the applications. On this basis, a diagram of
data content for different knowledge areas and a framework for DM and Big Data applications in the
electronics industry are established. Finally, conclusions and future research directions are given.

Keywords: data mining; knowledge discovery in databases; big data; electronics industry;
semiconductor; wafer; print circuit board; product lifecycle management

1. Introduction

Since the internet of things and advanced information technologies (for example, radio frequency
identification (RFID) tags and smart sensors) are widely used in manufacturing enterprises for their
daily production and management, the product lifecycle management (PLM) processes produce a huge
amount of data [1]. Furthermore, the accumulation of historical data in enterprise resource planning
(ERP), supply chain management (SCM), customer relationship management (CRM), and order
management system (OMS), as well as the timely collected data by the widely used manufacturing
execution system (MES) and distributed control system (DCS) contributed to the sharp increase of data
over the decades. The era of industrial Big Data has come.

Leaders of manufacturing enterprises are becoming increasingly interested in benefiting their
companies by effectively using Big Data [1]. Big data related technologies such as knowledge discovery
in databases (KDD) and data mining (DM) have been widely employed to enhance the intelligence
and efficiency of the design, production, and service processes in many manufacturing scenes such
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as product design improvement, manufacturing process optimization, production management and
optimization (PMO), production process monitoring and control, quality management, CRM, SCM,
and so forth. Intel employs Big Data for predictive maintenance of equipment and greatly reduces
the unnecessary equipment stop and idle time. A Taiwan Semiconductor Manufacturing Company
adopts Big Data based advanced equipment control/advanced process control (AEC/APC) to improve
production efficiency and wafer yield. Many reviews of these applications in the manufacturing
industry have been reported and summarized in Table 1, from which we can see most of the
achievements related to DM application in manufacturing before 2015 [2–6], and many researchers
have started to adopt the concept of Big Data [7–11] in smart manufacturing since then. However, the
aforementioned reviews provide no comprehensive analysis of DM with Big Data nor a summarization
of them in the electronics industry from the view of their lifecycle, considering the special requirement
of this manufacturing industry to the best of our knowledge.

Table 1. The reviews of data mining and big data application in the smart manufacturing industry.

Reference Main Review Content Year

Choudhary et al. [2] Application of KDD and DM in manufacturing, the kinds of patterns to
be mined, and data mining techniques (DMTs) 2009

Ngai et al. [3] DM application in customer identification, attraction, retention,
and development 2009

Gulser et al. [4]
DM application for product quality improvement tasks including
quality description/predicting/classification and
parameter optimization

2011

Liao et al. [5] DMTs applications in CRM, product development, and fault
pattern analysis 2012

Hamidey et al. [6] Support vector machine (SVM) application in quality assessment
in manufacturing 2015

Donovan et al. [7]
Application of Big Data in the area of design, process and planning,
quality management, maintenance and diagnosis, scheduling, control,
environment, and so forth.

2015

Li et al. [8] Concept, characteristics, and potential application of Big Data in PLM 2015

Zhong et al. [9]
Big Data applications in finance, economics, healthcare, SCM, and the
manufacturing sector. Current movements on the Big Data for SCM in
service and manufacturing

2016

Nagorny et al. [10]
Big Data in smart manufacturing systems including related research
roadmaps and projects in European, the infrastructures, Big Data
analysis process, algorithm and tools, and so forth.

2017

Cheng et al. [11] Development of DMTs, major functions of DMTs, applications of DMTs
to production management in the Big Data era 2017

Electronics is one of the fastest evolving, most innovative, and most competitive industries.
The research and development of new and improved products are of great importance, where
companies often compete fiercely to bring the newest technology to the market first. The past five years,
from 2012 to 2017, have been characterized by growth in emerging markets and introduction of new
products, leading more people to buy consumer electronics. The global consumer electronics industry
was valued at $283 billion in 2015 [12]. Grand view research predicted that the global consumer
electronics market is expected to reach $838.85 billion by 2020 [13]. The newly developed products
are featured by high precision, long and complex manufacturing/test processes with high purity
environments, diverse and high-quality requirements from customers, and a large amount of data
generated at different stages of their lifecycle from design and production to sale and service. Thus,
the electronics industry is currently in the midst of a data-driven revolution [7] which has pushed
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forward many data excavation related research over the past decades for the better utilization of these
data that can facilitate quality or service improvement, production optimization, and so forth. [14].
A review of DM with Big Data application in the electronics industry not only benefits researchers
to develop strong research themes and identify gaps in the field but also helps practitioners for DM
application system development.

In the following sections, DM with Big Data and related techniques are given in Section 2 in
which a brief introduction of the concepts of DM and Big Data is presented, and also the flowchart
and the main content of the flowchart steps are summarized. In Section 3, the article selection
condition and distribution of the selected articles in different years and different lifecycle stages
are discussed. A comprehensive analysis of the reviewed literature from various points of view is
provided subsequently, in Section 4, which summarizes data handling, discusses the DM with Big
Data application in different stages of the product lifecycle, and surveys the software used in these
applications. On this basis, the data content and a framework for DM application in the electronics
industry are established in Section 5. Finally, the conclusions and future research directions are given
in Section 6.

2. Data Mining with Big Data

2.1. Concepts of Data Mining and Big Data

There are many concepts such as DM, KDD, and Big Data that are closely related to each other.
DM, as an interdisciplinary subject including database design, statistics, pattern recognition, machine
learning, and data visualization [6], can be defined in many different ways. Romero and Ventura [15]
specified DM as “the nontrivial process of identifying valid, novel, potentially useful, and ultimately
understandable patterns in data”. Han et al. [16] defined DM as “the process of discovering interesting
patterns and knowledge from large amounts of data”.

Many researcher and practitioners treat DM as a synonym for KDD as IBM [17] deems KDD and
DM the same as “an interdisciplinary area focusing on methodologies for extracting useful knowledge
from data”. However, others think that “KDD refers to the overall process of discovering knowledge
from data while DM (in a narrow sense) refers to application of algorithms for extracting patterns from
data without the additional steps of the KDD process” [16], in which the additional steps include data
preparation, preprocessing, incorporation of appropriate prior knowledge, and proper interpretation
of the results of mining [16]. Here, we take DM as a synonym for KDD whereas DM in a narrow sense
refers only to the step to generate a specific pattern using a particular algorithm within an acceptable
computational efficiency limit [11,16].

There are various definitions of Big Data from 3 Vs to 4 Vs [18]. Volume, velocity, and variety are
the well-known 3Vs and the fourth V can be value, variability, or virtual [8,18]. Wikipedia specifies that
“Big Data is data sets that are so voluminous and complex that traditional data processing methods
are inadequate to deal with them” [19]. Gartner gives a more detailed definition as follows: “Big
Data is high-volume, high-velocity, and/or high-variety information assets that require new forms
of processing to enable enhanced decision making, insight discovery and process optimization” [20].
Big Data analysis is strongly connected with classical data analysis and DM approaches to access and
process these amounts of data very fast [2,10].

The flowchart of DM with Big Data is illustrated in Figure 1. The main content of each step
includes data preparation, preprocessing, DM in a narrow sense, and evaluation. The interpretation of
the results will be discussed in the following sections.

2.2. Data Preparation and Preprocessing

The data preparation includes problem clarification and collecting the targeted data. The problem
clarification is to understand the industry domain including the relevant prior knowledge related
to different applications and targeted goals [4]. The targeted data can be obtained by experimental
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observations, historical accumulated records, online sensor measurement, real-time status of RFID
tags, and simulation results. These data sets can be stored in different formats such as data warehouse,
marts, database, files, and so on [4,16], and the data relevant to the mining tasks are retrieved and
selected before data preprocessing.

Figure 1. The data mining flowchart.

The preprocessing consists of data cleaning, transformation, reduction, and discretization.
Data cleaning operation involves techniques for filling in missing values, smoothing out noise, handling
outliers, detecting, and removing redundant data. Data transformation puts the data into appropriate
forms for mining when necessary. Data reduction is performed to obtain a smaller representation of
the original data without sacrificing its integrity. Dimensionality reduction, numerosity reduction, and
data compression are the three ways for data reduction. Dimensionality reduction is a technique to
detect and remove irrelevant, weakly relevant or redundant attributes [16]. Numerosity reduction
replaces the original data volume by alternative and smaller forms of data representation. In data
compression, transformations are applied so as to obtain a reduced or compressed representation of
the original data, such as principal components analysis (PCA). Discretization reduces the number of
levels of an attribute by collecting and replacing low-level concepts with high-level concepts [4].

2.3. Data Mining in a Narrow Sense

Data mining in a narrow sense, as the core of DM, is to derive the model and mining the
patterns/knowledge in the data. The patterns to be mined determine the DM functions to be
performed which can always be divided into descriptive and predictive DM. The descriptive function
is to characterize properties of the data in a target data set that mainly includes the functions
of summarization, clustering, and association/sequential pattern mining. While the predictive
DM performs induction on the current data in order to make predictions that mainly consists of
the functions of classification, prediction, outlier detection (anomaly detection), and time series
analysis [4,11,16]. The corresponding data mining techniques (DMTs) to realize different functions
can be categorized into statistical analysis-oriented (SA-oriented) and knowledge discovery-oriented
(KD-oriented). SA-oriented techniques make assumptions about data distribution and relationships
between variables based on prior knowledge in advance and verify or deny the assumptions. Common
SA-oriented DMTs include the algorithms such as regression, k-nearest neighbor (k-NN), k-means,
Bayesian classifier [21], and so on. On the contrary, KD-oriented DMTs search for the relationship
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automatically under no clear assumptions [11]. The details of the DM functions and the related DMTs
are summarized in Table 2 [4,11,16].

Table 2. The data mining functions and related techniques.

Type of Function DM Functions Description Related DMTs

Descriptive DM

Summarization Summarization of the general
characteristics of a data set

Statistical measures and plots, online
analytical processing, attribute-oriented
induction, and so forth.

Clustering
Grouping a set of data objects into
multiple clusters so that objects
within a cluster have high similarity

Centroid-based clustering,
connectivity-based clustering,
density-based clustering, and
distribution-based clustering

Association/
Sequential pattern

mining

Mining frequent patterns to discover
interesting associations and
correlations (in a sequence for
sequential pattern mining)

Apriori, AprioriAII, sampling,
partitioning pattern growth, correlation
rules, stream patterns, and so forth.

Predictive DM

Classification A model or classifier is constructed to
predict class (categorical) labels

DT, Bayesian, rule-based, SVM, ANN,
CBR, k-NN, GA, RST, and Fuzzy Set

Prediction
A model performing prediction
function to forecast future values of
continuous type data

Regression, ANN, SVM/SVR, DT, RST,
and Fuzzy set

Outlier detection The process of finding data or objects
that behave unexpectedly

Classification based, k-NN based,
clustering based, and so forth.

Time series analysis

Methods for analyzing time series
data in order to extract meaningful
statistics and other characteristics of
the data

Regression, SVM, ANN, RST, and
Fuzzy Set

DT: Decision tree; CBR: Case-based reasoning; GA: Genetic algorithm, RST: Rough set theory; SVM/SVR: Support
vector machine/regression.

2.4. Performance Indicators

The knowledge extracted should be evaluated and interpreted correctly to obtain reliable results.
The evaluation of the DM methods to reach a final decision requires a comparison of results obtained
from various DM methods using several measures [4]. The performance indicators employed to
evaluate classifiers based on a confusion matrix are illustrated in Figure 2. The indicators widely used
for the measurement of prediction, clustering, and association of DM functions are summarized in
Tables 3–5 respectively.

Figure 2. The confusion matrix and performance indicators for classification [22].



Appl. Sci. 2018, 8, 582 6 of 34

Table 3. The performance indicators for the prediction function [23].

Indicators Equation Indicators Equation

MAPE MAPE = 1
N

N
∑

i=1

∣∣∣ ŷi−yi
yi

∣∣∣× 100 R2 R2 =
N
∑

i=1
(ŷi − y)2/

N
∑

i=1
(yi − y)2

MSE MSE =
N
∑

i=1
(ŷi − yi)

2/N ME ME = 1
N

N
∑

i=1

|yi−ŷi |
yi

MAE MAE =
N
∑

i=1
|ŷi − yi|/N VARER VARER = 1

n−1

n
∑

k=1
( |yi−ŷi |

yi
−ME)2

RMSE RMSE =

√
N
∑

i=1
(ŷi − yi)

2/N RE RE =
E(yi−ŷi)

2

E(yi−y)2

RSE RSE =

√
N
∑

i=1
(ŷi − yi)

2/N IA
IA = 1−

N
∑

i=1
(yi − ŷi)

2/
N
∑

i=1
(|ŷi − y|+|yi − y|) 2

RAE RAE =

√
N
∑

i=1
|ŷi − yi|/N - -

Note: yi and ŷi are the observed and predicted value of sample i respectively; y is the average result of samples.
N
∑

i=1
(yi − y)2 is the total sum of squares, while

N
∑

i=1
(ŷi − y)2 is the explained sum of squares. E is the expectation value.

Table 4. The performance indicators for the clustering function [24].

Indicators Equation Description

DBI DBI =
1
n

n
∑

i=1
max

j 6=i
(

σi + σj

d(ci, cj)
)

n is the number of clusters, cx is the centroid of
cluster x, σx is the average distance of all
elements in cluster x to centroid cx, and d(ci, cj)
is the distance between centroids ci and cj.

DI D =
min1≤i<j≤nd(i, j)

min1≤k≤nd′(k)

d(i, j) represents the distance between clusters i
and j; d′(k) measures the intra-cluster distance
of cluster k.

Purity Purity(Ω,C) = 1
N ∑

k
max

j

∣∣∣wk ∩ cj

∣∣∣ Ω = {w1, w2, . . . , wk} is the set of clusters,
C =

{
c1, c2, . . . , cJ

}
is the set of classes, I is

mutual information, and H is entropy.NMI NMI(Ω,C) = I(Ω,C)
|H(Ω), H(C)|/2

RI RI =
TP + TN

TP + FP + FN + TN
The definitions of TP, TN, FP, FN, precision,
and recall are the same as the specifications
given in Figure 2; β is the penalty coefficient.F measure Fβ =

(β2 + 1)× Precision× Recall
β2 × Precision + Recall

QE QE =
1
N

N
∑

i=1

∣∣∣∣∣∣xi − rβ

∣∣∣∣∣∣ N refers to the number of original data vectors,
and rβ is the best matching unit of the data
vector xi; u(x) gets the value of 1 if the best and
the second best matching units of the input
vector are non-adjacent, and 0 otherwise.

TE TE =
1
N

N
∑

i=1
u(xi)

Table 5. The performance indicators for the association function.

Indicators Equation Description

Support sup(X) =
|{t ∈ T; X ⊆ t}|

|T|
X is an item set, X → Y is an association rule, and T is
a set of transactions. Support of X (sup (X)) with
respect to T is defined as the proportion of transactions
t in the dataset which contains the item set X.
con f (X → Y) is the proportion of the transactions that
contains X which also contains Y.

Confidence con f (X → Y) = sup(X∪ Y)/sup(X)

Lift li f t(X → Y) =
sup(X∪ Y)

sup(X)× sup(Y)

Conviction conv(X → Y) =
1− sup(Y)

1− con f (X → Y)
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Accuracy (ACC), precision, sensitivity or recall, specificity, and so forth, given in Figure 2, are the
commonly employed indicators. Meanwhile, the receiver operating characteristic curve (ROC) created
by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings
is always taken to illustrate the diagnostic ability of a binary classifier system as its discrimination
threshold is varied.

The performance indicators for prediction mainly include the mean absolute percentage error
(MAPE), the mean squared error (MSE), the mean absolute error (MAE), the root-mean-square error
(RMSE), the root absolute error (RAE), the mean error (ME), the variance of errors (VARER), the relative
error (RE), the goodness of fit (R2), the index of agreement (IA), and so on. Typical objective functions
to assess the quality of clustering include internal and external criteria. The internal criterion for the
quality of a clustering can be evaluated by the Davies–Bouldin index (DBI), Dunn index (DI), and so
on, while the most used external criteria includes purity, normalized mutual information (NMI), rand
index (RI), F measure, and so on. Meanwhile, some indicators like the quantization error (QE) and
the topographic error (TE) are for a special algorithm like self-organizing map (SOM). The support,
confidence, lift, and conviction are pervasive performance indicators for association. The outlier
detection can be taken as a binary classification, and the performance indicators for classification can
be used to evaluate the results. Time series analysis can be used for clustering, classification, and
anomaly detection, as well as forecasting, and therefore, the related performance can be verified by the
corresponding indicators for clustering, classification, and prediction.

3. Article Selection and Distribution

The electronics industry is composed of organizations involved in the design, development,
manufacture, assembly, and service of electronic equipment and components. These organizations
offer a wide variety of products that range from government products, industrial products, consumer
products, and electronic components as four primary segments. Each category serves a specific
market, which allows it to focus on components and products geared toward their customers. The
government market is primarily developed for aircraft and military products, as well as communication
technology and medical devices. Industrial products include large-scale computers, radio and
television broadcasting equipment, telecommunications equipment, and electronic office equipment,
while consumer products are the well-known televisions, cell phones, DVD players, smartphones,
radios, video game systems, personal computers, electronic ovens, and home intercommunication
and alarm systems. The final segment the manufacturers produce and sell includes electron tubes,
semiconductors, printed circuit boards (PCB), and passive components [25].

Based on the initial search from databases with keywords such as DM, Big Data, and electronics,
we found that most of the articles were related to consumer products and components. Therefore,
articles related to DM with Big Data applications in consumer electronics and components were
selected here. On this basis, the article selection was conducted in which the period of interest for
this literature survey ranges from 2007 to 2017. In October 2017, a search was made according to the
following conditions:

(1) Database: Science Direct, IEEE Xplore Digital Library, Springer Link, Taylor & Francis Online,
Wiley Online Library, SAGE Journal, Web of Science, and Google Scholar

(2) Stages: design, production, sale, service, and recycling
(3) Products: electronic products, integrated circuit, wafer, semiconductor, PCB, phone,

and computer
(4) DM-related concepts: data mining, Big Data, and knowledge discovery
(5) DM functions: Prediction, classification, clustering, association, product/process

characterization, time series analysis, outlier detection, and anomaly detection.

A total of 105 application studies within the scope of this review were found. The distribution of
the selected articles in different years and different stages are illustrated in Figure 3. It can be seen
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that 17% (17 articles) were related to the stage of product and manufacturing process design [26–42],
and more than 75% (80 articles) applied DM and Big Data to production management and control in
the stage of production [43–122], but less than 8% (8 articles) of applications focused on the stage of
sale, service, and recycling [123–130]. The fluctuation in quantity of the selected articles in different
years presents no obvious tendency, however, it indicates that the topic has attracted ongoing attention
and research during the past decades, and the application areas have been extended and many new
approaches have been developed.

Figure 3. The distribution of selected articles in different years and different stages.

4. Data Mining with Big Data Applications in the Electronics Industry

In the following, we examine and discuss the reviewed literature from various points of view
based on the flowchart given in Figure 1. Data handling, or more specifically, data preparation and
data preprocessing before performing the DM functions, are discussed first. Next, DM with Big
Data applications in different stages of the electronics industry, including the knowledge area, DM
functions, developed DMTs, and performance indicators, are summarized. In addition, findings of
these applications in each knowledge area are given, and the summarization of these reviews is also
presented. Finally, the software tools used in these applications are examined.

4.1. Data Handling

Data preparation is the initial step of DM to collect the necessary data recording the feature values
directly from the experimental data and historical observations or indirectly from the simulation
results [4], in which the experimental data are the records of full factorials or fractional factorials
while historical observations can be obtained either through online measurements or from historical
accumulated records. The data preparation from the reviewed literature is summarized in Table 6.

Through Table 6, we can see that the data for the verification of product design improvement and
manufacturing process optimization were mainly based on experimental observation and historical
records. The DM application in the production process monitoring and control for the tasks of
fault detection and classification (FDC), run to run (R2R), statistical process control (SPC), and so
on, worked mainly on the data obtained through online measurements while DM in production
and quality management for the tasks such as scheduling, yield/cost/cycle time prediction, and so
forth was conducted mainly based on historical records from ERP and MES along with some process
simulation. The task of SCM and CRM is conducted mainly based on interactions and transaction
records accumulated in the system of SCM, OMS, and CRM.
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Table 6. The data preparation from the reviewed articles.

Data
Preparation Records Obtainment Reference Application

Experimental
data

Full factorials [26,29,33,35,36,39–41,84,107]
Product design improvement and
manufacturing process optimization

Fractional factorial [27,114]
Orthogonal experiment [31]

Observational
historical data

Historical records
[28,30,32,34,37,38]

[43–46,48–52,54,56,59–64,66–77] Production management
Accumulated records [79,81,85,90,94,95] Production process monitoring and

control like FDC, R2R, SPC, and
so forth.

Online measured, traced
or monitoring

[80,82–93,96–99,101]

Interactions and
transaction records

[38,42,123–130] CRM/SCM

Accumulated records [100,103–106,108–113,115–122] Quality management

Simulation data - [47,53,55,58,78,121] Process optimization, such as
scheduling and cycle time prediction

Unspecified - [57,65,102] -

Data preprocessing techniques used in the selected applications are summarized in Table 7, from
which we can see that most of the cleaning techniques were used for the observational data sets.
Some imputation techniques such as the missing values-patient rule induction method (m-PRLM) [30],
k-NN [84,87], syndromes imputation [109] and so on were developed for filling in missing values.
SVM [54], moving average smoothing [90], King-move neighborhood [93], Winter’s exponentials
smoothing [126,127], and so on were employed for noise smoothing. Meanwhile, the methods of box
plot [79,88], PCA [97], clustering [122], and so forth were applied for outliers detection. However,
the missing values, noise, outliers, and redundant data were omitted directly in most cases.

Table 7. The preprocessing techniques used in the reviewed literature.

Preprocess Functions Methods Reference

Data cleaning

Filling in missing
values

m-PRLM [30]
Delete [37,52,81,88,91,96,117,123,124,130]

Manually fill [48]
k-NN [84,87]

Omit/replace [85,130]
Missing syndromes [109]

Smoothing out
noise

SVM [54]
Delete [79,82,114,120]

Moving average [90]
King-move neighborhood [93]

Winter’s exponentials [126,127]

Handling outliers

Box plot [79,88]
Delete [84,96]

Online PCA [97]
Clustering [122]

Handling
redundant data Detecting and removing [81,96]

Data
transformation

-

Variance scaling [35,63]

Normalization [37,39,46,48,51,55–58,60–62,64–78,80,
82,88,94,98,102,104,105,108,111,113]

Text mining [42,123]
Fisher Z [44,47]
Box-Cox [84]

Numerical into binary [85]
Binary vector [91,93,117]

Spreadsheet format [95]
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Table 7. Cont.

Preprocess Functions Methods Reference

Data
reduction

Dimensionality
reduction

ANOVA [27,79]
Multilayer perceptron [35]
Stepwise regression [34,83,89,110,126,127]

GA (GA+SVR) [55,83]
RST [54]

Regression-based [44,45,86]
SNBC [53]

Conditional mutual information [63]
Las Vegas filter [60,78]

By experts [81,82]
Pearson coefficient [79]

Mapper [84]
Cramer’s V correlation coefficients [85,87]
Exclusive key parameter selection [99]
LASSO, Random forest, and PCA [110,112]

K-W test [114]
Eliminating variables [120]

Auxiliary variables derived [124]

Numerosity
reduction

Aggregation [34,87]
Clustering [38,90,101]

Adjust imbalanced classes [54]
Sampling [82]

K-means and SOM clustering [126]

Compression PCA [64,65,83,92,94]
Multi-dimensional scaling [84]

Discretization
Equal frequency discretization [63,120]

CHAID [90]

LASSO: Least absolute shrinkage and selection operator; SNBC: Selective naive Bayesian classifier; CHAID:
Chi-squared automatic interaction detection.

Data transformation is the process of converting data from one format or structure into another.
The pervasive method is normalization for the selected articles but few were conducted based
on variance scaling [35,63], text mining [42,123], Fisher Z-transformation [44,47], binary vector
transformation [91,93,117], Box-Cox transformation [84], and numerical into binary [85].

Dimensionality reduction, as one of the important approaches to data reduction, is to remove the
irrelevant and redundant variables to reduce the complexity of analysis and the generated models,
and also to improve the efficiency of the whole modeling processes. The widely used approaches
from the reviewed articles include regression [34,44,45,83,86,89,110,126,127], analysis of variance
(ANOVA) [27,79], GA [55,83], Las Vegas filter [60,78], Pearson coefficient [79], Cramer’s V correlation
coefficients [85,87], and so on. Clustering [38,90,101,126], aggregation [34,87], and sampling [82] based
approaches were applied to reduce the data numerosity. PCA or the modified PCA [64,65,83,92,94],
and multi-dimensional scaling [84] were employed to compress the representation of the original
data. Only a few of the researchers conducted discretization for continuous attributes at the stage
of preprocessing.

4.2. Application of DM with Big Data in Different Stages

DM with Big Data has been applied in different stages including design, production, sale, service,
and recycling for different scenes, such as product design improvement, manufacturing process
optimization, PMO, production process monitoring and control, quality management, CRM, SCM,
and so forth. The application of DM with Big Data for the procurement of electronics components at
the production stage has not been studied in the reviewed articles. Meanwhile, few reviewed articles
have devoted their research into product distribution and logistics that mainly includes order process,
inventory management, and product transportation at the stage of sale and service, and thus, we take
them into SCM as a whole. The order management as an extension of CRM will also be considered as
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CRM. Quality improvement (QI), development time/cost estimation (DTCE), PMO, AEC/APC, CRM,
and SCM considered in the review are the typical knowledge areas to enhance the intelligence and
efficiency of lifecycle management and control in which the data-driven QI is closely related to product
design improvement, manufacturing process optimization, and quality management. AEC/APC,
as the core of production process monitoring and control in the electronics industry, is also used
to enhance product quality or yield. The task of AEC/APC is always conducted online during the
manufacturing process and has attracted a lot of research. The description of these knowledge areas
and their tasks is summarized in Table 8.

In the following sections, from Section 4.2.1 to Section 4.2.3, the summarization will not be taken
as a function alone because it is employed to characterize the product/process and then to facilitate the
functions of prediction, classification, clustering, and so forth. The SA-oriented and/or KD-oriented
categories of different DMTs in an article will also be included.

Table 8. The knowledge areas of DM application in the electronics industry.

Knowledge Area Sub-Areas Description Applied Stage

QI [4]

Description of
product/process

(1) Identifying attributes that affect quality significantly;
(2) Comparing the end result of the whole process with the
desired specifications, analyzing the root causes of low yield
for adjusting the process parameters to ensure future quality
[102], and we call it as post hoc (fault) diagnosis here.

Design and
production stageQuality classification For a given set of input parameters, predicting the class of the

quality output.

Quality prediction Predicting what the resulting quality (yield) characteristic will
be for a given set of input parameters or process values.

Parameter optimization
Based on the learned features of the cases, yielding
high-quality and finding optimal levels of process/product
parameters that consistently yield target performance.

DTCE - Predicting the development time and/or cost. Design stage

PMO

Scheduling Scheduling optimization or dispatch rules selection.

Production stageProduction time
prediction (PTP)

Predicting the production time (cycle time/lead time/due or
complete date).

Resource optimization Resource allocation optimization.

AEC/APC
[4,11,86]

Fault detection and
classification

Fault detection (FD) is to monitor and analyze the variation in
equipment, tool or process data and detect anomalies, and the
fault classification is to determine its root cause.

Production stage

R2R Modifying recipe parameters or the selection of control
parameters between runs to improve performance.

Virtual metrology (VM) Prediction of post-process metrology variables using process
and wafer state.

Equipment health
monitoring (EHM)

Monitoring tool parameters to assess the tool health as a
function of deviation from normal behavior.

Statistical process control
Using statistical methods to analyze processes or products to
take appropriate actions to achieve a state of statistical control
and continuously improve the process capability.

CRM [3]
Customer identification,
attraction, retention, and

development

Analyzing and understanding customers’ behaviors and
characteristics. Sale, service and,

recycling stage
SCM - DM application for the management of the flow of goods and

services

4.2.1. Application of DM and Big Data for Design

The design stage includes the product design followed by process planning. Product design
is to create a new product while process planning is to translate product design requirements to
manufacturing process details that act as a bridge between product design and manufacturing.
Capodieci [14] presented a review of the data analysis and machining learning for the design process
yield optimization in electronic design and semiconductor manufacturing. Another 17 articles related
to DM application in the stage of design have been retrieved and summarized in Table 9, and the
following findings can be achieved:
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(1) The quality improvement of product design [28], the prediction of development cost and
time [34,37], and the product customization [38,42] are the main applications of DM in product design.

(2) The optimization of the manufacturing process parameter is the main task of process
planning, such as the parameter optimization of stencil printing process (SPP) [26,27,36], reflow
soldering [29,31,32], fluid dispensing for microchip encapsulation [33], wave soldering [35,41], and
hot solder dip [39] for component surface mounts on PCBs. These models always combined ANN,
SVR, and regression for the quality prediction with GA for parameters optimization [26,31–33].

(3) KD-oriented ANN is the widely used DMT. The pervasive function is prediction and has been
widely employed for parameter optimization and determination of its effect [26,27,32–36] followed by
clustering and association. Clustering was mainly employed to identify similarity products, process
plans, and parameters and no supervision classification was conducted to support more efficient and
reasonable manufacturing [39–41]. Association was mainly used to identify purchase behavior and
therefore, develop marketing competitive products [38,42].

Table 9. DM with Big Data application in the design stage.

Function
(Frequency) DMTs Categories Knowledge

Area/Task Product/Process Indicator Ref.

Prediction (12)

SVR KD-oriented

Quality
prediction
Parameter

optimization

SPP - [26]
MRO, ANN +

GA, Fuzzy
logic +

Regression

KD-oriented,
SA-oriented SPP RMSE [27]

M5’, ANN KD-oriented Wafer RMSE, RE [28]
ANN + GA KD-oriented SPP RMSE [29]

m-PRLM KD-oriented Wafer etching MSE [30]
ANN + GA KD-oriented SPP RMSE [31]
ANN + GA KD-oriented SPP MAPE [32]
FNN + GA KD-oriented Microchip

encapsulation
ME, VARER [33]

MRA, ANN,
CBR,

MRA + ANN,
ANN + CBR

KD-oriented,
SA-oriented

Development
time/cost
estimation

Liquid-crystal
display

MAER,
RMSE [34]

ANN KD-oriented

Quality
prediction,

Process
description

SPP IA [35]

ANN KD-oriented

Quality
prediction
Parameter

optimization

SPP MSE [36]

ASVR, MLR KD-oriented,
SA-oriented

Development
time/cost
estimation

Electronic
circuit MSE [37]

Classification (1) Apriori, C5.0 KD-oriented Product
description Digital camera - [38]

Clustering (3)

SOM KD-oriented Process
description Hot solder dip QE [39]

K-means SA-oriented Parameter
optimization PCB - [40]

SOM KD-oriented Process
description Wave

soldering
QE, TE [41]

Association (2)
Apriori KD-oriented Product

description
Apple iPad Support,

confidence
and lift

[42]

Apriori, C5.0 KD-oriented Digital camera [38]

MRO: Multi-response optimization; FNN: Fuzzy neural network; MRA: Multiple regression analysis; ASVR:
Adaptive SVR; MLR: Multiple linear regression.
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4.2.2. Application of DM and Big Data for Production

The product in its final shape is obtained in the production phase. The knowledge areas of
DM with Big Data application in the stage of production include PMO, AEC/APC, and quality
improvement. The reviewed studies are summarized in Tables 10–12 for PMO, AEC/APC, and quality
improvement, respectively. The following conclusions can be obtained for the application of DM with
Big Data for PMO:

(1) The scheduling optimization, cycle time, complete time, and output time prediction for wafer
fabs have attracted most of the research. The reason may be that wafer fab usually takes several months
and is the top priority for improvement. Therefore, cycle time reduction is always an important task
in controlling a wafer fab factory. To become an agile supplier, shortening the cycle time of every
operation is critical [51].

(2) Hybrid approaches combining fuzzy logic/clustering with ANN have been developed
for different applications because of the un-deterministic characteristic factors that require fuzzy
expressions, such as the release time, average fab utilization, total queue length on the processing
route, and cycle time. Since they cannot be determined accurately, a certain probability distribution is
needed. The fuzzy based DM approaches facilitate more realistic pattern extraction.

(3) The tasks realized by ensemble approaches combining fuzzy c-means (FCM) or SOM-based
clustering with ANN-based prediction were pervasive. The purpose of clustering is to classify
objects according to its similarity considering various features and therefore, improve the accuracy of
prediction. The results show that the hybrid approaches with clustering-based pre-classification or
post-classification are some of the most accurate approaches used to estimate the cycle/lead time or
the complete date and obtain an optimization scheduling plan [51].

Table 10. DM with Big Data application for production management and optimization.

Functions
(Frequency) DMTs Categories Knowledge

Area/Task Indicator Ref.

Prediction (7)

ANN KD-oriented Allocation of
resource MSE, MAPE [43]

Regression SA-oriented Cycle time
Prediction

MAE, MSE [44]

FNN KD-oriented RMSE, MAE,
MAPE, RMSE [45,46]

FNN KD-oriented Rescheduling RMSE [47]

GNR, ANN KD-oriented,
SA-oriented

Cycle time
Prediction MAPE [48]

ANN KD-oriented Assembly
times perdition

MSE, MAE,
RSE, RAE [49]

Classification (6)

FACRs (Apriori +
Fuzzy logic) KD-oriented Scheduling - [50]

FNN + ANN + Apriori KD-oriented Cycle time
prediction

- [51]
DT, ANN KD-oriented ACC [52]

SNBC SA-oriented ACC [53]

SVM, RST, DT KD-oriented Human
management ACC [54]

GA + SVM KD-oriented Scheduling - [55]

Prediction
Clustering (23)

FCM + FNN KD-oriented,
SA-oriented

Scheduling

- [56]
MAE, MAPE,

RMSE [57]

- [58]
SOM + FNN KD-oriented RMSE, MAPE [59]
SOM + ANN KD-oriented DBI [60]

FCM + ANN KD-oriented,
SA-oriented RMSE [61]

SOM+ FNN KD-oriented RMSE [62]
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Table 10. Cont.

Functions
(Frequency) DMTs Categories Knowledge

Area/Task Indicator Ref.

Prediction
Clustering (23)

FNN + ANN + Apriori KD-oriented

Cycle time
Prediction

RMSE, MAE,
MAPE [51]

FCM + ANN
KD-oriented,
SA-oriented

MAE, MSE [63]

FCM + FNN MAE, MAPE,
RMSE [64,65]

FCM + RBFNN, FNN RMSE, MAE,
MAPE [66]

FCM + ANN
KD-oriented

RMSE [67,68]
SOM + FNN RMSE [69]

FCM + FNN KD-oriented,
SA-oriented

Output time
prediction RMSE [70]

FNN
KD-oriented

Cycle time
prediction RMSE [71]

Due date
prediction RMSE [72]

SOM + FNN Cycle time
prediction RMSE [73]

SOM + ANN KD-oriented Output time
prediction

RMSE [74]

K-means + FNN SA-oriented,
KD-oriented RMSE [75]

SOM + FNN KD-oriented
RMSE [76]

Completion
time prediction RMSE [77]

Clustering (1) SOM KD-oriented Scheduling - [78]

Association (2)
FACRs

KD-oriented
- [50]

FNN + ANN + Apriori Cycle time
Prediction

Support,
confidence [51]

FACRs: Fuzzy association classification rules; GNR: Gauss-Newton regression; RBFNN: Radial basis function
neural network.

Tens of thousands of monitoring and online detection measurement values, and hundreds of
electrical test parameters timely measured at different positions on a wafer during the fab process
facilitates the Big Data application for production control. The typical knowledge area of these
applications is AEC/APC that is a collection of tasks including FDC, R2R control, SPC, and VM to
reduce the process variation and meet the process target for yield (quality) enhancement.

The related literature is summarized in Table 11 from which we can see that the outlier detection
was conducted online and the time series analysis was employed for anomaly detection while the
prediction function was mainly used for VM and R2R. Classification and clustering have been widely
used for FDC. Some preprocessing like regression [87–89] was conducted to identify the main effects
on observation variables before classification or clustering model establishment.

Table 11. DM with Big Data application for advanced equipment control/advanced process control.

Functions (Frequency) DMTs Categories Knowledge
Area/Task Indicator Ref.

Prediction (5)

Regression
SA-oriented

R2R R2 [79]
PLS + MLR FDC, R2R, VM ACC [80]

SVR
KD-oriented

VM RMSE [81]

DT, ANN, SVR VM MAE, RMSE,
R2 [82]

SLR, GA+SVM SA-oriented
KD-oriented VM MSE [83]
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Table 11. Cont.

Functions (Frequency) DMTs Categories Knowledge
Area/Task Indicator Ref.

Classification (12)

SVM KD-oriented FDC ROC [84]
Logistic regression SA-oriented FDC TPR [85]

A framework SA-oriented,
KD-oriented

FDC, R2R, SPC,
EHM ACC [86]

Forward stepwise
regression, LASSO,

Random forest SA-oriented
FDC R2 [87]

MLR FDC ACC [88]
Stepwise regression,

CART SA-oriented,
KD-oriented

FDC
ACC [89]

K-means, CHAID ACC [90]
PCA, SOM, CHAID TPR, TNR [91]
Multi-sensor-based
trace segmentation,

PCA
SA-oriented FDC ACC [92]

Spatial statistics,
ANN KD-oriented,

SA-oriented
FDC, SPC - [93]

SOM, K-means, DT SPC DBI [94]
CART KD-oriented FDC - [95]

Clustering (4)

K-means, CHAID
SA-oriented
KD-oriented

FDC ACC [90]
PCA, SOM, CHAID FDC - [91]
SOM, K-means, DT SPC DBI [94]

SDC SPC FAR, FRR [96]

Time series analysis (3)

CART KD-oriented FD - [95]
osPCA, online PCA,
ABOD, LB-ABOD,

LOF
SA-oriented FD PPV, TPR [97]

EBIT, CUSUM SA-oriented FD TP, FN [98]

Outlier detection (3)

osPCA, onlinePCA,
BOD, LB-ABOD,

LOF SA-oriented
FD - [97]

EBIT, CUSUM FD TP, FN [98]
PSLA FD - [99]

SLR: Stepwise linear regression; PLS: Partial least squares regression; SDC: Segmentation, detection, and
cluster-extraction; osPCA: Online oversampling PCA; ABOD: Angle based outlier detection; LB-ABOD: Lower
bound-ABOD; LOF: Local outlier factor; EBIT: Entropy-based information theoretic; CUSUM: Cumulative sum;
PSLA: Process sensor log analysis.

The data-driven mechanism is one of the pervasive approaches to FDC [114] and the
summarization in Table 11 also indicates that FDC (or FD only) is the most researched task of
AEC/APC [84–93,95,97–99]. The wafer fab is a complex and lengthy process that involves hundreds
of process steps, and early FD gives engineers more time to perform appropriately to avoid serious
equipment abnormalities [84–86] while fault classification can be considered as the combination of fault
identification and diagnosis in order to identify the main effects on observation variables, concentrate
on the process variables related to diagnosing abnormalities, and then to determine the cause of the
observed out-of-control status that can facilitate the process recovery by removing the cause of the
fault to reduce yield loss [86,90].

R2R control consists of several levels including real-time control, single-process R2R control,
inter-process R2R control, and factory-level R2R [79]. FDC stands for a representative technique of
real-time control. Single-process R2R control focuses on an individual process module while the
selected R2R related articles concentrate mainly on inter-process R2R that deals with the process
control of two or more inter-related process modules [80,86] combined with other tasks like FDC.
The factory-level R2R has only been considered by a few research papers [79] that are used to enhance
the results of electronic tests in wafer acceptance tests and yield circuit probe tests.
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The reviewed VM-related literature utilized MLR [80], ANN [81], SVM(R), and DT [82,83] based
on the production equipment data and preceding metrology results to predict every wafer’s metrology
measurements, which fills a lack of physical measurement by prediction that enables the measurement
of every wafer for every process step on all capable equipment available in the fab, thus, allowing
significant improvement of process control and product quality, reduction of operational cost, and
production cycle time [81,83].

In SPC, significant characteristics are monitored such as the failure percentage of wafer bin
maps [93] and the soldering quality [94]. The process control chart, as a widely used approach to
SPC [93,94], has been used to diagnose and identify the variability of the fab process. The statistical
process system can help detect defects that might originate from the process steps to improve quality
and eliminate the need for expensive post inspections [94,96]. With increasing the demand for
high-quality products and reliable processes, multivariate statistical process control (MSPC) has
been developed to ensure that equipment is “statistically controlled” by monitoring two or more
related quality characteristics simultaneously [105].

The above review indicates that AEC/APC conducts monitoring of online measurements of
specific process steps, and undertakes corrective action to ensure that the parameter being measured
remains within the desired limits. However, the integration of FDC, R2R, SPC, and VM has been
considered only in a few research papers [86], requiring further research from different aspects such as
the consistency and integration of data, unified frameworks, high-efficiency algorithms and platforms,
and so on.

The application of DM with Big Data for quality improvement of electronic products, especially
for wafer fab at the production stage was summarized in Table 12. One of the research papers deals
with predicting the performance (yield) of a manufacturing process or system in terms of critical
functional characteristics. Months may pass before a chip is completed; hence, there is a great interest
in mining production data to predict its performance prior to the final testing of the wafers [100–108].
In order to infer to the possible causes of faults and manufacturing process variations in semiconductor
manufacturing after the whole fab process is completed, the clustering, classification, and association
analyses are conducted based on different DMTs such as k-means, SOM, SVM, and decision tree to
identify critical poor yield factors and determine the root cause of low yield. On this basis, the related
process parameters can be adjusted to ensure future quality based on post hoc diagnosis [110–118,121].
Some studies combined with sequential pattern mining to identify the sequence association events
between different operations during the manufacturing [119,120].

Table 12. DM with Big Data application for the quality improvement at the production stage.

Functions (Frequency) DMTs Categories Knowledge
Area/Task Indicator Ref.

Prediction (9)

FNN KD-oriented

Yield
prediction

MAE, RMSE,
MAPE [100]

Regression, ANN,
K-means clustering SA-oriented

KD-oriented
R2 [101]

PLS, CART MAPE [102]
Generalized linear

mixed models SA-oriented MSE [103]

FNN KD-oriented MAE, RMSE,
MAPE [104]

FCM + GA + DT

SA-oriented,
KD-oriented

Quality
prediction ME [105]

Fuzzy linear
regression + BPN Cost prediction RMSE, MAE,

MAPE [106]

Regression, ANN Yield
prediction

MAE, MAPE,
MRSE, MAPE,

R2
[107]

FNN KD-oriented Yield
prediction

MAE, RMSE,
MAPE [108]
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Table 12. Cont.

Functions (Frequency) DMTs Categories Knowledge
Area/Task Indicator Ref.

Classification (11)

SOM, K-means, DT SA-oriented
KD-oriented

Quality
classification DBI [94]

NB, SVM, ANN

diagnosis Post
hoc diagnosis

ACC [109]

CHAID SA-oriented TPR TNR, FPR,
ACC [110]

SVM KD-oriented TPR, FPR [111]
PCA, SVM, adaptive

boosting, DT
SA-oriented,
KD-oriented FN, FP [112]

SVM KD-oriented TPR, FPR [113]
Statistical model SA-oriented - [114]

CART
KD-oriented

TPR, FPR [115]
SVM - [116]

K-means, DT SA-oriented,
KD-oriented

- [117]
Spatial statistics +

adaptive ANN, DT - [118]

Clustering (6)

SOM, K-means, DT

SA-oriented,
KD-oriented

Quality
classification DBI [94]

SDC Post hoc
diagnosis FAR, FRR [96]

Regression, ANN,
K-means, clustering

Yield
prediction - [101]

FCM + GA + DT Quality
prediction ME [105]

K-means, DT Post hoc
diagnosis

- [117]
Spatial statistics +

adaptive ANN, DT - [118]

Association (Sequence
Analysis) (3)

Association rule tree
SA-oriented,
KD-oriented

Yield
prediction MAPE [102]

Bayesian network,
PLS, Apriori Post hoc

diagnosis

ACC [119]

Decision correlation
rules KD-oriented - [120]

Time series analysis (1) Co-clustering SA-oriented Quality
prediction RMSE [121]

Outlier detection (1) Hierarchical
clustering, DT

SA-oriented,
KD-oriented

Post hoc
diagnosis - [122]

Moreover, more than hundred test items and millions of rows of data for wafers will be generated
after testing, per day. According to the basic requirements of quality management, an essential
work is to analyze these test items one by one according to different specifications and requirements.
In accordance with the traditional mode of work, more than a hundred process capability indexes
should be calculated step by step and the quality characteristics should be evaluated one by one
with enormous and complicated operations. Meanwhile, it is difficult to determine the association
between these indexes and present a comprehensive summary of the overall performance of the
product. The application of Big Data for the quality management and analysis can easily generate a
traditional single index process capability analysis report. More importantly, it can excavate many
new results from the Big Data set [114].

4.2.3. Application of DM and Big Data for Sale, Service, and Recycling

The stage of sale, service, and recycling (SSR) is to store produced products in a warehouse
and transport them to customers in logistics, and then the customers use the product while a
manufacturer provides remote service. If it can no longer be used, it comes to the end of its life
such as remanufacturing and disposal [8].

The summarization of DM application in the SSR stage is given in Table 13 and it can be seen that
most of the applications related to CRM involve marketing and sales prediction [125–127], customer
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service [129], and the SCM to achieve greater efficiencies and effectiveness in delivering customer
value [130]. The detailed information indicates that one direction of the research is to mine the
behavioral characteristics of customers on the product and maintenance, and therefore, identify
customer’s requirement for customer attraction and retention [123,129]. Another one is to predict the
marketing demand and price for customer identification and development, and therefore, to facilitate
the plan optimization of production, procurement, and resource [125–127]. Only one article is related
to the recycling of electronic products considering the storage behavior of customers [124]. From
Table 13, it can also be seen that the prediction of marketing requirement and determination of a more
reasonable price are the main functions while the clustering and classification have been taken to
classify products and customer’s requirement and identify the purchase feature of different customers.
Text mining was utilized to excavate the knowledge from interaction records in some cases [123].

Table 13. DM and Big Data application in the sale, service and recycling stage.

Functions
(Frequency) DMTs Categories Knowledge

Area/Task Product Indicator Ref.

Prediction (6)

Text mining +
Regression

SA-oriented,
KD-oriented

Purchase
decisions
prediction

iPhone, Mac,
iPod, iPad and
so forth. and
components

- [123]

SVM KD-oriented Behavior
prediction Used hard disk MAPE, MAE,

MSE [124]

SVR + Bat KD-oriented Marketing
and sale
trends

prediction
PCB

MAPE, RMSE [125]
K-means,

SOM, FNN
SA-oriented,
KD-oriented MAPE, RMSE [126]

Fuzzy CBR KD-oriented MAPE, RMSE [127]
Weighted

evolving FNN KD-oriented MAPE, MAE,
RMSE [128]

Classification (1) Text mining +
Regression SA-oriented

Repair
experience
extraction

iPhone, Mac,
iPod, iPad and
so forth. and
components

PPV, TPR [123]

Clustering (2)

K-means SA-oriented
Repaired
products
clustering

Camera, laptop,
phone, printer,
and so forth.

- [129]

K-means,
SOM, FNN

SA-oriented,
KD-oriented

Marketing
and sale
trends

prediction

PCB - [126]

Time series
analysis (1)

Nonlinear
least square SA-oriented Demand

prediction Semiconductor MAPE, R2 [130]

4.2.4. Summarization of DM with Big Data Application in Different Stages

Figure 4 illustrates different functions used by the selected articles applied in different stages.
It can be seen that the prediction, classification, and clustering functions are the top three functions
employed for mining patterns at different stages. The six functions have been used in the production
stage which indicates that there are diverse requirements of DM and Big Data application at this stage
for different purposes, while the time series analysis and outlier detection function have seldom been
used in the stage of design and SSR.

Figure 5 illustrates the distribution of different knowledge areas considering the tasks of QI
for design/production, DTCE, PTP, FDC, VM, R2R, SPC, CRM, and SCM according to Tables 9–13.
The frequency in Figure 5 indicates that the QI for design, scheduling optimization, production time
prediction, FDC, post hoc diagnosis, production yield/quality prediction, and optimization of sale and
service for CRM are pervasive knowledge areas and tasks.
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Figure 4. DM function applications in different stages.

Figure 5. Distribution of different knowledge areas.

The statistic of different categories of DMTs adopted in the 105 articles for different knowledge
areas are conducted and the results are illustrated in Figure 6 from which we can see that the pervasively
used DMTs are hybrids or integrations of the SA-oriented and KD-oriented DMTs, especially for
the knowledge areas of PMO, AEC/APC, and QI for production, followed by the combination of
different KD-oriented DMTs or only one KD-oriented DMT. However, only one SA-oriented approach
and the ensemble of SA-oriented DMTs have been widely adopted by researchers compared to
other approaches.
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Figure 6. Different categories of DMTs for different knowledge areas (DMTs: data mining techniques).

The commonly used 10 DMTs including ANN (back propagation neural network, fuzzy neural
network, and so forth), fuzzy logic, DT (CART, CHAID, C5.0, and so forth), regression (MLR, MRA,
stepwise regression, PLSR, logistic regression, and so forth), SVM (SVR, ASVR, and so forth), SOM,
FCM, K-means, GA, and Apriori are given in Figure 7. Figure 8 presents different DMTs in different
knowledge areas.

It can be seen that the top DMT used is ANN followed by fuzzy logic because many ANNs
are combined with fuzzy logic to solve the scheduling optimization and production time prediction.
ANN has been applied in eight areas of the above-mentioned knowledge areas except for SPC and
R2R. Fuzzy logic has been used mainly for the production time prediction, yield/quality prediction,
and the optimization of CRM/SCM. The DT has been widely employed for FDC and post hoc
diagnosis. The regression has been pervasively used for feature selection and prediction of quality,
yield, development cost, VM, and so on. The SOM, K-means, and FCM have been used for clustering,
especially for the pre-classification of jobs while conducting scheduling optimization and production
time prediction. GA has been used to find optimal levels of process/product parameters [26,27,31–36],
which can also be used to optimize parameters of DMTs such as SVM [55,83] and fuzzy clustering [105].

Figure 7. The frequency of the top 10 applied DMTs.
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Figure 8. The different DMTs application in different knowledge areas.

4.3. Software Used for the Selected Articles

Many algorithm engines, tools, and platforms have been developed to implement functions and
related DMTs. Predictive analytics today summarized the top 50 free DM software [131], including
Orange, RapidMiner, Weka, KNIME, SpagoBI, Anaconda, Octave, and so forth. Some commercial
software including Sisense, Oracle Data Mining, Microsoft SharePoint, IBM Cognos, Dundas BI, SAP
Business Objects, Matlab, Statistic, SAS EM, SPSS Clementine (IBM SPSS Modeler after 2009), Tanagra,
Qlik Sense, and so forth have also been widely used by researchers and practitioners.

The different tools shown in Table 14 have been used for various purposes in mining applications
from the reviewed literature. The category of software in the reviewed articles can be categorized into
spreadsheets, statistical software package, DM software package, general purpose software, special
purpose tools, and high-level languages.

Some statistical software packages such as MiniTab, SAS, SPSS, and Statistics were preferred for
implementing SA-oriented methods such as MRA and ANOVA. Spreadsheet-application excel was
mainly used for data preparation and preprocessing. However, commercial software packages such as
SPSS Modeler, SAS Enterprise Miner (SAS EM), were only used in a few of the applications.

The general purpose software Matlab and special purpose packages based on Matlab were used in
various applications for the design and production of QI, PMO, and CRM. They were mostly utilized
to realize ANN, fuzzy logic, SVM, and SOM supported by several open source toolboxes such as
NeuroSolutions, Neural Network, NeuralPower, Fuzzy Logic, LibSVM, and SOM. The association,
outlier detection, and time series analysis functions were mainly conducted by commercial software
packages such as SAS EM [38], and RapidMiner [42].

Some high-level languages such as C/C++ [94,120] and Visual Basic [70–73,75–77] were used for
SOM, fuzzy c-means, fuzzy logic, ANN, and the combination of these approaches for its flexibility for
researcher to design or combine particular methodologies considering domain knowledge in handling
and analyzing the data. Meanwhile, some platforms such as the online system [79], fab-wide FDC [80],
VM system [83], online time series prediction system [88], and wafer bin of map clustering and
classification systems [117] have been developed for different tasks of AEC/APC based on high-level
languages. However, the commonly used platforms for developing DM or Big Data application
system such as WEKA [28], RapidMiner [42], R software environment [122], and Python [84] have
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been utilized by only a few of the researchers, indicating that the systematized applications of these
results still require further development by practitioners.

Table 14. The software used for accomplishing DM and Big Data application in the electronics industry.

Type of Software Name of Software Reference Usage

Spreadsheet
application Excel [34,52,104,117] Data preparation and

data preprocessing

Statistical
software package

MiniTab [107,127] Regression prediction
SAS [38,117,125] SA-oriented methods

such as MRA, ANOVA,
and PCA

SPSS [34,126]
Statistics [34,117,126]

DM software
package

SPSS Clementine [38,52] Preprocessing,
prediction, classification,
clustering, and
association

SAS EM [38]

General purpose
software

Matlab [26,33,35–37,45,47,55,70,78,82,104]
Prediction, classification,
clustering, and
optimization

WEKA [28] Prediction
Visual Mining Studio [40] Clustering

RapidMiner [42] Association
R software environment [122] Outlier detection

Special purpose
tools

BrainMaker [107]

ANN for prediction,
classification, clustering,
and so forth

NeuralWorks
Professional II/Plus [127]

NeuroSolutions [70,72,74,76,77]
Neural Network Toolbox [45,57,58,64,67]

NeuralTools [34]
Netlab Toolbox [49]
NeuralPower [27,31]

Fuzzy Logic Toolbox [45,57,64] Fuzzy logic
LibSVM [84,113,125] SVM

SOM toolbox [39,41,60,78] Clustering
Lingo [45,68,108] Optimization

High-level
language

C/C++ [94,120] Various purposes such as
SOM, fuzzy clustering,
FBPN, and so forthVisual Basic [59,62,70–73,75–77]

Python [84] Outlier detection

5. Diagram of Data Content for Different Knowledge Areas and DM Framework for the
Electronics Industry

The product lifecycle processes carry a huge number of structured, semi-structured,
and unstructured data. Big Data analytics and DM technology can be used to make a deep
analysis of historical lifecycle data, to discover knowledge, and to optimize the process of PLM.
A framework with four modules including data sensing and acquisition, data processing and storage,
DM model development, and Big Data application in PLM was presented by Zhang et al. [1].
However, the summarization and classification of lifecycle related data and its utilization by different
knowledge areas have not been discussed. Meanwhile, the special application scheme for electronics
manufacturing has not been considered. Therefore, the establishment of a diagram of data content for
different knowledge areas and DM with Big Data framework for the electronics industry can guide
companies to accumulate related data and develop DM strategy from the view of lifecycle and overall
business chain, which can also facilitate researchers and practitioners to select appropriate techniques
and better utilization of data for knowledge discovery.
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5.1. Diagram of Data Content for Different Knowledge Areas

From the view of electronics lifecycle, the main data for different knowledge areas can be divided
into engineering data, enterprise resource and environment data, production plan and arrangement
data, manufacturing result data, and transaction and interaction related data. Figure 9 illustrates
the main content of each category and its application for different knowledge areas. The detailed
description of each category is given as follows.

Figure 9. The data content for different knowledge areas.

1© Engineering data: It includes product structure and function, manufacturing process plans,
and quality requirements to define what is to be manufactured and how to manufacture. Relevant
DM with Big Data applications have been conducted to improve product quality and customers’
satisfaction or to optimize process parameters. This data can be stored in different systems such as
PLM and computer-aided process planning system with structured (bill of materials), semi-structured
(requirement reports), and unstructured (design model or drawing) styles.

2© Enterprise resource and environment data: Resource data relates to the workplace, equipment,
and tools that specify where and what resource are required to manufacture the product, which also
includes data on process statuses, collected in real time by smart sensors and the traced data based
on RFID placed on transportation robots. In common, these data are structurally stored in ERP, MES,
and DCS that can be used for the optimization of process control such as AEC/APC and production
management. Taking an example from wafer fab, the equipment status data such as chamber pressure,
gases flow, and chuck temperature are collected in real time by sensors placed on tools, and valuable
data that are generated from clean room environment monitoring [101].

3© Production plan and arrangement data: These data include the plan of the project, the hierarchy
production plan, the inventory/material and procurement plan, and scheduling that defines when
and how many products have to be manufactured. Different plans can be stored in ERP and MES with
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a structured style, which has been widely used for the optimization of PMO tasks such as production
time prediction and scheduling optimization at the production stage.

4©Manufacturing result records: Result records define the quality and quantity of products at
a certain time and workplace. They are always accumulated in MES, quality management system,
ERP, and storage management system with a structured style. RFID has been widely used for product
lifecycle management in recent years, and the traced data generated automatically at different stages
through RFID placed on materials, semi-products, and finished products can also be taken as the data
of manufacturing result. Taking an example from the data involved in the wafer fab, it is generated at
various steps including inline through metrology steps that measure test wafers and product wafers
such as parameters of critical dimension, film thicknesses, film resistances, and so forth. It also includes
electrical test and final yield data. DM-based post hoc diagnosis, yield prediction, and parameters
adjustment are used to ensure the future quality has been conducted based on different steps of the
result. They can also be combined with enterprise resource and environment data for AEC/APC.

5© Interaction and transaction data: Owing to the fast development of online trading and electronic
commerce in the past decades, a large amount of records related to transactions and online interactions
between upper stream supplier, middle collaborator, downstream customer have been accumulated.
The structured transaction data, semi-structured or unstructured interactions have been widely used
for the optimization of SCM and CRM such as marketing analyses and product design improvement
based on the feedback from customers at the design stage, procurement and inventory optimization at
the production stage, price and demand prediction, customer identification, attraction, retention, and
development at the SSR stage. Text mining techniques have also been used to excavate the pattern from
the interaction text and were combined with DM for the final knowledge discovery [123]. Meanwhile,
RFID-based records can be used for product tracing in transaction, service, and recycling.

5.2. Data Mining with Big Data Frameworks for the Electronics Industry

On the basis of the aforementioned review, a framework of DM with Big Data applications in the
electronics industry is presented in Figure 10 in which the stage of design and production corresponds
to the beginning of lifecycle, and the sale and service can be taken as the middle of lifecycle, while
recycling is at the end of lifecycle, respectively [1,8].

Figure 10. The framework of DM with Big Data towards IT applications in the electronics industry.
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Each stage of the lifecycle corresponds to different application scenes. The DM application of
product and manufacturing process design mainly includes the product design, manufacturing process
design, and marketing with relevant knowledge areas, such as quality improvement, development
cost and time prediction, product customization, manufacturing parameter optimization, and SCM.
The equipment management, production management, and procurement are the main application
areas of DM with Big Data in the production stage with typical knowledge areas such as AEC/APC,
PMO, QI, and SCM. The application of the DM with Big Data for sale and service cannot only
be support for quality improvement and customization design but also optimize logistics and
facilitate customer service and maintenance. The recycling attracted less attention from DM with
Big Data application in the electronics industry, which could be used in remanufacturing, reuse,
and environment protection, considering the knowledge areas of product recovery, remaining life
prediction, and reverse logistics optimization.

The details of knowledge areas of different stages have been summarized in Section 4.2.
The quality improvement for design and production can be further divided into quality (yield)
prediction, classification, description, and parameter optimization. Post hoc diagnosis can be taken as
the quality description at the production stage with the purpose of process parameters adjustment to
ensure future quality. The tasks of AEC/APC that consists of FDC, R2R control, SPC, VM, and so forth
are also for quality enhancement, and therefore, the quality improvement at the production stage and
AEC/APC are not a disjoint division here. The DM and Big Data application in PMO is a collection of
scheduling optimizations, cost/time prediction, and so on.

SCM is used to optimize the logistics for material supply at the beginning stage of the lifecycle
and it can also be used to achieve greater efficiencies and effectiveness in delivering customer value
at the end of the lifecycle. The application of DM or Big Data tools in CRM is an emerging trend
in the global economy. Analyzing and understanding customer behaviors and characteristics is the
foundation of the development of a competitive CRM strategy so as to acquire and retain potential
customers and maximize customer value [3]. The tasks of customer identification, attraction, retention,
and development of CRM can be realized through Big Data-based marketing prediction, personalized
service, predictive maintenance, remote online diagnosis and so on.

Data preparation such as data acquisition, accumulation, and storage for different knowledge
areas and applications can be guided by the diagram of data content for different knowledge areas
given in Section 5.1. The commonly used data preprocessing techniques including data cleaning,
transformation, reduction, and discretization that can utilize the preprocessing approaches summarized
in Sections 2.2 and 4.1, based on the requirement of application areas and the quality of data. DM, in a
narrow sense, for each function, can be implemented based on some pervasive DMTs summarized
in Section 4.2.4. The interpretation, evaluation, and implementation software can be conducted by
combing experts’ knowledge with performance indicators given in Section 2.4, which is not given in
the framework because it has many selections in practice. The final purpose of the DM application has
been proved by many researchers and practitioners. This framework provides an option for different
types of companies and expects for further extension.

6. Conclusions and Future Research Directions

This paper presents a comprehensive review of DM with Big Data towards its applications
in the electronics industry. We can see that the DM with Big Data has been applied to different
scenes including product design improvement, manufacturing process optimization, PMO, production
process monitoring and control, quality improvement, CRM, and so forth.

Customer-oriented product development and process plan optimization are the main applications
for product design improvement and manufacturing process optimization in the stage of design.
Prediction was the most frequently used DM function observed in the reviewed articles. ANN and
regression were the widely used DMTs for the prediction.



Appl. Sci. 2018, 8, 582 26 of 34

The application of DM with Big Data for process monitoring and control, PMO, and quality
improvement in the stage of production has attracted the interest of most research. On the one hand,
sophisticated DM and Big Data related techniques such as FDC and R2R have been developed for the
wafer production process monitoring and control to reduce defects and improve the quality/yield
based on the data collected from manufacturing processes, equipment/tool/environment statuses, and
process parameters. The functions of classification and clustering were widely used for FDC based on
related DMTs such as DT, SVM and ANN, k-means and SOM, while the prediction function was widely
presented for VM based on ANN, regression, and SVM. On the other hand, prediction, clustering, and
the combination of the two are the most frequently employed functions for the optimizing scheduling
plan and prediction of cycle time/due date based on ANN, FCM, SOM, and a hybrid of fuzzy logic
and ANN. Additionally, post hoc diagnosis, quality prediction, and classification were conducted
based on the functions of prediction, classification, clustering, and association for future production
quality improvement.

Most of the DM applications are related to CRM at the stage of SSR for the purpose of acquiring
and retaining potential customers and maximizing customer value based on the records of transaction
and online feedback from customers. Prediction, classification, clustering, and time series analysis
functions were conducted based on ANN, regression, and SVM for sale and service to mine the
consumption habits and predict the marketing price.

The achievement of the reviewed articles facilitates theoretical study and practical application of
DM with Big Data to the electronics industry. Nevertheless, the limitation and challenges still exist for
future research.

(1) Data preparation and preprocessing. The data of the product lifecycle are characterized by
multisource (for example, design, production, and service data), heterogeneity (for example, structured,
semi-structured, and unstructured data), and “noise” (for example, incomplete, incorrect, redundant,
and inconsistent data) [1]. These problems increase the difficulties of data preparation, preprocessing,
and subsequent mining, and also generate misleading patterns. However, little effort has been devoted
to handling these problems. Manufacturing organizations with well-established and integrated data
collection systems would benefit from a larger application of DM and Big Data [4]. Unified management
and storage of the multi-source and heterogeneous data are necessary, and this motivates enterprises to
develop DM strategies with dedicated consideration to data accumulation, integration, and consistency.
Multi-business requirements integration, concept standardization, unified model establishment, and
data/system interface development should be conducted collaboratively to facilitate data utilization.
The standardization of operations such as data entry, storage, and maintenance should also be
conducted accordingly to ensure the data quality and reduce data redundancy.

(2) The knowledge area of DM application. DM has been widely used in the stage of design and
production especially for wafer fab and PCB assembly, and the pervasive knowledge areas include QI,
PMO, AEC/APC, and so forth. However, potential applications such as customization production,
procurement, warehouse management and inventory balance, and equipment maintenance and repair
require more relevant data accumulation and extended mining. The global logistics industry has a
large ever-growing amount of Big Data and is flooded with real-time data ranging from smartphones,
sensors, and digital machines [9]. However, the application of DM with Big Data in SCM and logistics
for electronic products has attracted few special discussions. Meanwhile, little effort has been put
on CRM and order management combining the features of electronics such as a large amount of
consumers, fast replacement of new products, and fierce market competition.

The patterns and knowledge hidden in Big Data are multidimensional (for example, various
departments and lifecycle stages) and scattered, which hinders the effective mining and utilization
of the knowledge. Therefore, further studies can be conducted to mine consumer habits and market
characteristics to support more reasonable decision for customization product development, market
pricing, and maintenance based on the association, prediction, and time series analysis functions.
The fast upgrading of electronic products resulting in a large number of e-waste and the use of DM and
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Big Data to improve the efficiency and effectiveness of its energy saving, recycling, reverse logistics,
and reduction of environmental risks are a worthwhile attempt. More importantly, the macro strategy
for integrated mining and integration applications for the whole lifecycle should be considered and
developed by enterprises.

(3) DM functions and DMTs. The prediction, classification, and clustering are the most frequently
used DM functions while the other three functions (outlier detection, association and time series
analysis) have been used only in a few situations. The extended investigation of outlier detection,
sequential pattern mining, and time series analysis considering time information for online model
development and updating could enable companies to respond promptly to dynamic and emerging
situations. For DMTs, the parameter optimization of DMTs, such as ANN and SVM, requires
continuous study. While FCM and fuzzy logic have been combined with ANN to handle uncertainty,
they might be combined with other related mechanisms such as SVM and regression. Additionally,
these approaches would handle Big Data with easy implementation and high performance, and more
deliberate consideration for industrial applications is required.

(4) Algorithm performance. In general, it is difficult to obtain results with obviously competitive
advantage in the existing single algorithm. Generally, a hybrid mining algorithm needs to be
constructed based on the characteristics of the problem by integrating different functions and different
DMTs so as to ensure the validity and advantage of the algorithm. How to set and optimize algorithm
parameters, such as parameters of ANN and SVM, also remains to be further studied. Meanwhile, how
to evaluate the advantages and disadvantages of the developed algorithm dynamically and ensure the
robustness of the algorithm under certain data loss and redundancy needs to be further compared.
How to evaluate the under-fitting and overfitting of algorithms and balance of the two has been paid
less attention and requires further consideration.

(5) Software and implementation: Many researchers employed special purpose tools, such as
NeuroSolutions, Neural Network Toolbox, LibSVM, Fuzzy Logic Toolbox, and SOM toolbox to
implement the developed algorithms. Meanwhile, many approaches were developed by Matlab.
A dedicated software package and Matlab integration of the basic engine allowed researchers
to implement the proposed algorithm and verify the results more easily. The FDC was always
conducted based on online analysis related platforms that were developed independently because
of its high-efficiency requirements for data preprocessing and algorithm execution. However,
application-oriented software platforms, such as Orange, IBM SPSS modeler, WEKA, and RapidMiner
were employed only by few researchers in the reviewed articles. In order to strengthen the connection
between enterprises and research, one of the important directions is to directly develop the application
platform and then, to validate and optimize the results through practical feedback. In addition, DM
technology should be combined with data management and visualization tools that can facilitate user
understanding, operating, and utilizing data efficiently.

(6) Knowledge maintenance and updating. Most of the mining was conducted statically and the
corresponding data handling was conducted based on batch data. These approaches were difficult
to learn by themselves and the patterns obtained were often difficult to update dynamically based
on newly accumulated data. Nowadays, data is generated continuously and typically sent in the
data records simultaneously and in small sizes. This data needs to be processed sequentially and
incrementally on a record-by-record basis or over sliding time windows and also used for a wide
variety of analytics and mining. Online mining and learning will be an important challenge for
further research.
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Abbreviations

ABOD Angle based outlier detection MRA Multiple regression analysis
ACC Accuracy MRO Multi-response optimizations

AEC/APC
Advanced equipment control/advanced
process control

MSE Mean squared error

ANOVA Analysis of variance; NB Naive Bayesian
ASVR Adaptive support vector regression NMI Normalized mutual information
AIC Akaike information criterion NPV Negative predictive value
CART Classification and regression tree OLS Ordinary least square
CBR Case-based reasoning OMS Order management system

CHAID
Chi-squared automatic interaction
detection

onlinePCA Online PCA

CRM Customer relationship management osPCA Online oversampling PCA
CUSUM Cumulative sum PCA Principle component analysis
DBI Davies–Bouldin index PCB Printed circuit board
DCS Distributed control system PLM Product lifecycle management
DI Dunn index PLS Partial least square regression
DTCE development time/cost estimation PMO Production management and optimization
DM Data mining PSLA Process sensor log analysis
DMTs Data mining techniques PTP Production time prediction
DOR Diagnostic odds ratio QE Quantisation error
DT Decision tree QI Quality improvement
EBIT Entropy based information theoretic RAE Root absolute error
ERP Enterprise resource planning RBFNN Radial basis function neural network
FACRs Fuzzy association classification rules RE Relative error
FCM Fuzzy c-means RFID Radio frequency identification
FD Fault detection RI Rand index
FDC Fault detection and classification RMSE Squared root of mean squared error
FDR False discovery rate ROC Receiver operating characteristic curve
FN False negative RST Rough set theory
FNN Fuzzy neural network R2R Run to run
FOR False omission rate SCM Supply chain management

FP False positive SDC
Segmentation, detection, and
cluster-extraction

FPR False positive rate SLR Stepwise linear regression
PPV Positive predictive value SNBC Selective naive Bayesian classifier
GA Genetic algorithm SOM Self-organizing map
GNR Gauss-Newton regression SPC Statistical process control
IA Index of agreement SPP Stencil printing process
KDD Knowledge discovery in databases SSR Sale, service and recycling

LASSO
Least absolute shrinkage and selection
operator

SVM Support vector machine

LB-ABOD Lower bound-ABOD SVR Support vector regression
LOF Local outlier factor TE Topographic error
MAPE Mean absolute percentage error TN True negative
ME Mean error TNR True negative rate
MES Manufacturing execution system TP True positive
MLR Multiple linear regression TPR True positive rate

m-PRLM
Missing values-patient rule induction
method

VARER Variance of errors
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