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Abstract: A microgrid is characterized by the integration of distributed energy resources and
controllable loads in a power distribution network. Such integration introduces new, unique
challenges to microgrid management that have never been exposed to traditional power systems.
To accommodate these challenges, it is necessary to redesign a conventional Energy Management
System (EMS) so that it can cope with intrinsic characteristics of microgrids. While many projects
have shown excellent research outcomes, they have either tackled portions of the characteristics
or validated their EMSs only via simulations. This paper proposes a Microgrid Platform (MP),
an advanced EMS for efficient microgrid operations. We design the MP by taking into consideration
(i) all the functional requirements of a microgrid EMS (i.e., optimization, forecast, human–machine
interface, and data analysis) and (ii) engineering challenges (i.e., interoperability, extensibility,
and flexibility). Moreover, a prototype system is developed and deployed in two smart grid testbeds:
UCLA Smart Grid Energy Research Center and Korea Institute of Energy Research. We then conduct
experiments to verify the feasibility of the MP design in real-world settings. Our testbeds and
experiments demonstrate that the MP is able to communicate with various energy devices and to
perform an energy management task efficiently.

Keywords: energy management system; microgrid; testbed; smart grid; Internet of Things (IoT)

1. Introduction

A microgrid is a low-voltage distribution network that is composed of a variety of
energy components such as controllable energy loads and Distributed Energy Resources (DERs).
Controllable loads include HVAC (heating, ventilation, and air conditioning) systems and EVs (Electric
Vehicles), and DERs include PV (Photovoltaic), WT (Wind Turbine), CHP (Combined Heat and Power),
fuel cells, and ESS (energy storage systems) [1]. By integrating DERs and controllable loads within the
distribution network, the microgrid is capable of operating either in a grid-connected mode (i.e., it is
connected to the power grid) or in an islanded mode (i.e., it is disconnected from the grid and uses
various DERs to supply power to the loads). While such integration differentiates the microgrid from
conventional power systems, it also introduces new challenges to the way of power management and
control. An Energy Management System (EMS) has been responsible for the management and control
operations in the traditional power systems, and it is now necessary to advance the EMS so as to cope
with emerging challenges.

A number of research ideas in the literature have discussed the advancement. Su and Wang
examined the role of EMS in microgrid operations in detail [2]. They also listed four essential
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functionalities which a new EMS (say, a microgrid EMS) should support; they are forecast, optimization,
data analysis, and human–machine interface. Authors in [3–6] proposed various types of EMS
frameworks that can work in a microgrid environment. While previous research focuses on a list of
design issues for the EMS, they hardly take into account engineering challenges that frequently occur
in the implementation of a microgrid EMS. The first type of engineering challenge relates to operational
properties of energy components in the microgrid. The operation of typical DERs like photovoltaics
is characterized by intermittency and variability, and that of controllable loads by spatiotemporal
uncertainty. These properties complicate the microgrid management, and the microgrid EMS must be
able to handle them in an appropriate manner. Next, a microgrid operation involves running a list
of energy applications including demand response and coordinated EV charging as well as running
innovative control algorithms [7,8] that are not necessarily implemented in a single system. Therefore,
the microgrid EMS must be able to interface with them seamlessly. Finally, various types of energy
components from different vendors are deployed and interconnected in the microgrid, but most of
them still use proprietary protocols, which hinders them from interoperating with each other [3].
The microgrid EMS must resolve the heterogeneity and interoperation challenges.

We believe that a microgrid EMS must be designed and implemented both to overcome
engineering challenges and to satisfy aforementioned functional requirements. Unfortunately,
few previous works have accomplished them simultaneously To address these two orthogonal
concerns together, this paper proposes a Microgrid Platform (MP), an advanced EMS for efficient
microgrid operations. We also develop and deploy its prototype and run experiments in real-world
settings within two smart grid testbeds built in the UCLA Smart Grid Energy Research Center (SMERC)
and Korea Institute of Energy Research (KIER). The contributions of this paper are three-fold:

(1) We design a microgrid EMS with consideration of both the functional requirements and the
engineering challenges. Many existing energy management systems have focused on one
aspect. On the one hand, a system highlighting the functional requirements usually assumes the
existence of computer systems, software, and communications and regards them as a black box.
This setting, however, often uses proprietary technologies and thus is not extensible. Moreover,
the system often provides predefined energy applications. It is hard to upgrade the system in
order to support emerging applications. A microgrid EMS must be flexible from the software
point of view to accommodate brand-new applications easily. There is an analogy in the
cellular phone area. In the feature phone era, users used pre-installed applications that were
very crude. Now, we observe that a user can develop any smartphone applications and sell them
at APP stores. On the other hand, a system focusing on computer systems and communications
usually implements specialized scheduling and control algorithms. Such algorithms are often
customized to the underlying communication technologies and network topologies. In order to
adopt new algorithms, the system may be rebuilt and these configurations are re-customized.
To address these challenges, we design the MP with a modular system in mind. The MP is
developed as a framework in which a variety of modules (e.g., scheduling algorithm module and
communication module) are added and/or deleted seamlessly. For instance, a specific power
generation model can be added and incorporated in an existing optimization module. In this
way, the MP supports the functional requirements and addresses the engineering challenges.

(2) We develop the MP prototype in a resource-oriented architecture (ROA) style [9]. Most previous
microgrid systems have been implemented in a multi-agent system architecture or a
service-oriented architecture (SOA) style that functions well in a homegeneous, proprietary,
and server-centered system environment. However, an emerging microgrid environment includes
deployment of heterogeneous energy devices using different communication technologies and
use of a variety of standard message formats. A new microgrid system, therefore, must be able to
cope with heterogeneity and diversity so as to communicate with energy devices seamlessly in
an interoperable manner. A plug-and-play trend would be an example—say, a new smart
meter from a random third-party vendor using new technologies is added to a microgrid.
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This device must be able to communicate with the microgrid system or with other energy
devices (if necessary) with minimum configuration so as to be ready to be used. With traditional
architecture styles, we must re-build a microgrid management system to customize so as to
communicate with the brand-new device. The MP prototype addresses this system engineering
issue by adopting the ROA that abstracts an energy device as a resource—a software conterpart
of the hardware itself. Just as the concept of Class in a Java programming language, a resource in
the ROA maintains states and takes actions. Unlike the Java, however, the resource makes real
communications and interactions with other energy devices or the microgrid system. Because of
this abstraction concept, our MP can work in a distributed environment. To implement the
sofware part and the abstraction, we take an Energy Service Interface (ESI) technology [10].

(3) We deploy the MP prototype in our testbeds and run experiments to evaluate performance
of microgrid management and controls. A microgrid is a complicated and delicate system,
and thus development, deployment, and evaluation of its management system must be carefully
designed and performed. When deploying the prototype and connected energy devices,
thus building a microgrid system testbed, we must consider how much data we can obatin
from the testbed. The more we get data, the more accurately we are able to run and evaluate
optimization algorithms. We also take into account the diversity of energy devices. Unlike a
simulation study, there are many challenges in a testbed environment. For instance, it is not
trivial to install EV charging stations on a testbed because of both technical problems and
administrative issues. Even if installed, we may not obtain ample information mainly due
to low penetration of EVs in the real world. The MP as an energy management system in
a microgrid must be able to communicate with external systems such as a demand response
server. For evaluation, we must consider what external signals are delivered into the microgrid
because these signals directly affect performance of scheduling and control algorithms. This paper
designs the deployment of the prototype and connected energy devices by taking into account
all the major factors. As a result, we build two real-world testbeds of microgrid including the
MP prototype.

A primary issue in the evaluation is about how to design and run scheduling algorithms.
Unlike simulations, each microgrid testbed has intrinsic properties, and thus a specifically-designed
algorithm may not operate well in every microgrid configuration. To address this challenge, we develop
a generic system model of a microgrid and formulate the energy scheduling and demand response as
optimization problems. The next question is about how well a generic model works in a real-world
environment. Does the model require to customize itself to every testbed? Does the model work well
in a specific configuration and bad in other ones? How different would experimental results be from
simulation ones? While this paper may not answer all the questions this time, we try to design and
run experiments step-by-step in order to disclose clues to the answers. In particular, we discuss what
we learned from our evaluation about the difference between experimental results and those from
simulations in Section 4.2.

The rest of the paper is organized as follows. Section 2 reviews the functionalities of a microgrid
EMS and addresses its design issues. Section 3 shows our implementation of the MP in details.
In Section 4, we deploy our MP prototype to two microgrid testbeds and conduct experiments.
Section 5 concludes this paper.

2. Design of a Microgrid Energy Management System

In this section, we discuss two categories of design issues—functional requirements and
engineering challenges—which are necessary for an EMS to work properly on an emerging microgrid
environment. Figure 1 illustrates an overview of a microgrid EMS system for our discussion; internal
boxes denote its roles. We refer to [2] for details.
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Figure 1. An illustration of a microgrid energy management system.

2.1. Functional Requirements

2.1.1. Forecasting Energy Activities

As generation, storage, and consumption of energy in a microgrid become more dynamic
and complex, it is critical to predict such activities accurately for the purpose of energy balance.
Forecasting is preformed on different time scales (e.g., hour-ahead, day-ahead, etc.) and predicted
data is fed into an optimization process for microgrid operations. Forecasting has been challenging
in a microgrid setting because of operational properties—inherent intermittency and variability in
DERs and spatiotemporal uncertainty in controllable loads (e.g., electric vehicles). Previous studies
focused on developing various forecast models of high accuracy given this randomness. They use
various types of data sources, from historical data to mathematical models, weather data, and other
societal data [11,12]. Zhu et al. run demand forecast and solar generation forecast from history data,
and then develop a battery (dis)charging scheduling algorithm [13]. Huang et al. propose a hybrid
mathematical model that takes weather forecasts and history data to improve the prediction accuracy
of a solar panel [11].

2.1.2. Optimization: Making a Control Decision for Optimal Operations

An EMS must be able to make control decisions to optimize the power flows by adjusting
the power imported/exported from/to the grid, the controllable loads, and the dispatchable DERs.
Different optimization decisions are made for different applications (e.g., demand response and
energy/power management) that are typically formulated as non-linear optimization problems with
different objectives. Extensive algorithms have been proposed for them [7,8]. Given EV owners’
charging profiles and real-time power price, Mal et al. developed a V2G scheduling algorithm working
at a large scale EV charging structure [14].

2.1.3. Analysis on Energy Data

An EMS collects a huge amount of data from DERs, energy loads, and energy market.
Data collected must be analyzed properly, providing insights to better understand the characteristics
of energy activities. This can be further used to improve the performance of the forecast and the
optimization models. Bellala et al. analyze time series data of energy usage in a commercial campus [15].
Then, they detect anomalous usage periods representing unusual power consumption. Detecting and
correcting the anomaly can save on the electricity bill. The Monitoring-Based Commissioning (MBCx)
project exploits the measurement data and diagnostic tools in order to perform commissioning. on 24
non-residential buildings throughout the state of California [16].

2.1.4. Human–Machine Interface

An EMS must provide a Human–Machine Interface (HMI) for real-time monitoring and controls
of a microgrid. The HMI allows a microgrid operator to interact with other modules inside a microgrid



Sustainability 2016, 8, 1143 5 of 19

system. It must be able to provide useful information and knowledge rather than raw data by means
of visualization and archiving [17]. The HMI is expected to allow active customer interactions [2].

2.2. Engineering Challenges in Communications

A microgrid is a distributed system consisting of heterogeneous types of energy resources
[3], in which an EMS is responsible for interacting with the resources in an interoperable manner.
The EMS may adopt standard specifications for seamless interoperation, such as IEC 61850
(http://www.iec.ch/smartgrid/standards/), IEEE1574 (http://grouper.ieee.org/groups/scc21/1547/
1547_index.html), OPC Unified Architecture (https://www.opcfoundation.org/UA), open Building
Information eXchange (oBIX) (http://www.obix.org), Facility Smart Grid Information Model (FSGIM)
(http://spc201.ashraepcs.org/standards.html). In academia, research has developed programmable
APIs that allow us to access energy resources in a unified manner [18,19]. Dawson-Haggerty et al.
leverage SensorML [20] and define a data model that fits to tiny sensor devices embedded into energy
resources [21].

A microgrid EMS is also responsible for communicating with external systems outside the
microgrid; it translates data and signals transmitted from external systems to internal protocols and
semantics. Energy services instantiate such interoperation. Two pieces of literature presented use cases
of energy services [22,23], and we classify the services into two categories: facility service and grid
service. In the facility service, a customer facility such as a commercial building and a community
microgrid provides service data to external systems sitting on a national grid, whereas it receives and
consumes service data delivered from the grid in the grid service. The EMS must be able to support
both services.

The communication interface in the microgrid EMS must be extensible. New energy applications
and innovative algorithms will be continuously added to the microgrid, and they do not necessarily
reside in a single system. It is essential that the EMS is able to connect to them seamlessly, and such
new connection must not affect the operations of existing functionalities.

3. Microgrid Platform

To demonstrate the feasibility of the new design discussed in the previous section, we propose
a Microgrid Platform, a new microgrid EMS, and develop its prototype implementation running
on top of a Linux distribution. This section also describes two algorithms that the MP runs
for efficient microgrid operations. Figure 2 illustrates the system architecture of the Microgrid
Platform implementation.
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Figure 2. System architecture of the Microgrid Platform implementation.

3.1. System Architecture

We implement the MP in a Resource-Oriented Architecture (ROA) style [9], which abstracts
energy components in a microgrid in the form of resources. Each resource implements well-defined
interfaces that allows the MP to support plug-and-play of DERs, loads, and functionalities. As shown
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in previous works [3–6], the ROA has advantages over a Service-Oriented Architecture. It fits best for
“linking and referring” to energy resources, thus maximizing the interactivity efficiency in the EMS.
The ROA is more lightweight without complicated interface description.

3.1.1. Interoperation—Energy Services from the Facility

The MP provides energy services to the grid, which makes the microgrid play an energy service
provider role in the smart grid. In addition to basic energy services, it realizes the facility-side
forecasting that helps the grid understand the facility’s energy behaviors accurately.

Energy Services

The MP provides fundamental data services that most EMSs can do. These include (1) historical
energy data for individual resource as well as for the aggregated one; (2) real-time measurement on
resources’ status, their energy activities (consumption, generation, and storage), and power quality;
(3) the MP also accepts command messages from the grid that eventually control the internal energy
resources. This corresponds to a Direct Load Control (DLC) service on the grid side. In addition, the MP
provides various types of future forecasting services including demand and generation forecasts.

Energy Service Interface

The MP develops the ESIs using the existing implementation model [10]. That is, the service
data is represented via the open Building Information Exchange (oBIX) specification [24] and is
then exchanged via the Web Service model with Representational State Transfer (RESTful) style [9].
Our security algorithm carries out access control on action levels (i.e., Read, Write, and Invoke) [25].
In addition to the oBIX, we extend the IEC 61850 specification [26] to represent data from our solar
panels and energy battery.

3.1.2. Interoperation—Energy Services from the Grid

In addition to basic DLC services, our testbed implements two Facility-centric Load Control (FLC)
type of services in which the microgrid is interested most—Automated Demand Response (ADR)
service and Real-Time Pricing (RTP) service.

Open Automated Demand Response

We deploy an OpenADR 1.0 server [27] that provides the ADR service by exploiting the open
source [28]. The server issues an EventState signal (All the XML schemas for data used in OpenADR
are available at http://openadr.lbl.gov/src/1.) to initiate a new demand response event. It is able to
communicate with both smart and simple clients. A smart client can interpret the EventInfo information
within the EventState signal. Included in SmartClientDREventData entity, the EventInfo contains
event details. For example, the eventInfoTypeID denotes an event type and takes one value out of
PRICE_ ABSOLUTE, PRICE_RELATIVE, LOAD_AMOUNT, etc. To communicate with a simple OpenADR client,
the server translates the EventInfo information into a simpler form, named SimpleClientEventData. The
entity contains two variables to describe the event state. The EventStatus element denotes the temporal
state of the event (FAR, NEAR, or ACTIVE). The OperationModeValue indicates the operational state of the
energy loads in the event (NORMAL, MODERATE, or HIGH). MP implements a Message Authentication
Code (MAC) addressing the message integrity to address the security issue in the OpenADR. Following
the NISTIR (National Institute of Standards and Technology, Internal/Interagency Reports) 7628
guideline [29], our testbed takes a hash-based MAC (HMAC) with SHA-256.

Real-Time Pricing for Retail Energy Market

To assess the feasibility of the RTP service, our testbed implements an RTP server that provides
price forecast for a retail energy market. The server, in the absence of an RTP model in the

http://openadr.lbl.gov/src/1
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real world, exploits the wholesale market price provided by California Independent System Operator
(CAISO) (http://oasis.caiso.com/mrioasis/). More specifically, it obtains three types of price forecasts
from CAISO—Day-Ahead Market (DAM); Hour-Ahead Scheduling Process (HASP); and Real-Time
Market (RTM). The DAM provides an estimated power price of every hour for 24 h ahead. The HASP
and RTM provide an hour-ahead/10-min-ahead price estimation of every 12/5 min, respectively.
Since CAISO does not provide the price forecast for the location of our campus, the server takes the
price value for the city of Long Beach. The RTP server also takes inputs of demand forecast and
weather forecast from CAISO, and then eventually determines three types of price forecasts (DAM,
HASP, and RTM) for the retail energy market.

Consuming the Service Data

The MP implements communication counterparts of the above two energy services
for interoperations. With respect to the ADR service, it implements both smart and simple clients that
periodically “pull” the EventState message from the server. This PULL mode is often preferred over
a PUSH mode since the OpenADR client has more control over the communications, e.g., firewalls.
It, then, identifies when the event starts and ends and other event contexts. The MP also pulls the
price forecast from the RTP server periodically. Different applications may use three types of forecasts
differently. Our testbed primarily fetches the HASP and RTM forecasts every hour and 10 min and
executes scheduling algorithms according to the price changes.

3.1.3. Communication Model

The MP communicates with the energy resources via Ethernet, RS-485 serial, and IEEE 802.15.4.
It supports various application protocols such as Modbus, IEC 61850, IEC DLMS, BACnet, SEP 1.0
(Modbus-http://www.modbus.org/; BACnet-http://www.bacnet.org; SEP-http://www.zigbee.org/
Standards/ZigBeeSmartEnergy; DLMS-http://www.dlms.com/), and several proprietary protocols.
The MP collects and stores both power-related measurements and status information from the energy
resources every 5 min on average. In addition, it maintains meaningful meta data regarding each
resource. For instance, each mini submeter is managed with a load type, location, and the load’s
priority. A resource owner configures the meta data, and thus the data keeps reflecting physical
characteristics of the plugged load and user contexts. The MP provides basic scheduling functions
through which a user pre-schedules the operations of energy resources. The dimmable LED lights are
now reserved to be ON only during office hours, while a user can still turn them on/off any time.

3.1.4. User Interface

The MP implements a web-based user interface (UI), as shown in Figure 3, for real-time monitoring
and control of the microgrid. The UI also allows users to interact with the MP and eventually with
energy components in a microgrid. The MP allows real-time data to flow and provides control services
with which users can read real-time measurements and send control messages to the DERs and
the loads. The UI includes a variety of data visualization tools such as interactive graphs and tables
that illustrate energy data and derived knowledge (e.g., historical or forecast data of DERs and loads)
at a glance.

3.2. Microgrid Control

We implement two algorithms in the MP that support optimal operations in a microgrid:
An energy scheduling algorithm and a Demand Response (DR) algorithm. The MP also implements
forecast services for optimization. In particular, it adopts three different models for forecasting:
A persistence model, an auto regressive moving average (ARMA) model, and a machine learning
model for load forecasting, PV forecasting [11], and EV forecasting [12], respectively. The MP uses the
CAISO’s forecast data to provide market forecast services. Note that the algorithms here are designed

http://oasis.caiso.com/mrioasis/
Modbus - http://www.modbus.org/
BACnet - http://www.bacnet.org
SEP - http://www.zigbee.org/Standards/ZigBeeSmartEnergy
SEP - http://www.zigbee.org/Standards/ZigBeeSmartEnergy
DLMS - http://www.dlms.com/
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based on the configuration of the two testbeds. Other algorithms [30,31] can also be implemented in
the MP for different applications.

Figure 3. Web interface showing the overview of the microgrid.

3.2.1. System Model

We present the system model of a microgrid and formulate the energy scheduling and demand
response as optimization problems.

Let us consider a microgrid consisting of a set of Distributed Generation (DG) units denoted by
G := {g1, g2, . . . , gG}, Distributed Storage (DS) units denoted by B := {b1, b2, . . . , bB} and controllable
loads denoted by L := {l1, l2, . . . , lL}. We use a discrete time model with a finite horizon in this paper.
We consider a time period or namely a scheduling horizon which is divided into T equal intervals ∆t,
denoted by T := {0, 1, . . . , T − 1}, where t0 is the start time.

DG Model: For each DG unit g ∈ G, we assume that there is an upper bound and a lower bound
on its power:

pmin
g (t) ≤ pg(t) ≤ pmax

g (t), ∀t ∈ T , (1)

where pmin
g (t) and pmax

g (t) are the minimum and maximum output power, respectively. Typical DG
includes PV, WT, diesel, and CHP. We note that we do not consider specific generation models for
different types of DG. They can be easily incorporated into the optimization framework. If the DG unit
is dispatchable (e.g., diesel), the output power pg(t) is a variable. If the DG unit is non-dispatchable
(e.g., PVs and WTs), the output power pg(t) cannot vary and its value is equal to the forecasted value

(i.e., pmin
g (t) = pmax

g (t) = p f
g(t) where p f

g(t) is the forecasted power at time t).
We denote the generation cost of a DG unit g ∈ G by Cg(pg(t)). We assume that the cost function

is strictly convex. For renewable DG units such as PVs and WTs, the generation cost is zero.
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DS Model: We consider batteries as the DS units in the microgrid. Given a battery b ∈ B, we assume
its output power pb(t) is positive when charging and negative when discharging. Let Eb(t) denote the
energy stored in the battery at time t. The battery can be modeled by the following constraints:

pmin
b ≤ pb(t) ≤ pmax

b , ∀t ∈ T , (2)

Eb(t + 1) = ηbEb(t) + pb(t)∆t, ∀t ∈ T , (3)

Emin
b ≤ Eb(t) ≤ Emax

b , ∀t ∈ T , (4)

Eb(T) ≥ Ee
b, (5)

where pmax
b is the maximum charging rate, ηb ∈ (0, 1] captures the battery efficiency, −pmin

b is the
maximum discharging rate, Emin

b and Emax
b are the minimum and maximum allowed energy stored in

the battery, respectively, and Ee
b is the minimum energy that the battery should maintain at the end of

the scheduling horizon.
We use a cost function to capture the damages to the battery by the charging and discharging

operations. Three types of damages are considered: fast charging, frequent switches between charging
and discharging, and deep discharging. We model the cost of operating a given battery b as [32]:

Cb(pb) , αb ∑
t∈T

pb(t)2 − βb

T−2

∑
t=0

pb(t + 1)pb(t)

+ γb ∑
t∈T

(min(Eb(t)− δbEmax
b , 0))2 + cb,

(6)

where pb is the charging/discharging vector pb , (pb(t), t ∈ T ) , αb, βb, γb, δb, and cb are
positive constants.

The above function is convex when αb > βb. This cost function captures the damages to the
battery by the charging and discharging operations. The three terms in the function penalize the fast
charging, the charging/discharging cycles, and the deep discharging, respectively. We choose δb = 0.2.

Load Model: For each load, the demand is constrained by a minimum and a maximum power
denoted by pmin

l (t) and pmax
l (t), respectively:

pmin
l (t) ≤ pl(t) ≤ pmax

l (t), ∀t ∈ T . (7)

For deferrable loads such as EVs, the cumulative energy consumption of the loads must exceed a
certain threshold in order to finish their tasks before deadlines. Let Emin

l and Emax
l denote the minimum

and maximum total energy that the load is required to consume, respectively. The constraint on the
total energy consumed by a deferrable load is given by:

Emin
l ≤ ∑

t∈T
pl(t)∆t ≤ Emax

l . (8)

We use a cost function to capture customer loss of comfort in the scheduling. The cost function
Cl(pl) quantifies a customer’s loss or discomfort obtained by the load l ∈ L using the demand vector
pl , (pl(t), t ∈ T ). We assume the cost function is a convex function.

Supply–Demand Matching: The net demand of the microgrid is equal to the total demand minus
the total generation:

P(t) = ∑
l∈L

pl(t) + ∑
b∈B

pb(t)− ∑
g∈G

pg(t), ∀t ∈ T . (9)

If the microgrid is operated in islanded mode, then P(t) = 0. If the microgrid is operated in
grid-connected mode, then P(t) is the power traded between the microgrid and the main grid. We note
that islanded mode also involves other control and operational issues [33]. We model the cost of
energy purchase from the main grid as C0(t, P(t)) , ρ(t)P(t)∆t, where ρ(t) is the market energy price.
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Note that P(t) can have a negative meaning that the microgrid can sell its surplus power to the main
grid (We assume that the selling price is the same as the purchasing price. Depending on the market
pricing scheme, the two prices may be different in reality).

3.2.2. Energy Scheduling

The objective of the energy scheduling is to schedule the day-ahead operation of the DERs and
the loads in a way that (i) the total costs of generation, energy storage, load, and energy purchase
are minimized; and (ii) the DER constraints, the load constraints, and the supply–demand matching
constraint are satisfied. The scheduling horizon T in this problem is one day.

We define pg , (pg(t), t ∈ T ), pb , (pb(t), t ∈ T ), pl , (pl(t), t ∈ T ), and Cg(pg) ,

∑t∈T Cg(pg(t)). The energy scheduling in the microgrid can be formulated as a convex optimization
problem [34]:

min
pg ,pb ,pl

ξg ∑
g∈G

Cg(pg) + ξb ∑
b∈B

Cb(pb) + ξl ∑
l∈L

Cl(pl)

+ξ0 ∑
t∈T

C0(t, P(t))

s.t. (1)–(9),

where ξl , ξg, ξb, and ξ0 are the parameters to trade off among the utility maximization and the
cost minimizations.

Solving the problem gives the optimal schedules including the generation schedules pg, the battery
schedules pb, and the load schedules pl .

3.2.3. Demand Response

Upon receiving DR event signals from the utility, the microgrid EMS responds by coordinating
the operation of energy devices in the microgrid properly.

A DR event is characterized by a time schedule T that specifies the start time and the end time
and a demand limit Pmax(t) that is determined from the event information. The DR constraint on the
net demand of the microgrid is given by:

P(t) ≤ Pmax(t), ∀t ∈ T . (10)

Similar to the day-ahead scheduling problem, the DR problem can be formulated as a convex
optimization problem:

min
pg ,pb ,pl

ξg ∑
g∈G

Cg(pg) + ξb ∑
b∈B

Cb(pb) + ξl ∑
l∈L

Ul(pl)

s.t. (1)–(10).

In the above problems, the control variables are assumed to be all continuous. However, some of
them may be discrete in reality (e.g., on/off). A two-stage approach [35] can be used to solve this
issue. In the first stage, a solution is obtained assuming that all the control variables are continuous.
Then, the discrete variables are rounded to the nearest discrete levels and treated as constants in the
second-stage solution.

4. Testbeds and Experiments

This section describes two microgrid testbeds in which we deploy various types of energy
resources. For experiments, we also develop several external energy services. On top of the testbeds,
we run experiments of microgrid operations. We note that this paper omits basic experimental results,
i.e., measurement of energy usage and direct resource control. Instead, our experiments focus on the
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optimal energy scheduling and DR operations in the KIER and UCLA SMERC testbed, respectively.
We refer to [10] for our previous results.

4.1. Microgrid Testbeds

4.1.1. UCLA Site

The energy resources in the UCLA SMERC testbed include smart submeters, office/home
appliances, smart equipments, electric vehicle charging stations, and photovoltaics. Figure 4 presents
some of them.

*	  4-‐CH	  EV	  charging	  station	  

*	  Mini	  submeter	  

*	  Power	  strip	  

*	  Multi-‐submeter	  in	  a	  panel	  

*	  Solar	  panel	  

Figure 4. Energy resource devices used in the testbed at UCLA Smart Grid Energy Research Center.

Smart Submeter

Unlike a conventional smart meter that measures aggregated energy usage, a smart submeter
provides fine-grained measurement and control. Our testbed deploys two types of submeters.
We instrument a panel-level multi-submeter that simultaneously connects up to 36 single phase
circuits within a panel (http://www.satec-global.com/eng/products.aspx?product=42). Using it,
we monitor two groups of energy loads—the lightings and power outlets at an office. We also
install mini submeters that are instrumented to single power lines (http://www.bspower.co.kr/
en/smartmeter.do). For instance, it can directly connect to a light switch that turns on/off a set
of fluorescent lights. These submeters use current transformers to convert current to voltage, and
an embedded microcontroller calculates the real, reactive, and apparent powers and energy usage.
They are with relays, and the microcontroller switches the power upon requests.

Office Appliance with Plug-Load Meter

As the plug-loads including all the office appliances account for more than one third of the total
power consumption in a building [36], it is necessary to manage them carefully. To this end, we deploy
two types of plug-load meters: smart plugs and smart power strips. Office appliances are plugged into
them: computers, monitors, desk lamps, and network switches. The plug-load meter is functionally
the same as the submeter, i.e., energy measurement and control. It communicates with the MP using a
ZigBee [37] module.

Smart Equipment

Smart equipment represents such energy resources that must be accessed directly.
Recent programmable thermostats and LED lights fall into this category. Each piece of equipment
has its own operation cycles beyond a simple on/off control and is able to adjust the operations
upon external requests. Our testbed deploys dimmable LED panel lights that adjust their brightness

http://www.satec-global.com/eng/products.aspx?product=42
http://www.bspower.co.kr/en/smartmeter.do
http://www.bspower.co.kr/en/smartmeter.do
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and color temperature in eight steps. Each light uses a ZigBee module to transmit its status and to
accept control commands to/from the MP. For scalable experiments, we additionally develop a light
emulator that creates 200 LEDs, each of which operates exactly the same as the real device (brightness,
temperature, and energy consumption).

Smart Home Appliance

The home appliances are functionally the same as the smart equipment. Each manages its own
operation cycles and must be accessed directly. The MP connects to two types of appliances via the
Ethernet: a clothes dryer and a refrigerator (http://smartgrid.ucla.edu/projects_adr.html). It is able to
change the strength of the heat (high, low, or no heat) as well as turn on/off the operation by sending
signals to the dryer. The refrigerator adjusts the operating cycles of compressor, defrost, and fan.
To measure energy usage, the mini submeters are instrumented to their input power cables.

EV Charging Station

UCLA has instrumented a number of charging stations at campus parking structures [38].
Each station powers several EVs via J1772 connectors (http://smartgrid.ucla.edu/projects_evgrid.
html) simultaneously and supports multiple charging levels (http://standards.sae.org/j1772_201210).
It is capable of measuring charging capacity as well as charging rate. Each station sends the
charging data in real-time to a management server in our laboratory that controls the stations based
on subscribers’ profiles and preference. The MP communicates with the stations via the server.
Because of low penetration of EVs, however, we could not collect enough data for experiments. As a
complementary work, we simulate charging activities based on measurements and obtain an ample
amount of data.

Solar Panel and Battery

The MP is connected to a photovoltaic panel and a Battery Management System
(BMS) that performs the whole monitoring function of battery system (voltage/electic
current/SoC/SoH/temperature). A 50 kW PV system is being installed on the roof and a 25 kWh BMS
in the lab. Table 1 describes the parameters in BMS. The current version of testbed implements the
PV and the BMS simulations where data is generated from the real devices. The PV and BMS also
implements the IEC 61850 standard to communicate with the MP. The details of the simulators can be
found in our previous research [39].

Table 1. Parameters of battery management system in the testbed.

Parameters Description Set Value

B Capacity of BMS 25 kWh
Bi Initial state of charge in BMS 25 kWh
γ Charging/discharging rate 80%

b− Maximum state of charge in BMS 22.5 kWh
b_ Minimum state of charge in BMS 2.5 kWh

4.1.2. KIER Site

KIER is a research organization that focuses on improving energy efficiency and supporting
energy policy in terms of technological development. It has built an entire building-level testbed
having a peak demand of 300 kW that is mainly consumed by computers, air conditioners, lighting,
and EVs. Figure 5 shows the system model of the testbed including two subsystems—a power
hardware-in-the-loop simulation (PHILS) and real hardware—that our experiments use. The PHILS
provides a real-time digital simulation of a hybrid power system with power hardware that can
produce kW—level electrical power. It allows a flexible modeling of DERs, such as PVs, EVs, and

http://smartgrid.ucla.edu/projects_adr.html
http://smartgrid.ucla.edu/projects_evgrid.html
http://smartgrid.ucla.edu/projects_evgrid.html
http://standards.sae.org/j1772_201210
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ESS, and a real DC–AC inverter, and is expected to effectively fill the gap between the analytical
simulation and practical implementation. The PHILS is built with Regatron’s Integrated bidirectional
power supply TopCon TC.GSS and family TC.G (http://www.regatron.com/en/products-topcon/
bidirectional-power-supply-gss), and Figure 6 pictures the PHILS testbed system. The other subsystem
in the testbed is a real hardware system that includes three types of DERs connected: PVs, EVs, and
ESS. The real hardware DER system is partially under development.

Microgrid Platform  (EMS)

IEC61850  GW1 IEC61850  GW2 Commercial  GW

PV  
simulator

ESS  
simulator

Quick  EV  
simulator

Slow  EV  
1

Slow  EV  
2

200  LEDs

MMS  protocol REST/oBIX

Figure 5. A system model of the entire testbed in Korea Institute of Energy Research.

Figure 6. A capture of the power hardware-in-the-loop simulation testbed.

Our experiments use the real-time power hardware-in-the-loop PV/ESS simulation systems for
DERs and real-hardware slow/quick EV charging systems for controllable loads. The PHILS system is
also used to verify the operation of the microgrid. Figure 7 illustrates the architecture of our testbed,
and Table 2 shows the specification details of energy devices used in the testbed.

Table 2. Specification details of energy devices used in the testbed.

Device Capacity Power Max/Min Energy Max/Min

PV simulator 64 kW - -
ESS simulator 64 kW 10 kW/−10 kW 50 kWh/5 kWh

Quick EV simulator 64 kW 64 kW/0 kW [18 kWh, 23 kWh]/[13 kWh, 18 kWh]
Slow EV1 system 2.5 kW 2.5 kW/0 kW [18 kWh, 23 kWh]/[13 kWh, 18 kWh]
Slow EV2 system 2.5 kW 2.5 kW/0 kW [18 kWh, 23 kWh]/[13 kWh, 18 kWh]

200 LEDs 12.6 kW 12.6 kW/0 kW -

PV: Photovoltaic ESS: Energy storage system EV: Electric vehicle LED: Light-emitting diode

http://www.regatron.com/en/products-topcon/bidirectional-power-supply-gss
http://www.regatron.com/en/products-topcon/bidirectional-power-supply-gss
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Figure 7. KIER real-time hardware-in-the-loop testbed.

The testbed adopts IEC 61850 as the communication and control interface. The devices are
all connected to two IEC 61850 gateways and one commercial gateway supporting also the IEC
61850 standard. The MP communicates with the gateways using the manufacturing message
specification (MMS) as well as REST/oBIX.

4.2. Energy Scheduling

The devices in the KIER testbed considered in the energy scheduling include a 16 kW PV, a 5 kW
ESS, a 16 kW quick charging EV system, two 2.5 kW slow charging EV systems, and two hundred
63 W dimmable LEDs. The maximum energy allowed to be stored in the battery Emax

b is 50 kWh, and
we set Emin

b = 5 kWh. We set Eb(0) = Ee
b = 12.5 kWh. The parameters in the battery cost function

are chosen to be αb = 1, βb = 0.75, and γb = 0.5. We choose Cl(pl(t)) := ∑t∈T ηl(pl(t)− p f
l (t))

2 for

the LEDs and Cl(pl(t)) := ηl(∑t∈T pl(t)∆t−∑t∈T p f
l (t)∆t) for the EVs, where p f

l (t) is the forecasted
load and ηl is the priority of the load given by the customer. The higher the priority is, the more
important the load is to the customer. Our experiment assumes that the LEDs can be shedded and the

EVs can be shifted. The maximum shedding precentage of the LEDs Emax
l −Emin

l
Emax

l
is assumed to be 30%.

The energy upper bound of the EVs Emax
l is chosen randomly from [18 kWh, 23 kWh] and the energy

lower bound of the EVs Emin
l is chosen randomly from [13 kWh, 18 kWh]. Perfect forecasting of the

DERs and loads is assumed. We use the Korean time-of-use (TOU) price in the experiment as shown in
Figure 8. The parameters in the algorithm are chosen as ξl = 1, ξg = 1, ξb = 0.01, and ξ0 = 1.

Figure 9a shows the forecast of the devices, serving as the baseline consumption. We then run
the algorithm in Matlab (v8.x, MathWorks, Natick, MA, U.S.) to produce the optimized schedules as
shown in Figure 9b. Comparing Figure 9b with Figure 9a, we observe the battery charging/discharging
cycles: the battery is charged when the energy price decreases and discharged when the price increases.
We can also observe load shedding and load shifting from the results: the LEDs are shedded, the EVs
are shifted to the time when the price is low, and the total charging energy of the EVs is also reduced.
The total operational cost of the testbed using the optimized schedule is 12, 424 KRW, compared with
7899 KRW without scheduling, saving the cost by 12,424−7899

12,424 = 36.43%.
Next, we use the schedule produced by the algorithm to control the hardware-in-the-loop

simulators in the testbed in order to validate the simulation in real-hardware settings. The experimental
results are presented in Figure 10. Compared with the simulation results in Figure 9b, the result of
using the real-time hardware simulators roughly follows the optimized schedule obtained from the
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simulation. The main cause of the differences between them lies in the resolution of the inputs for the
hardware simulators. The hardware simulators are not able to accept inputs of any precision. The effect
of communication delay can be also observed in the LED control: the total power of the LEDs changes
linearly in time. This is because we have 200 LEDs, and it takes time to control all of them and wait for
them to respond to the control signals. Both the input resolution and the communication delay need to
be considered for optimal energy scheduling in a real microgrid system.
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Figure 8. Time-of-use (TOU) price.
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Figure 9. Power consumption. (a) forecasted; and (b) simulated schedule.
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Figure 10. Real-time hardware-in-the-loop result.
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4.3. Demand Response Algorithm

In the experimental scenario, the MP changes the demand in response to the change of real-time
energy prices. In order to highlight the DR effect, the dimmable LEDs only participate in the
DR—that is, they respond to the price changes. The DR optimization is then simplified as a problem to
be solved at each time t:

min
pl(t)

∑
l∈L

ηl(pl(t)− p f
l (t))

2

s.t. pmin
l (t) ≤ pl(t) ≤ pmax

l (t), ∀l ∈ L

∑
l∈L

pl(t) ≤ Pmax(t),

where L includes only the LEDs and p f
l (t) corresponds to the brightness preferred by the customer.

In our DR experiment, Pmax(t) is defined as a linear piecewise function that translates the real-time
price ρ(t) from the CAISO to the maximum allowed total power:

Pmax(t) =


∑l∈L p f

l (t), ρ(t) < 6 ¢/kWh,

0.8 ∑l∈L p f
l (t), 6 ¢/kWh ≤ ρ(t) ≤ 10 ¢/kWh,

0.7 ∑l∈L p f
l (t), 10 ¢/kWh < ρ(t) ≤ 14 ¢/kWh,

0.6 ∑l∈L p f
l (t), otherwise.

(11)

The LEDs are assumed to be equally deployed in four offices with different priorities
(ηl = 5, 10, 15, 20). The brightness is dimmed in the range [0, 100]. The minimum, maximum, and
preferred brightness are set to 20, 100, and 80, respectively. We implement the DR algorithm as a web
service using JOptimizer (http://www.joptimizer.com/). Upon receiving DR signals from a DRAS
(Demand Response Automation Server), the MP sends control commands to the LEDs.

Figure 11 shows the changes of the real-time price, the total power consumption, and the power
consumption grouped by priority. The figure also observes that the total power consumption reduces as
the price changes. A demand reduction rule uses priority—that is, the devices having lower priorities
reduce more power consumption than those with higher priorities.

Figure 11. Demand response (DR) experimental result.

http://www.joptimizer.com/
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5. Conclusions

This paper proposes a Microgrid Platform, an EMS for a microgrid, by taking into account both
the functional requirements and the engineering challenges. The MP is flexible and extensible in
the sense that it supports plug-and-play of DER devices, loads, and functionalities by adopting the
resource-oriented architecture style. The MP fulfills interoperability via energy service interfaces.
We develop and deploy a prototype system both in the UCLA and KIER testbeds and run
experiments to show the feasibility of the microgrid management and control in real-world settings.
Our experimental results demonstrate that the MP is able to (i) manage various devices in
the testbed; (ii) interact with external systems; and (iii) perform efficient energy management.
Integral parts of our future works include conducting more experiments for statistical analysis and
implementing/evaluating various control algorithms. We note that this work has extended our
previous research [40].
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The following abbreviations are used in this manuscript:

ADR Automated Demand Response
DER Distributed Energy Resource
DG Distributed Generation
DR Demand Response
DS Distributed Storage
EV Electric Vehicle
EMS Energy Management System
ESI Energy Service Interface
ESS Energy Storage System
HMI Human–Machine Interface
HVAC Heating, Ventilation, and Air Conditioning
MP Microgrid Platform
PV Photovoltaics
ROA Resource-Oriented Architecture
RTP Real-Time Pricing
SOA Service-Oriented Architecture
V2G Vehicle-to-Grid
WT Wind Turbine
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