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Abstract: Remotely sensed Land Surface Temperature (LST) represents a valuable source of data
for a simple modelling of the dynamic of soil moisture (SM) over large areas. In this paper we
evaluated the capability of LST monthly anomalies, derived from the MOD11C3 standard product,
to capture the SM dynamic as modelled over Europe by means of an ensemble of three land surface
models. The direct use of LST as proxy of SM outperformed other LST-derived quantities, such
as surface-to-air temperature gradient and day-night temperature variations, returning significant
correlation values over the whole domain. LST performed better over Southern Europe compared
to the Northern part of the domain, with the best results over areas characterized by water-limited
conditions and moderate stress. Additionally, the analysis of the contingency matrix shows that the
LST model is skillful in capturing extreme dry SM events, and it also has a good overall capability to
correctly detect the dry events in 66% of the cases, with an average probability of false alarm of about
30%. Overall, the use of LST anomalies seems a promising starting point for a reliable modelling of
the SM dynamic with a minimum amount of information. Even if the adopted approach is simple,
the results are encouraging for a practical use of LST in an operational drought monitoring system
over the study area.
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1. Introduction

Drought is a relatively common weather-related natural disaster, defined as a phenomenon
that follows a precipitation shortage compared to the climatology of that area. It can
manifest at different spatiotemporal scales depending on the degree of propagation of this
shortage within the hydrological cycle; as a consequence, it may have impacts on a range of
socio-economic compartments. Of particular interest for environmental studies are the so-called
ecosystem/agricultural droughts, which are defined as a reduction in vegetation water availability
that negatively affects ecosystem productivity [1]. Such droughts can be characterized by a rapid
onset and, depending on the phenological stage, may have significant impacts in agricultural areas
(see “flash drought” in [2]). A common way to quantify this reduction is through the monitoring of
some vegetation-related hydrological quantities, such as the difference between actual and potential
evapotranspiration or the soil water deficit. Operational monitoring systems of ecosystem drought
are commonly based on data aggregated at a monthly scale [3,4], even if longer aggregation periods
(3, 6, or 12 months) are also used, mainly for meteorological drought analyses. Additionally, due to
the spatial nature of the ecosystem drought phenomenon, the use of already spatially distributed data
for its monitoring is advisable.
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Satellite Thermal Infra-Red (TIR) data are an invaluable source to obtain spatially distributed
information on the Land Surface Temperature (LST), with increasing availability and reliability thanks
to the growing number of launched sensors [5] and improvements in processing algorithms [6]. LST
assumes a central role as control variable in several environmental processes, including the hydrology
and carbon cycles, as well as in the land surface energy budget [7]. Indeed, LST is key in connecting
hydrology and energy balance at the land surface by means of its function in both evaporation and
transpiration processes. During dry conditions, plants tend to close their stomata to reduce root-zone
water loss through transpiration, and this closure results in a rise in leaf temperature; similarly,
once the shallow soil (first few centimeters) dries out, the evaporation process stops and soil surface
temperature rapidly increases. Overall, a clear inverse relationship between LST and the combined
evapotranspiration (ET) process is observed in water-limited environments [8].

However, other factors, such as vegetation and snow coverage, also play a role in controlling LST;
generally, a negative relationship has been observed between LST and vegetation coverage derived
from remotely sensed indices (e.g., normalized difference vegetation index—NDVI) [9,10], especially
during summer months [11]. The presence of a significant amount of snow coverage complicates the
interpretation of the relationship between vegetation indices and LST, mainly due to the influence of
snow on the land surface thermal regime [12].

LST has been used to characterize ecosystem drought using a wide range of methodologies,
as summarized in [13]. On one hand, LST and NDVI–derived indices have been coupled for the
estimation of combined indicators [14], or their strong inverse relationship has been used in the
context of simple semi-empirical approaches to derive ET-related quantities; this is the case in the
well-known trapezoid and triangle methods [15,16], in which the feature space LST-NDVI is analyzed
to derive various plant water stress indices. On the other hand, the relationship between LST and
NDVI suggests that the variations in vegetation amount are somehow accounted for in the LST
data itself. This latter consideration is supported by the theoretical shape of the LST-NDVI feature
space adopted in the above-mentioned methods, which suggests: (i) a larger variability in wet to dry
bare soil LST compared to fully vegetated conditions; and (ii) a decreasing trend in the average LST
with NDVI.

Another use of LST to quantify the effects of water deficit on ecosystems is within the context
of the so-called residual surface energy balance approaches. These methods estimate the actual ET
fluxes as residual of a simplified energy budget by exploiting the direct connection between the land
surface-air temperature gradient and the sensible heat flux [17]. In this framework, LST is used as
proxy of the aerodynamic temperature, and the surface-to-air temperature difference (∆T) is proven
to be inversely related to ET, as well as directly proportional to the soil water deficit that controls the
ET process.

The idea of using ∆T rather than LST as proxy of the soil water deficit was also investigated in
the context of the triangular/trapezoid methods, where the use of the feature space LST-NDVI, rather
than ∆T-NDVI, is seen as a simplification forced by the common lack of auxiliary meteorological
data [18]. To partially overcome this drawback, some authors suggested the use of the night-day
temperature gradient as proxy of ∆T (e.g., [19,20]). A clear advantage of this solution is the full
exploitation of the common availability of dual-time acquisitions of LST by the same sensor, limiting
inconsistencies in the adopted LST datasets.

This brief overview points out a general agreement on the great informative content of LST
as proxy of soil moisture deficit, even if it also clearly highlights the absence of a unanimous
consensus on the best LST-related quantity to be used for proper quantification of the occurrence of
significant variations in soil moisture deficit status. The ambiguity is even more marked if large-scale
estimations (i.e., continental, global) are desirable, since most of the simplified approaches rely
on hypotheses that do not hold on such large areas (e.g., spatial-constant meteorological forcing),
whereas more complex physically-based energy balance approaches may require a large amount of
difficult-to-retrieve auxiliary information (see [21]). The overview also highlights a main focus of the
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literature on single-day estimates, with few efforts made to take advantage of the growing temporal
extension of the datasets collected by remote sensors.

In this context, it may be of interest to evaluate the actual value of remotely-sensed LST in
capturing the spatiotemporal dynamic of soil moisture, given the limited need of further auxiliary
information and the current availability of LST products in a near-real-time fashion. From this
premise, the goal of this study is to evaluate different sets of LST-related quantities against modelled
soil moisture maps used to derive information on the occurrence of past drought events. The reference
dataset is constituted by an ensemble of three land surface models (LISFOOD, CLM and TESSEL),
which demonstrated a good capability to capture variations in actually observed soil moisture and
evapotranspiration records over Europe [22]. The use of modelled soil moisture as benchmark,
rather than actual observations, allows overcoming the limitation related to the current lack of a
dense network of soil moisture or ET measurements with adequate long-term records. The focus on
Continental Europe is advised by a potential use of the study outcomes in the European Drought
Observatory (EDO, http://edo.jrc.ec.europa.eu) for an operational near-real time monitoring of
ecosystem drought.

2. Materials and Methods

2.1. Theoretical Background

The use of soil moisture (SM) data in drought monitoring applications is supported by the
assumption that its deviation from the normal climatology is a good measure of the dryness of
the soil, a key feature of a drought event, defined as a period of unusually low vegetation water
availability. Since both SM and LST are characterized by a marked seasonality, the latter must be
removed from the actual data in order to be able to evaluate the capability of one variable to capture
the “non-obvious” dynamic of the other. The use of standardization procedures is a commonly
accepted concept in time-series analyses, with standardized anomalies being more suitable for a
proper statistical investigation of the correlation between two random variables obtained as the
departure from the climatologies of the two data series [23]. Additionally, anomalies are more suited
to respond to the question “is the soil currently drier or wetter than usual in the given location and
time of the year?” than the direct use of other normalized indicators, such as in [14,24].

In this study, the standardization is performed on monthly data for all the analyzed quantities
through the computation of z-scores, as:

zx,i,k “
xi,k ´ µx,i

σx,i
(1)

where xi,k is the monthly average variable for the i-th month at the k-th year, µx,i and σx,i are the
long-term average and standard deviation of the variable x for the i-th month, respectively. The
monthly value of µ and σ are computed on a dataset collected in a reference period called baseline,
which should be long enough to return a stable reference for the standardization (i.e., 15 to 30 years).

As previously discussed in the introduction, some authors have observed a positive relationship
(and sometimes no correlation) between NDVI and LST during winter time, mainly explained by
the influence of the extension of snow coverage on the surface thermal regime [11]. This may cause
regional differences in the sign of the relationship LST-SM. Since ecosystem drought studies usually
focus on the warm season only, we decided to concentrate the analysis only on the warm months over
the European domain. This approach is quite common also in surface energy balance studies, since
ET fluxes are predominant during the hottest period of the year (due to the high radiation forcing).

Warm season months were selected starting from monthly-mean daytime air temperature
records collected over eleven cities spread across the European domain. The monthly data were
normalized by means of the year average and standard deviation, and the warm season was defined
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as the period in which the normalized values were greater than 0 (i.e., it includes all months warmer
than the year average).

As depicted in Figure 1, there is a general agreement in all the sites on identifying the period
between May and October as the warm season (according to the previously reported definition). Only
two sites (Minsk and Budapest) have positive normalized temperature also for April, but overall it is
possible to state that the domain can be uniformly divided into two 6-month periods: (1) a cold season
from November to April; and (2) a warm season between May and October. It is worth pointing out
that the warm season coincides with the common dry season for the Mediterranean countries.
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Figure 1. Normalized monthly-mean daytime air temperature (Ta) as recorded in eleven main
cities spread across Europe. The grey-filled area highlights the warm season, as the months with
temperature greater than the average (deseasonalized value > 0).

LST data can be directly used in Equation (1) to derive anomalies (x = LST) and the same can
be made for the benchmark soil moisture dataset (x = SM); however, as briefly described in the
introduction, other LST-related quantities are commonly used as proxy of the soil moisture status.
Here, we analyzed three main variables: the air-to-surface temperature gradient, x = ∆T, computed
as the difference between LST and air temperature; the day-night LST variation, x = ∆LST, computed
as the difference between daytime and nighttime remote sensing LST acquisitions; and the air
temperature itself, x = Ta. The inclusion of the first two variables is suggested by their use in several
energy balance, triangle/trapezoidal methods, as well as thermal inertia applications, whereas the
latter is used as a reference value on the informative content of the simple weather variation in
atmospheric temperature.

Due to the expected inverse relationship between SM and the four investigated quantities,
the sign of zSM is reversed in order to simplify the straightforward comparison of the different
standardized quantities. For the sake of simplicity, from now on, the SM anomalies are named
“observed”, whereas the LST-derived anomalies are named “modelled”.

The overall capability of each of these four LST-related quantities to capture the fluctuations of
SM is quantified in terms of the Pearson product-moment correlation coefficient (R), computed on the
full sample constituted by N = nˆ 6 monthly values (with n number of years). The significance of the
obtained correlation values is quantified according to critical values computed for p = 0.05 (R0.05), as
in the Student’s t-distribution test.

Furthermore, a more specific analysis focused on the dry extremes (zSM > 1), only it was
performed starting from the construction of the contingency table [25]. Assuming the correct
detection of the occurrence of zSM > 1 (namely “events”) as the target goal, each pair of monthly
anomalies (observed + modelled) can be classified as: hit, an observed event is correctly modelled;
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false alarm, a modelled event does not correspond to an observed one; miss, an observed event is not
correctly modelled; correct reject, the absence of an observed event is correctly modelled.

For each model, it is possible to compute the total number of months with hits, false alarms,
misses, and correct rejects, namely a, b, c, and d, respectively (a + b + c + d = N). These four quantities
allow the definition of the Probability of Detection (POD) as well as the Probability of False Detection
(POFD) indices, as:

POD “
a

a` c
(2)

POFD “
b

b` d
(3)

which quantify the ability of modelled values to capture the observed events and the fraction of the
observed non-events that are wrongly identified as events by the model, respectively. Both indices
range between 0 and 1, where 1 is the best score for POD (all the observed events are also modelled),
whereas 0 is the best score for POFD (no false alarms).

It is clear that both POD and POFD only partially capture the behavior of the model, and the
related best score does not correspond automatically to a perfect model. In order to quantify how
good a model is overall, skill scores are introduced by comparing the performance of the model with
a reference case, usually constituted by a random modelling of the event.

On the basis of these premises, the Heidke Skill Score (HSS) is introduced [26]:

HSS “
ad´ bc

rpa` cq pc` dq ` pa` bq pb` dqs {2
(4)

where negative values correspond to models less skillful than the reference case (random) and a
value of 1 represents a perfect model. HSS values above 0 represent the fraction of non-randomly
predictable events that are correctly captured by the model.

2.2. MODIS LST Dataset

The main focus of the analysis is the use of remotely-sensed LST maps
available at a monthly scale over a long time-frame. The dataset collected by the
Moderate-Resolution Imaging Spectroradiometer (MODIS) sensor on board of the Terra satellite
(http://terra.nasa.gov/about/terra-instruments/modis) fulfills these conditions. In particular, the
MOD11C3 Monthly CMG (Climate Modelling Grid) LST product is used in this study, which is
constituted by monthly composited and averaged temperature and emissivity maps at a spatial
resolution of 0.05 degrees over a regular latitude/longitude grid for the period 2001–2013 (n = 13).

The monthly values in the product are obtained as a simple average of the MOD11C1 product
maps in monthly calendar days, limited to the data collected under clear-sky conditions. The product
includes both day and night maps, as well as the corresponding averaged observation times and
viewing zenith angles. The daily values in the MOD11C1 product are derived by re-projection
and averaging the values in the daily MOD11B1, which is available at 5 km equal-area grids
in the standard MODIS sinusoidal projection. In order to include only clear-sky data into the
MOD11C1 product, the cloud-contaminated daytime and nighttime LST values are preliminarily
removed by means of a double-screen scheme [27]. This procedure makes a first screen based on
the difference between the LST values retrieved with two methods: the day/night algorithm [28] and
the generalized split-window algorithm [29]. Successively, the histogram of the difference between
daytime and nighttime LSTs is used to remove the cells likely contaminated by clouds.

Daytime monthly images are directly used as inputs in Equation (1) for the LST dataset,
whereas nighttime images are used in addition to daytime ones to derive the ∆LST dataset. The
air temperature maps required for the ∆T dataset, as well as for the Ta dataset itself, were obtained
from the daily meteorological records available in the EU-FLOOD-GIS database [30]. This dataset
includes daily maps of minimum, maximum, and mean air temperature, which were used to obtain
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an estimate of the air temperature at the averaged LST observation time following the sinusoidal
model [31]. Afterwards, daily data were combined into monthly data as simple averages, analogously
to the procedure adopted for the LST product.

In order to spatially co-register the LST datasets (provided on a 0.05 degree regular
latitude/longitude grid) over the Ta and SM maps (described in the next section), the monthly LST
and ∆LST maps were re-projected into the ETRS89 Lambert Azimuthal Equal Area Coordinate System
(ETRS-LAEA) and resampled at 5 km resolution using the nearest neighborhood method (in order to
preserve the original data). Finally, the ∆T maps were computed directly on this map projection
system for all months, including both warm and cold seasons.

2.3. Soil Moisture Benchmark Dataset

The SM benchmark dataset is made up of the ensemble of three land-surface model simulations,
as fully described in [22]. In brief, the outputs of the LISFLOOD distributed hydrological
rainfall-runoff model [32], the Community Land Model (CLM) [33], and the Tiled ECMWF (European
Centre for Medium-range Weather Forecasts) Scheme of Surface Exchanges over Land (TESSEL) [34]
were combined by means of a simple multi-model equal-weight ensemble [35]. The ensemble
procedure was applied to the z-score values computed for each dataset separately, in order to
minimize the problems related to the likely biases among the three time series. The ensemble
dataset is constituted by monthly anomalies between 2001 and 2013 at 5 km resolution in the
ETRS-LAEA system.

More details on the characteristics of the run of each model (i.e., parameterization, meteorological
forcing, resolutions), as well as a detailed validation of the ensemble product through in situ
measurements of both soil moisture and evapotranspiration is reported in [22]. In summary, the
validation against in situ measurements suggested that the use of an ensemble of models rather than
a single model is able to improve both the overall correlation with the observations and the skill of
the model, while also showing the ability to reduce the number of dry event false alarms. In addition,
the use of models based on local meteorological forcing data rather than global datasets suggests an
improved confidence in the quality of the results.

Additionally, for an independent check of the tested LST-based indicators, the remotely sensed
active and passive microwave merged product (Climate Change Initiative Soil Moisture, CCI-SM)
developed by [36] has been used. This product is freely available as daily global maps at 0.25˝ spatial
resolution, representing the skin soil moisture (0.5 to 2 cm) obtained as a combination of several
microwave sensors (SSM/I, , AMSR, ASCAT, among others). Data for the period 2001–2013 were
obtained from the product version v02.1.

3. Results and Discussion

The first analysis aims to evaluate which of the four LST-derived anomaly datasets better
captures the dynamic of zSM over the whole period constituted by the warm seasons (May to October)
of the years 2001–2013 (N = 78). The maps in Figure 2 depict the spatial distribution of the R values
between the anomalies of SM and: (a) LST; (b) ∆T; (c) ∆LST; and (d) Ta. This index highlights the
existence of a direct linear relationship between the two random quantities; it is worth reminding
that the sign of the zSM values was changed due to the expected inverse relationship with the
LST-derived quantities.

The spatial distributions of the values in Figure 2 show some similarities in the patterns of the
four maps, with higher values in South-East Europe and lower values in the Northern part of the
domain. Overall, it is possible to notice a better performance of LST compared to both ∆T and ∆LST,
and a clear decay in the correlation in the case of Ta. This last result is rather expected, highlighting
an evident added value to using LST over the simple meteorological air temperature. It is worth
pointing out that this ranking remains the same even if the analysis is performed on the whole year
(not shown), but with a notable reduction in the R values (as fully discussed successively).
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A deeper analysis of the maps in Figure 2 highlights that the discrepancies between LST and
∆T/∆LST are generally more marked over mountainous areas (i.e., Alps, Carpathians, Pyrenees),
as well as over the Scandinavian Peninsula. Those areas are usually characterized by a significant
amount of snow coverage during winter months, which may also cause the presence of permanent
snow and snow melting phenomena during part of the warm season, which in turn may affect the
thermal regime. Additionally, the energy budgets of steep areas, like mountains, are influenced by
local exposition and solar incident angle phenomena that may not be properly accounted for in low
spatial resolution models.
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The overall better performance of LST compared to the other cases is also highlighted by the
data reported in Table 1, where the average R and its standard deviation are reported for the whole
domain (excluding bodies of water), as well as the fraction of the domain (expressed as percentage)
with an R value greater than the one corresponding to a significance level of p = 0.05.

The results for the LST are characterized by the highest spatial-average value (0.48), combined
with the lowest variability (0.17) and the highest fraction of the domain with significant values at
p = 0.05 (almost 92%). As already highlighted by the maps in Figure 2b,c, the data in Table 1 confirm
that ∆T and ∆LST seem to perform quite closely, which is also confirmed by the fraction of the domain
with significant values (about 83% for both). The only variable that performs relatively poorly is Ta,
which, however, has some informative content over South-East Europe. The comparison against the
CCI-SM product shows similar findings, with LST slightly outperforming the other methods and
spatial patterns similar to the ones reported in Figure 2 (not shown). The lower values observed
against CCI-SM compared to the ensemble SM can be related to the low spatial resolution of the
former (0.25˝), as well as the reduced vertical resolution and the presence of several missing days in
the dataset.

Table 1. Average statistics of the correlation analysis performed between anomalies of soil moisture
(both ensemble and CCI-SM) and different temperature-related quantities.

Case R avg. R std. dev. % Domain R > R0.05

LST

vs. Ensemble

0.48 0.17 91.8
∆T 0.39 0.20 83.9

∆LST 0.43 0.21 82.6
Ta 0.30 0.17 64.1

LST

vs. CCI-SM

0.31 0.25 68.2
∆T 0.29 0.24 61.3

∆LST 0.28 0.21 61.9
Ta 0.05 0.27 30.1

The observed decrease in R values when gradient quantities are used rather than the simple LST
may be explained by the informative content associated with both nighttime LST and Ta. Indeed,
even if ∆T is conceptually better connected with the magnitude of evaporative and sensible heat
fluxes, a different analysis strategy is required when anomalies are investigated rather than the actual
magnitude of the fluxes. The map in Figure 2d shows that Ta itself also has the capability to detect
fluctuations in SM in some areas; however, the use of ∆T rather than LST has the effect of removing
part of the information content in LST rather than improving the prediction capability (see Figure 2b
vs. Figure 2a). Similar considerations can be made for ∆LST, since nighttime temperature is only used
as a proxy of air temperature in triangular/trapezoid methods, whereas thermal inertia is commonly
reliable only for bare soil or sparsely vegetated surfaces. Moreover, the similarities in the behavior of
∆T and ∆LST suggest a limited negative impact of the use of ground-observed Ta data in conjunction
with remotely-sensed LST, hence the possible inconsistency between the two datasets due to the
well-known issues on remote-sensing data absolute calibration and correction [37], as well as the
likely inconsistency that arose during the monthly aggregation procedure.

Overall, it is a clear outcome of this comparison that LST performs better than the other indices
both on average and over the spatial domain. The spatial distribution of the R values in Figure 2
highlights that the values for LST are consistently higher than the others for the whole study area,
and the 10% of the domain with non-significant correlation values is substantially limited to the high
mountain part of the Scandinavian Peninsula and the Ukrainian portion of the Carpathian Mountains.
As a consequence, the use of LST as proxy of SM dynamic seems the best choice among the tested
ones, and successive analyses will be focused on further investigating the use of zLST as predictor
of zSM.
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In order to better exemplify the actual value of LST as SM proxy and its capability to capture
specific periods, a visual representation of four time-series of anomalies is depicted in Figure 3,
showing the results for a range of R values including a high-R site in Romania (R = 0.8), an average-R
site in Spain (R = 0.5), a barely-significant site in France (R = 0.3) and a non-significant site in Sweden
(R = 0.15). For all the sites only the data of the warm seasons are reported in the plots.
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discrepancies can be clearly observed over these sites. Overall, the presence of persistent periods of 
positive/negative SM anomalies in the four cases is captured by LST in most of the cases, even when 
anomaly values for LST and SM for a specific month disagree.  

A further analysis of the map in Figure 2a shows a quite evident gradient in the spatial 
distribution of the R values, which can be subdivided into three sub-zones: (i) the highest R values 
are localized mainly into South and South-East Europe; (ii) lower but still significant values in Central 
Europe; and (iii) North Europe where most of the non-significant values are located. This subdivision 
suggests some sort of connection between the R values and the magnitude of LST, considering that 
these three zones are commonly characterized by decreasing values in the average LST, with the 
Mediterranean areas being the warmest and the Scandinavian Peninsula being the coldest. Starting 
from this consideration, a scatterplot between the R values and the corresponding warm season 
average LST is presented in Figure 4, with the aim of investigating the actual existence of a connection 
between the magnitude of the observed LST (which is a proxy of the climatic condition of the site) 
and its capability to capture the SM dynamic and to explain the spatial variability of the obtained R 
values. 

Figure 3. Examples of time-series of ensemble soil moisture (ENS) and land surface temperature (LST)
monthly anomalies. Only the data during the warm seasons (May–October) are reported in the plots.

The times-series of anomalies in the upper line of Figure 3 (Romania and Spain) highlight the
good agreement between the LST and the SM anomaly datasets, with only few misinterpreted events
in Spain that justify the lower R value compared to the Romania site. It is also interesting to highlight
that the general dynamic of SM anomalies is also captured by LST in the two sites characterized by a
lower correlation (e.g., period of positive values in Sweden after 2009), even if some sparse substantial
discrepancies can be clearly observed over these sites. Overall, the presence of persistent periods of
positive/negative SM anomalies in the four cases is captured by LST in most of the cases, even when
anomaly values for LST and SM for a specific month disagree.

A further analysis of the map in Figure 2a shows a quite evident gradient in the spatial
distribution of the R values, which can be subdivided into three sub-zones: (i) the highest R values
are localized mainly into South and South-East Europe; (ii) lower but still significant values in Central
Europe; and (iii) North Europe where most of the non-significant values are located. This subdivision
suggests some sort of connection between the R values and the magnitude of LST, considering that
these three zones are commonly characterized by decreasing values in the average LST, with the
Mediterranean areas being the warmest and the Scandinavian Peninsula being the coldest. Starting
from this consideration, a scatterplot between the R values and the corresponding warm season
average LST is presented in Figure 4, with the aim of investigating the actual existence of a connection
between the magnitude of the observed LST (which is a proxy of the climatic condition of the site)
and its capability to capture the SM dynamic and to explain the spatial variability of the obtained
R values.
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Figure 4. Scatterplot between the soil moisture (SM) vs. LST Pearson correlation coefficients (see 
Figure 2a) and the warm season (May to October) average LST values. The colors represent the density 
of the data in the scatterplot, which increases from purple/blue to green to yellow/red.  

The data in Figure 4 indeed show a linear trend of increasing R values with season-average LST 
(correlation coefficient of 0.63), which is true for most of the cells in the domain. The lowest R values 
in the coldest areas may be explained again by the effects of the likely presence of snow, at least 
during a fraction of the analyzed period. Of greater interest is the decrease of correlation for the very 
high average LST, which is represented by the cloud of points that diverge from the main linear trend 
(as marked by the red circle in Figure 4); this behavior (which pulls down the slope of the linear 
regression for the highest values) may be explained by a saturation effect in SM during very dry 
conditions. In fact, the highest LST values are generally observed on dry bare soil or sparsely 
vegetated zones, where LST continues to rise (unbounded variable) even after the soil moisture has 
reached the residual value (bounded variable). 

The assumption that focusing on the warm season only would reduce the negative impact of 
snow coverage on the thermal regime is verified by the maps of R values reported in Figure 5, in 
which the correlation between the anomalies of SM and LST are computed on the whole year  
(Figure 5a) and the cold season only (Figure 5b). The map computed using the data from the full year 
shows a general reduction of the R values compared to the warm season-only ones (see Figure 2a), 
which becomes more marked on the northern domain where several negative values can be observed 
(direct relationship between SM and LST); however, it is not surprising that a decrease of SM is 
associated with a decrease of LST over those areas, since they are the ones mostly covered by snow 
during winter time. The spatial distribution of the R values obtained for the cold season (Figure 5b) 
shows a further reduction and confirms a subdivision of the domain in two macro areas, a North-
East part with negative values and a South-West part with positive values.  

Figure 4. Scatterplot between the soil moisture (SM) vs. LST Pearson correlation coefficients (see
Figure 2a) and the warm season (May to October) average LST values. The colors represent the density
of the data in the scatterplot, which increases from purple/blue to green to yellow/red.

The data in Figure 4 indeed show a linear trend of increasing R values with season-average
LST (correlation coefficient of 0.63), which is true for most of the cells in the domain. The lowest R
values in the coldest areas may be explained again by the effects of the likely presence of snow, at
least during a fraction of the analyzed period. Of greater interest is the decrease of correlation for
the very high average LST, which is represented by the cloud of points that diverge from the main
linear trend (as marked by the red circle in Figure 4); this behavior (which pulls down the slope of the
linear regression for the highest values) may be explained by a saturation effect in SM during very
dry conditions. In fact, the highest LST values are generally observed on dry bare soil or sparsely
vegetated zones, where LST continues to rise (unbounded variable) even after the soil moisture has
reached the residual value (bounded variable).

The assumption that focusing on the warm season only would reduce the negative impact of
snow coverage on the thermal regime is verified by the maps of R values reported in Figure 5, in which
the correlation between the anomalies of SM and LST are computed on the whole year (Figure 5a)
and the cold season only (Figure 5b). The map computed using the data from the full year shows
a general reduction of the R values compared to the warm season-only ones (see Figure 2a), which
becomes more marked on the northern domain where several negative values can be observed (direct
relationship between SM and LST); however, it is not surprising that a decrease of SM is associated
with a decrease of LST over those areas, since they are the ones mostly covered by snow during
winter time. The spatial distribution of the R values obtained for the cold season (Figure 5b) shows
a further reduction and confirms a subdivision of the domain in two macro areas, a North-East part
with negative values and a South-West part with positive values.
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Figure 5. Spatial distribution of the Pearson correlation coefficient (R) between soil moisture and land 
surface temperature anomalies computed on monthly data for: (a) the full year; and (b) the cold 
season, for the period 2001–2013. Values in yellow and red are not significant at p = 0.05. 

It is worth pointing out that across Central Europe both negative and positive values can be 
observed. These results highlight the more complex behavior of the SM-LST relationship when the 
full year is analyzed, making the derivation of a common approach for the use of LST as proxy of SM 
less straightforward. Given that the direct inverse relationship holds for most of the domain when 
the warm season is considered, we keep the analysis focused on these data only, following the 
consideration that this period is the one of greatest interest for ecosystem drought analyses.  

 
Figure 6. Spatial distribution of the Heidke Skill Score (HSS) computed between ensemble SM 
(observation) and LST (model) anomalies for the “events” zSM > 1 (dry extremes). Values in orange 
identify no skill for the LST model. 

Figure 5. Spatial distribution of the Pearson correlation coefficient (R) between soil moisture and
land surface temperature anomalies computed on monthly data for: (a) the full year; and (b) the cold
season, for the period 2001–2013. Values in yellow and red are not significant at p = 0.05.

It is worth pointing out that across Central Europe both negative and positive values can be
observed. These results highlight the more complex behavior of the SM-LST relationship when the
full year is analyzed, making the derivation of a common approach for the use of LST as proxy of
SM less straightforward. Given that the direct inverse relationship holds for most of the domain
when the warm season is considered, we keep the analysis focused on these data only, following the
consideration that this period is the one of greatest interest for ecosystem drought analyses.

Following the analyses of the capability of LST to explain large parts of the dynamic in SM,
a more specific focus on the occurrence of SM dry extremes (zSM > 1) is achieved by means of the
analysis of the indices derived from the contingency table. The map in Figure 6 presents the HSS
for the dry extremes and demonstrates the skillfulness of the LST model in reproducing the dry
extremes observed in the SM time-series. The color scheme is chosen to highlight the areas with no
skill (compared to the random reference case) in orange, whereas the different degrees of skillfulness
are depicted in blue shades.

Overall, the LST model is demonstrated to be skillful over most of the domain (about 98%), with
an average value of 0.35 ˘ 0.15; also in this case it is possible to notice a greater abundance of high
values in the southern part of the domain (i.e., South France, West Iberia, and Balkan countries), even
if there is no clear distinction in three sub-zones as in the case of correlation values. The no skill
values are clustered over few locations scattered all over the domain, with two larger clouds in South
Sweden and Ukraine, which show some similarities with the correlation map in Figure 2a.

As pointed out in several studies, the HSS (similarly to most of the skill scores) tends to approach
zero when either the events or the non-events are predominant [38], even if HSS, unlike other indices,
still gives weight to the correct modelling of non-events [39]. This is the case of rare events such as
droughts, even if the non-strict definition of an event used in this paper (zSM > 1) should partially
reduce the problem. Assuming as a rule of thumb a value of HSS of 0.33 as a minimum target for our
model, indicating that the model predicts a minimum of 1/3 of the non-randomly predictable events
correctly, in our study about 50% of the domain respect this target as exemplified by the average value
reported above. This indication can be useful as a benchmark for future comparisons of other indices
against this one.
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Figure 6. Spatial distribution of the Heidke Skill Score (HSS) computed between ensemble SM
(observation) and LST (model) anomalies for the “events” zSM > 1 (dry extremes). Values in orange
identify no skill for the LST model.

Since HSS summarizes the LST capability to reproduce both events and non-events, a more
specific focus only on the events may be of interest for a near-real-time drought monitoring system.
With this aim, two different indices are mapped in Figure 7, focusing on the probability to detect an
observed event (POD, Figure 7a) and on the probability to obtain a false alarm from the LST model
(POFD, Figure 7b). Given that the meaning of the two indices is the opposite (1 is the best score for
POD whereas it is the worst score for POFD), we inverted the two color-bars in order to simplify the
cross-comparison of the two maps.

The POD maps show some similarities with both R and HSS maps, with higher values on the
southern part of the domain. On average, POD assumes values in the range 0.66 ˘ 0.11, meaning
that 2 of the SM observed events out of 3 are correctly modelled by the LST. This probability increases
to around 80% in the Mediterranean and East European areas, whereas it decreases to around 50%
in Northern Europe. The interpretation of the spatial distribution of POFD values results is more
complex since no clear spatial patterns can be observed. On average, the POFD is equal to 0.31
˘ 0.08, suggesting that one out of three of the LST-detected events can be a false alarm. This
information, complementary to the previous one, provides an overall overview of the reliability of
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an event detected by a drought monitoring system based on LST anomalies, as well as on the ability
of this system to actually capture the events that would be identified by a similar system based on
SM anomalies. Finally, it is worth highlighting that both the POD and POFD, as well as the HSS, of
the ensemble SM anomalies against the events derived from the in situ measurements were close to
the values obtained in this study on the LST against the ensemble SM itself (see [22]).
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computed between ensemble SM (observation) and LST (model) anomalies for zSM > 1 (dry extremes).

4. Summary and Conclusions

In this paper we evaluated the capability of remotely sensed land surface temperature (LST)
and derived quantities to represent a proxy of modelled soil moisture (SM) over Europe, with the
aim of using LST within the context of a near-real time drought monitoring system. Given that
the three-model ensemble SM dataset used here as a benchmark has been demonstrated to be a
valuable tool for drought monitoring, it is interesting to understand the potential contribution of LST
as an auxiliary source of information in an integrated monitoring system without involving complex
modelling based on LST.

The use of LST anomalies as derived from the monthly MODIS product (MOD11C3) showed
a good ability to capture the dynamic of SM over continental Europe, with most of the domain
(about 92%) characterized by significant correlation coefficients at p = 0.05. The results of the
correlation analysis show higher values over the Mediterranean region and the worst performance in
Scandinavia and mountainous areas (Alps, Carpathians, Pyrenees); these latter are mainly related to
the difficulties in properly capturing the water dynamics over steep areas, as well as to the effects of
the likely presence of snow coverage on the surface thermal regime.

The LST anomalies clearly outperformed the other LST-derived quantities in reproducing the SM
dynamics, including the air-to-surface temperature gradient (∆T) and the day-night LST difference
(∆LST). These results suggest that even if ∆T and ∆LST are conceptually more suitable for a direct
modelling of the magnitude of SM or evapotranspiration (ET) fluxes, the lower informative content
of nighttime temperature and air temperature compared to daytime LST reduces the power of ∆T
and ∆LST compared to the use of simple LST. It is interesting to point out how ∆T and ∆LST perform
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quite closely, even if nighttime surface temperature and daytime air temperature were derived from
two distinct data sources (MODIS data the former and interpolation of ground data the latter).

The LST anomalies also proved to be a good model to reproduce SM dry extreme events
(anomalies greater than 1), as quantified by the Heidke Skill Score (HSS). This index demonstrated
that LST is skillful in capturing the SM dry extreme events in almost the whole domain (about 98%),
with an average skill that is well above zero (0.35 ˘ 0.15), indicating that a minimum of 1/3 of the
non-randomly predictable events are captured thanks to the use of LST. This result is more significant
if we consider that for rare events, as droughts, skill indices tend to be very low.

As a further detailing of the analysis on dry extremes, the spatial distribution of the Probability
of Detection (POD) and the Probability of False Detection (PFD) has been investigated; these indices
highlight the capability of LST to detect, on average, 2/3 of the observed SM dry events, accompanied
by a 30% chance of obtaining a false alarm. The spatial distribution of the POD shows a clear
concentration of the highest values in the Southern part of the domain, where a higher chance
of correctly detecting an event is observed (around 80%), whereas the frequency of false alarm is
somehow consistent across the whole domain.

Overall, these data suggest that the use of LST as proxy of SM is promising even when it is
directly used for estimating monthly anomalies, avoiding the involvement of complex modelling
or further auxiliary information. The results reported in this study confirm that the use of LST is
quite reliable over South Europe, where correlation, skill, and capability to detect dry events show
the highest values. However, a limited capability of LST to predict SM was also observed over
extremely dry conditions (i.e., season average LST > 32–35 ˝C), tightening the optimal conditions of
applicability to water controlled systems with a moderate degree of stress. Over North Europe (i.e.,
Scandinavian Peninsula) the value of LST is more limited, likely due to the effects of snow coverage
on the surface thermal regime, as well as a more complex modelling of the hydrological cycle due to
snow melting phenomena.

The results reported in this study can provide a sort of benchmark for future studies on the
use of remotely sensed LST for SM and ET estimations at a continental scale over Europe; in fact,
more complex methodologies that take advantage of LST as just one of a larger set of input data (i.e.,
surface energy balance models, semi-empirical methods) should take the outcomes of this study as
a minimum target for a quality assessment of the model performance. Any additional processing of
LST data should add a significant amount of value compared to this case in order to justify its use in
practical applications for drought monitoring.
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