
Processes 2015, 3, 541-567; doi:10.3390/pr3030541
OPEN ACCESS

processes
ISSN 2227-9717

www.mdpi.com/journal/processes

Article

Multi-Period Dynamic Optimization for Large-Scale
Differential-Algebraic Process Models under Uncertainty
Ian D. Washington and Christopher L.E. Swartz *

Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton,
ON L8S 4L7, Canada; E-Mail: washinid@mcmaster.ca

* Author to whom correspondence should be addressed; E-Mail: swartzc@mcmaster.ca;
Tel.: 1-905-525-9140

Academic Editor: Carl D. Laird

Received: 29 May 2015 / Accepted: 6 July 2015 / Published: 14 July 2015

Abstract: A technique for optimizing large-scale differential-algebraic process models
under uncertainty using a parallel embedded model approach is developed in this article. A
combined multi-period multiple-shooting discretization scheme is proposed, which creates
a significant number of independent numerical integration tasks for each shooting interval
over all scenario/period realizations. Each independent integration task is able to be solved in
parallel as part of the function evaluations within a gradient-based non-linear programming
solver. The focus of this paper is on demonstrating potential computation performance
improvement when the embedded differential-algebraic equation model solution of the
multi-period discretization is implemented in parallel. We assess our parallel dynamic
optimization approach on two case studies; the first is a benchmark literature problem, while
the second is a large-scale air separation problem that considers a robust set-point transition
under parametric uncertainty. Results indicate that focusing on the speed-up of the embedded
model evaluation can significantly decrease the overall computation time; however, as
the multi-period formulation grows with increased realizations, the computational burden
quickly shifts to the internal computation performed within the non-linear programming
algorithm. This highlights the need for further decomposition, structure exploitation
and parallelization within the non-linear programming algorithm and is the subject for
further investigation.

Keywords: multi-period dynamic optimization; differential-algebraic equations; applied
non-linear programming; multiple-shooting; parallel computing



Processes 2015, 3 542

1. Introduction

The optimization of process systems under uncertainty is important and, in many cases, necessary
for capturing realistic solutions to the optimal operation and design of physical systems. Both external
system disturbances (e.g., environmental conditions, feed stream availability, product demands) and
inherent internal unknowns (e.g., kinetic parameters, physical and transport properties) within the process
necessitate considering uncertainty within the optimization model formulation and solution. This has long
been realized, and many computational approaches, specifically from the process systems community,
have been proposed (see Geletu and Li [1] for a recent review). In this paper, we are concerned with the
solution of dynamic optimization under uncertainty for which, from a design perspective, a number of
applications include [2–4]. In general, optimization under uncertainty can be classified depending on how
uncertainty is modelled and fall under two categories: stochastic optimization and robust optimization. In
the stochastic optimization approach, uncertain parameters are modelled as random variables with a known
or imposed probability distribution. Stochastic objective functionals and possibly constraint functionals
are often expressed using a probabilistic representation, and the practical solution implementation requires
the conversion from an infinite to finite dimensional formulation. This is often achieved through the use
of sampling techniques (to approximate the various probability distributions) followed by a deterministic
optimization procedure. Furthermore, to properly quantify the influence of parametric uncertainty on the
optimization solution, multiple repeated sampling and optimization solutions are often performed followed
by a statistical analysis [5]. A popular stochastic optimization approach that has emerged over the last
several decades is chance constraint programming (CCP), in which constraints are relaxed according to a
particular probability distribution. A key aspect when using chance constraint optimization is efficiently
and accurately approximating multivariate integrals associated with the probabilistic terms, and recent
work covering dynamic systems is discussed by Arellano-Garcia and Wozny [6] and Kloppel et al. [7].
The robust optimization approach, on the other hand, requires no a priori knowledge of the uncertain
parameters, and instead, these parameters are assumed to take values from a bounded interval or set. The
central idea of this approach is to ensure no constraint violation under all possible realizations within
the imposed uncertainty interval. Robust optimization formulations are conveniently posed as min-max
problems, where the idea is to minimize the maximum impact of uncertainty on the performance index
subject to the largest possible constraint violation (i.e., worst-case analysis). Recent work in this direction
is discussed by Diehl et al. [8] and Houska et al. [9], who provide a framework for robust optimal
control of dynamic systems. Regardless of the particular uncertainty classification, the conversion of an
infinite dimension problem to an implementable finite deterministic non-linear programming formulation
is necessary, and one approach to do so is a multi-period or multi-scenario discretization. The approach
can serve as a complete solution, such as in a robust model predictive control framework [10,11], or as a
component of a more elaborate iterative solution process [2].

In this paper, we are primarily concerned with the use of dynamic process models described by a system
of differential-algebraic equations (DAE) and the efficient incorporation of uncertainty using multi-period
optimization. This approach can be used to fully or partially address stochastic or robust optimization
formulations, depending on how one characterizes uncertainty. Given the widespread use of multi-period
formulations, our approach in this work is to focus on the computational aspects and, in particular, the



Processes 2015, 3 543

use of dynamically-constrained formulations and their efficient implementation. We further remark that
this paper is an extension of our previous work [12], and key contributions of this paper include: (1) the
exploration of parallel performance with respect to discretization refinement versus embedded model,
which that was not previously considered; (2) the application to a large-scale air separation system using
a C/C++ implementation that links several reputable numerical packages; and (3) the assessment of
second-order sensitivity generation when using higher-order gradient-based non-linear programming
methods. The article is laid out by first discussing the particular optimization formulation addressed and
relevant literature pertaining to solution algorithms of such formulations. Next, we provide our solution
approach to multi-period problems with embedded DAE functionals, followed by a discussion on our
particular implementation. Following this, we give two case studies of different scales to illustrate the
computational performance of our approach. Finally, some concluding remarks are provided and future
work noted.

2. Problem Statement

Multi-period optimization is a commonly-used technique to handle uncertainty whereby an infinite
dimensional (continuous) formulation is reformulated as a discrete-time problem, such that the continuous
uncertainty space is approximated by several points/samples. The formulation considered in this study
represents a sample average implementation of a two-stage stochastic program where the objective
function is described by a scenario-independent portion, φ0(·), and a scenario-dependent portion, φi(·),
that is a weighted sum of uncertain parameter scenarios sampled from a particular distribution or more
simply, sampled from some bounded interval [13]. Accordingly, we consider the general multi-period
non-linear dynamic optimization formulation:

min
u(i)(t),d(i) ∀ i, p

J := φ0(p, tf ) +
∑ns

i=1 wi · φi(x(i)(tf ), z
(i)(tf ),d

(i),p,θ(i), tf )

st: ẋ(i)(t)− fd(x
(i)(t), z(i)(t),u(i)(t),d(i),p,θ(i), t) = 0

fa(x
(i)(t), z(i)(t),u(i)(t),d(i),p,θ(i), t) = 0

x(i)(t0)− h0(u
(i)(t0),d

(i),p,θ(i), t0) = 0

g(x(i)(t), z(i)(t),u(i)(t),d(i),p,θ(i), t) ≤ 0

u(i)(t) ∈ U = {u(i)(t) ∈ Rnu |uL ≤ u(i)(t) ≤ uU}
d(i) ∈ D = {d(i) ∈ Rnd |dL ≤ d(i) ≤ dU}

p ∈ P = {p ∈ Rnp |pL ≤ p ≤ pU}
t ∈ T = [t0, tf ] ∀ i = 1, . . . , ns

(P1)

In the above formulation, the differential and algebraic states are represented by
x(i)(t) ∈ X ⊆ Rnx and z(i)(t) ∈ Z ⊆ Rnz , respectively; the open-loop continuous control variables are
u(i)(t) ∈ U ⊆ Rnu; the scenario-dependent model parameters are d(i) ∈ D ⊆ Rnd; the uncertain
parameters are θ(i) ∈ Γ ⊆ Rnθ . All of these variables are associated with a particular period/scenario i.
The model parameters p ∈ P ⊆ Rnp are defined uniformly over all scenarios and are often referred to
as first stage, scenario independent or complicating variables in the literature. The objective function
comprises two terms: φ0(p, tf ) : P×T 7→ R, which represents a scalar scenario-independent portion, and



Processes 2015, 3 544

φi(·) : X×Z×D×P×Γ×T 7→ R, which represents a scalar scenario-dependent portion. The embedded
dynamic model is comprised of two separate functionals: fd(·) : X × Z × U ×D × P × Γ× T 7→ Rnx

and fa(·) : X × Z × U × D × P × Γ × T 7→ Rnz , which represent the differential and algebraic
functions, respectively, of the DAE model in semi-explicit form, assumed to be index-one, such that the
Jacobian of fa(·) with respect to z(i)(t) is nonsingular. Furthermore, the DAE functionals are assumed
to be sufficiently smooth to ensure the existence and uniqueness of the solution [14]. Additionally,
g(·) : X × Z × U ×D × P × Γ× T 7→ Rng are path inequality constraints. The weight (or probability)
associated with each scenario i is represented as wi := 1/ns or, more generally, as wi ∈ [0, 1], where ns is
the total number of scenarios considered. This particular formulation, where the control variables u(i)(t)

are associated with each scenario i, allows for recourse to uncertainty and is in the form of a two-stage
stochastic program. The parameters p constitute first-stage decisions, and parameters d(i) and the control
inputs u(i)(t) constitute second-stage decisions that can provide a compensatory action in response to
disturbance and (uncertain) parameter realizations. Alternatively, the control inputs could be assumed
scenario independent, and if we neglect the design parameters, the resulting formulation would resemble
a robust optimal control problem.

Non-linear programming solution techniques tailored to multi-period formulations have received some
attention in the literature. Varvarezos et al. [15] proposed a reduced sequential quadratic programming
(rSQP) approach (based on an active-set QP subproblem), which decomposes the multi-period nature
through introducing additional linear constraints and scenario-dependent parameters, which effectively
removes the potentially non-linear complicating scenario-independent parameters and forms a new
non-linear program (NLP) structure, which is easier to solve at the QP level. This decomposed
rSQP approach was further explored by Bhatia and Biegler [16], who introduced an interior-point
solution technique for each QP subproblem. Ultimately, the resulting interior-point rSQP technique
showed superior scalability (with respect to scenario realizations) compared to the active-set rSQP
approach. A similar interior-point SQP approach has been used on discretized dynamic optimization
formulations, which result in highly-structured NLP formulations (see [17,18]). More recently,
Zavala et al. [19] have demonstrated a parallel primal-dual interior-point approach to tackle discretized
multi-period dynamic optimization formulations. This has ultimately led to general interior-point
approaches to handle discretized nominal dynamic optimization formulations [20] and structured NLP
formulations [21]. All of these previously noted studies have been on structured NLP techniques involving
explicit objective and constraint functionals; however, our particular interest in the present paper is on
solution techniques involving implicit or embedded functionals, which require a secondary solution
algorithm for evaluation within the NLP constraints. These types of formulations arise in shooting
approaches to dynamic optimization and require the solution of an embedded differential-algebraic system
in order to fully evaluate the NLP functions. In conjunction with the multi-period approach to uncertainty,
very little has been demonstrated in the literature on shooting-based multi-period dynamic optimization.
It is the central goal of this paper to demonstrate this approach and, in particular, the benefits towards the
overall optimization approach of evaluating the embedded dynamic system in a parallel manner.



Processes 2015, 3 545

3. Proposed Solution Approach

Our proposed solution approach to Problem P1 uses a combined multi-period multiple-shooting
discretization, whereby the embedded DAE model integration tasks are solved in parallel. The main
contribution of this article is the assessment of such an approach when applied to reasonably large
differential-algebraic process models for design under uncertainty with recourse and, alternatively, robust
optimal control. The main difference in our proposed approach and corresponding implementation,
from other multiple-shooting approaches presented in the literature [22,23], is that we have
incorporated an additional layer of parallelization in terms of the individual scenarios used within
the multi-period approach.

3.1. Multi-Period Multiple-Shooting Discretization

The multi-period multiple-shooting approach discretizes a continuous non-linear uncertain dynamic
optimization formulation to an algebraic non-linear program (NLP) with an embedded DAE model
within the constraints. The technique entails introducing new optimization parameters (ξ(i)0,j , µ

(i)
0,j) for

all periods/scenarios i to represent the differential and algebraic state variable initial conditions at the
beginning of each shooting interval j, hence the zero subscript, and new equality constraints to remove
the discrepancy or defect between the differential state variable values at the final time from the previous
interval and the initial time in the current interval.

This idea is sketched in Figure 1 for scenario realization i, where we assume that the time intervals
used in the input control trajectory parameterization (i.e., parameterized by the υ(i)

j ) correspond directly to
the defined shooting grid. Our current approach has been to use a rather straight-forward implementation
of the multiple-shooting technique, whereby we provide the discretized formulation in full space to an
existing sparse NLP solver, as opposed to exploiting the structure of the formulation by implementing a
custom (possibly reduced-space) non-linear programming technique (cf. the SCPgen code generation
solver within CasADi [24] or the non-linear optimal control solver MUSCOD-II, which uses a tailored
reduced SQP algorithm [25]).

t0 tnt1 tn−1

u(i)(t)

z(i)(t)

x(i)(t)

υ
(i)
0

υ
(i)
1

υ
(i)
n−1 υ

(i)
n−1

µ
(i)
0,0

µ
(i)
0,1

µ
(i)
0,n−1

µ
(i)
0,n

ξ
(i)
0,0

ξ
(i)
0,1

ξ
(i)
0,n−1

ξ
(i)
0,n

differential state continuity defect

· · ·

Figure 1. Multi-period multiple-shooting discretization.



Processes 2015, 3 546

A general multi-period dynamic optimization formulation that utilizes the multiple-shooting
discretization applicable to semi-explicit differential-algebraic equation models can be written as,

min
w,d,p

J := φ0(p, tn) +
∑ns

i=1 wi · φi(ξ
(i)
0,n,µ

(i)
0,n,d

(i),p,θ(i), tn)

st: ẋ(i)(t) = fd(x
(i)(t), z(i)(t),U(t,υ

(i)
j ),d(i),p,θ(i), t)

0 = fa(x
(i)(t), z(i)(t),U(t,υ

(i)
j ),d(i),p,θ(i), t)− ϑ(γ

(i)
j , t)

0 = h0(U(t0,υ
(i)
0 ),d(i),p,θ(i), t0)− ξ(i)0,0

x(i)(tj+1; ξ
(i)
0,j,µ

(i)
0,j,υ

(i)
j ,d

(i),p,θ(i))− ξ(i)0,j+1 = 0

fa(ξ
(i)
0,k,µ

(i)
0,k,U(tk,υ

(i)
k ),d(i),p,θ(i), tk) = 0

g(ξ
(i)
0,k,µ

(i)
0,k,U(tk,υ

(i)
k ),d(i),p,θ(i), tk) ≤ 0

∀ t ∈ Ii,j , j = 0, . . . , n− 1

∀ k = 0, . . . , n , ∀ i = 1, . . . , ns

w ∈ [wL,wU ], d ∈ [dL,dU ], p ∈ [pL,pU ]

(P2)

In the above formulation, j = 0, . . . , n − 1 represents n shooting intervals. The optimization
parameters are partitioned into scenario-independent parameters p, scenario-dependent parameters
d = {d(i)}nsi=1 ∈ Rndns and shooting node parameters for differential/algebraic states and
input variable parameters, defined collectively as w = (ξ

(1)>
0,0 ,µ

(1)>
0,0 ,υ

(1)>
0 , . . . , ξ

(ns)>
0,n ,µ

(ns)>
0,n )> ∈

R((nx+nz)(n+1)+nυn)ns , for all shooting nodes and scenario realizations. The continuous control input vector
can be defined using a parameterized function u(i)(t) = U(t,υ

(i)
j ) based on a piecewise approximation

within each shooting interval Ii,j , where υ(i)
j ∈ Rnυ represent local polynomial coefficients. Note that υ(i)

n

is used in defining the final end point constraint in Problem P2 for notational simplicity, where υ(i)
n = υ

(i)
n−1,

and can be removed from the NLP (see Figure 1 for a sketch of the parameterization). Additionally, we
consider here a fixed end-time formulation where the objective function is represented in Mayer form,
which typically only directly depends on the final model states ξ(i)0,n, µ(i)

0,n, parameters d(i) and p and,
possibly, the final time tn. The relaxed DAE model, F(·) = {[ẋ(i)(t)− fd(·)]>, [fa(·)− ϑ(γ

(i)
j , t)]

>}>, is
embedded within the NLP function evaluations and is solved using an appropriate DAE solver for t ∈ Ii,j ,
j = 0, . . . , n − 1 with initial differential state conditions x(i)(tj) = ξ

(i)
0,j and algebraic state conditions

z(i)(tj) = µ
(i)
0,j for all intervals Ii,j , where the intervals are effectively decoupled using the new parameters

and are thus independent of each other. The particular formulation given here relies on the use of a relaxed
form of the DAEs using a so-called relaxation function represented here through the function ϑ(γ

(i)
j , t),

where γ(i)
j = fa(ξ

(i)
0,j,µ

(i)
0,j,υ

(i)
j ,d

(i),p,θ(i), tj) is functionally dependent on the shooting parameters at
node j. This relaxed form also requires the addition of point equality constraints (for the algebraic model
equations) in the NLP at each shooting node to ensure that the original model is obtained upon NLP
convergence (see [25,26] for a more complete treatment of DAE relaxation). It is worth noting that using
the relaxed DAE approach avoids the otherwise necessary DAE initialization problem.



Processes 2015, 3 547

To simplify the formulation and to assist in our presentation, the multiple-shooting continuity equality
constraints, including the initial conditions at t0, can be defined as,

c0,i(w0,i,di,p) ≡ h0(υ
(i)
0 ,d

(i),p,θ(i), t0)− ξ(i)0,0 = 0

cj+1,i(wj,i, ξ
(i)
0,j+1,di,p) ≡ x(i)(tj+1; ξ

(i)
0,j,µ

(i)
0,j,υ

(i)
j ,d

(i),p,θ(i))− ξ(i)0,j+1 = 0

∀ j = 0, . . . , n− 1 , ∀ i = 1, . . . , ns

(1)

where wj,i = (ξ
(i)>
0,j ,µ

(i)>
0,j ,υ

(i)>
j )> ∈ Rnx+nz+nυ for j = 0, . . . , n − 1, and at the final shooting

node, wn,i = (ξ
(i)>
0,n ,µ

(i)>
0,n )>. The algebraic consistency equality constraints and remaining inequality

constraints represent NLP point constraints and can be defined at each shooting node according to,

qj,i(wj,i,di,p) ≡
[
fa(wj,i,d

(i),p,θ(i))>,g(wj,i,d
(i),p,θ(i))>

]>
qn,i(υ

(i)
n−1,wn,i,di,p) ≡

[
fa(υ

(i)
n−1,wn,i,d

(i),p,θ(i))>,g(υ
(i)
n−1,wn,i,d

(i),p,θ(i))>
]>

∀ j = 0, . . . , n− 1 , ∀ i = 1, . . . , ns

(2)

The combined constraint vector for each period/scenario can now be stated as,

ci(wi,di,p) :=



c0,i(w0,i,di,p)(
q0,i(w0,i,di,p)>, c1,i(w0,i, ξ

(i)
0,1,di,p)>

)>
...(

qj,i(wj,i,di,p)>, cj+1,i(wj,i, ξ
(i)
0,j+1,di,p)>

)>
...(

qn−1,i(wn−1,i,di,p)>, cn,i(wn−1,i, ξ
(i)
0,n,di,p)>

)>
qn,i(υ

(i)
n−1,wn,i,di,p)


, ∀ i = 1, . . . , ns (3)

The fully-discretized combined multi-period multiple-shooting NLP formulation of Problem P2 can
now be stated in parameterized form according to Problem P3.

min
w,d,p

J := φ0(p) +
∑ns

i=1 wi · φi(wn,i,di,p)

st: cLi ≤ ci(wi,di,p) ≤ cUi ∀ i = 1, . . . , ns

w := (w>1 , . . . ,w
>
ns)
> ∈ [wL,wU ]

d ∈ [dL,dU ], p ∈ [pL,pU ]

(P3)

Depending on the constraint type (equality or inequality), the vectors cLi and cUi are appropriately
defined. For each scenario i, the concatenated shooting node parameters are defined as
wi = (w>0,i, . . . ,w

>
n,i)
> ∈ R(nx+nz)(n+1)+nυn. Note that the embedded DAE model F(·) is removed from

the NLP formulation, as it is solved using an embedded DAE solver in order to construct the shooting
node continuity constraints.

The multiple-shooting approach benefits from a naturally decoupled temporal domain structure that
does not require any additional decomposition techniques. This decoupling of each shooting interval is
induced by the introduction of the optimization parameters ξ(i)0,j,µ

(i)
0,j for j = 0, . . . , n−1 and i = 1, . . . , ns



Processes 2015, 3 548

and allows the embedded DAE in each shooting interval and scenario realization to be independently
solved in parallel. Accordingly, all scenario realizations i and shooting intervals j over the entire time
horizon result in m = n · ns independent integration tasks, which can be broken up and solved in parallel
using several processors.

3.2. First-Order Derivative Generation

Shooting-based dynamic optimization approaches necessitate the use of DAE parameter sensitivity
in order to generate derivatives of constraints involving implicit functionals. For example, a relaxed
semi-explicit index-one parameterized DAE system can be stated as,

ẋ(i)(t)− fd(x
(i)(t), z(i)(t),yj,i, t) = 0nx

fa(x
(i)(t), z(i)(t),yj,i, t)− ϑ(γ

(i)
j , t) = 0nz

t ∈ [tj, tj+1] (4)

x(i)(tj) = ξ
(i)
0,j (5)

where all time-invariant parameters within each interval j and scenario i are denoted by
yj,i = {ξ(i)0,j,µ

(i)
0,j,υ

(i)
j ,di,p}. From this system, the linear first-order forward sensitivity equations

can be derived (in matrix form) as,

ṡ
(i)
d (t)−

[
fxd (t) s

(i)
d (t) + f zd (t) s(i)a (t) + fyd (t)

]
= 0nx×ny

fxa (t) s
(i)
d (t) + f za (t) s(i)a (t) + fya (t)−∇yϑ(γ

(i)
j , t) = 0nz×ny

t ∈ [tj, tj+1] (6)

s
(i)
d (tj) = [Inx|0nx×(ny−nx)] (7)

where s
(i)
{d,a}(t) = ∂{x(i)(t), z(i)(t)}/∂yj,i represents differential and algebraic sensitivity variables,

respectively, and f
{x,z,y}
{d,a} (t) = ∂f{d,a}(x(i)(t), z(i)(t),yj,i, t)/∂{x(i)(t), z(i)(t),yj,i} are Jacobian matrices

of the DAE model with respect to the differential variables, algebraic variables and parameters. This
extended linear DAE system is solved forward in time alongside the original system to generate
s
(i)
{d,a}(tj+1), which are used to construct the block structured continuity constraint Jacobian (see, [12]).

Particularly efficient techniques and software tools to solve the combined systems of Equations (4)
and (6) are discussed by Maly and Petzold [27], Feehery et al. [28], Schlegel et al. [29] and
Kristensen et al. [30].

3.3. Second-Order Derivative Generation

Sequential quadratic programming (SQP) algorithms (e.g., filterSQP) or primal-dual non-linear
interior-point methods (IPM) (e.g., IPOPT, KNITRO) can often utilize second-order derivatives of the
objective/constraint functions, which are used to construct the Lagrangian Hessian (used in the QP
subproblem or primal-dual search direction linear solve). To provide such information when using
embedded DAE models (i.e., implicit functionals) requires that a second-order sensitivity analysis be
performed to construct an approximate representation of the continuity constraint Hessian. All other
contributing portions of the Lagrangian Hessian (i.e., explicit objective and point constraint functionals)
can be computed exactly using automatic differentiation. A question that arises, and that we seek to



Processes 2015, 3 549

address, is whether supplying the second-order derivatives via sensitivity analysis can reduce the number
of non-linear programming algorithm iterations sufficiently to justify the additional computation work of
second-order sensitivity analysis.

The complete Lagrangian Hessian for our particular multi-period formulation can be stated as,

H(x,ν) = ∇2
xxJ(x) +

∑ns
i=1

∑n
j=0

[∑nx
s=1ν

c
s,j,i∇2

xxcs,j,i(x) +
∑nq

l=1ν
q
l,j,i∇2

xxql,j,i(x)
]

(8)

where the italicized symbol x represents a composite vector of all primal NLP variables (as distinct from
the model states given by x(t)) and ν = {νcs,j,i, νql,j,i} is a similar concatenation of all dual variables. More
specifically, νcs,j,i are equality constraint multipliers related to the continuity constraints in Equation (1),
represented individually here by cs,j,i(x), and νql,j,i are either equality or inequality constraint multipliers
related to the point constraints in Equation (2), which are again defined individually as ql,j,i(x). In
order to compute the individual Hessian portions related to the continuity constraints, νcs,j,i∇2

xxcs,j,i(x), a
direct second-order sensitivity analysis can be performed on the portion of the Lagrangian involving the
embedded functionals. For example, consider the continuity constraint Lagrangian portion as,

Lc(x,ν
c) =

∑ns
i=1ν

c>
0,ic0,i(y0,i) +

∑ns
i=1

∑n−1
j=0 ν

c>
j+1,i cj+1,i(x

(i)(tj+1;yj,i),yj+1,i) (9)

where the second portion of this term can be taken as a scalar point-wise implicit functional for each
scenario and shooting interval and defined accordingly as,

gj+1,i(yj,i) = νc>j+1,i cj+1,i(x
(i)(tj+1;yj,i),yj+1,i) (10)

Using the sensitivity generation approach described by Ozyurt and Barton [31], the directional Hessian
of this point-wise functional can be determined using a forward-over-adjoint direct second-order sensitivity
analysis. The particular purpose in this paper is to investigate the application of this technique in the
context of a multi-period multiple-shooting algorithm. Furthermore, the application considered in
Section 4.1 is in the form an ODE; thus, we restrict our presentation of second-order sensitivity analysis
to the purely ODE case. Accordingly, we consider the ODE system given by,

ẋ(i)(t) = f(x(i)(t),yj,i, t) t ∈ [tj, tj+1] (11)

x(i)(tj) = ξ
(i)
0,j (12)

For the more general semi-explicit index-one DAE case, we refer readers to the work by
Cao et al. [32] for first-order methods, Hannemann-Tamas [33] for higher order methods and
Albersmeyer [34] for higher order relaxed DAE methods. The final form of the directional Hessian
of a point-wise functional, in the context of our multi-period approach, can be stated as,

∂2gj+1,i

∂y2
j,i

u = (λ(i)(tj)
> ⊗ Iny)x

(i)
yy(tj)u + x(i)

y (tj)
>µ(i)(tj) +

gyy(tj+1)u + gyx(tj+1) s
(i)(tj+1)− q(i)(tj)

(13)

where ⊗ represents the Kronecker product; λ(i)(tj) ∈ Rnx is a vector of first-order adjoint variables at
tj for scenario i; µ(i)(tj) ≡ λy(tj)u ∈ Rnx is a vector of directional second-order adjoint variables at
tj; s(i)(tj+1) ≡ x

(i)
y (tj+1)u ∈ Rnx is a vector of directional first-order forward sensitivity variables at



Processes 2015, 3 550

tj+1 (i.e., the solution of directional first-order forward sensitivity equations); q(i)(tj) ∈ Rny is a vector
of directional second-order adjoint quadrature variables; x(i)

yy(tj)u ≡ 0nxny is a vector of directional
second-order forward sensitivity variables initially known at tj , while x

(i)
y (tj) ≡ [Inx|0nx×(ny−nx)]

is a matrix of first-order forward sensitivity variables initially known at tj; gyy(tj+1) ≡ 0ny×ny and
gyx(tj+1) ≡ 0ny×nx are second-order derivatives of the scalar functional gj+1,i evaluated directly at tj+1,
which for the multiple-shooting continuity constraints, are simply matrices of zeros. In order to determine
the first-order and directional second-order adjoint variables, one needs to first solve forward from tj to
tj+1 the first-order forward sensitivity equations to compute the directional sensitivities s(i)(tj+1) and
then solve backward from tj+1 to tj for each direction u ≡ el, l = 1, . . . , ny, the combined first- and
second-order directional adjoint system given by,

λ̇
(i)

(t) = −fx(t)> λ(i)(t)

µ̇(i)(t) = −fx(t)>µ(i)(t)− (λ(i)(t)> ⊗ Inx) (fxy(t)u + fxx(t) s
(i)(t))

λ(i)(tj+1) = gx(tj+1) ≡ νcj+1,i

µ(i)(tj+1) = gxy(tj+1)u + gxx(tj+1) s
(i)(tj+1) ≡ 0nx

(14)

Additionally, alongside the adjoint system, the quadrature variable vector q(i)(tj) can be determined
from the system,

q̇(i)(t) = fy(t)
>µ(i)(t) + (λ(i)(t)> ⊗ Iny) (fyy(t)u + fyx(t) s

(i)(t)) , q(i)(tj+1) = 0ny (15)

where fx(t) = ∂f(x(i),yj,i, t)/∂x
(i)(t) ∈ Rnx×nx and fxy(t) = ∂2f(x(i),yj,i, t)/∂x

(i)(t)∂yj,i ∈ Rnxnx×ny

in which this latter term is in the form of a stacked Hessian to avoid the otherwise tensor form. Similarly,
fxx(t) = ∂2f(x(i),yj,i, t)/∂x

(i)(t)2 ∈ Rnxnx×nx , with all other derivatives defined in an analogous
manner. The evaluation of both adjoint and quadrature systems requires the efficient evaluation of
several matrix-vector products, comprised of first and second derivative terms, using an appropriate
automatic differentiation (AD) tool. Once the adjoint and quadrature variables are determined at
tj , the directional Hessian given by Equation (13) can be formed. This process is repeated for all
j = 0, . . . , n− 1 and i = 1, . . . , ns, and the Lagrangian Hessian ∇2

xxLc(x,ν
c) is assembled (based on

each direction that corresponds to a particular parameter) and further combined with the objective and
point constraint Hessian.

3.4. Implementation Details

The results in this paper were generated using a C/C++ implementation, which acts to
coordinate the user model input, multi-period multiple-shooting discretization and interaction between
several available DAE integration and NLP optimization routines. The implementation utilizes
several CSparse routines [35] and interfaces the integration routines CVODES and IDAS from the
SUNDIALS suite of solvers [36], the NLP solvers SNOPT [37] and IPOPT [38] and the AD tool
ADOL-C [39]. The particular implementation aspect we investigate in this paper is an OpenMP

loop parallelization of the high-level DAE integration tasks, and we sketch the approximate solution
steps according to Algorithms 1 and 2. Note that the sensitivity generation approach employed
by the SUNDIALS integrators follows a so-called “first-differentiate-then-discretize” methodology



Processes 2015, 3 551

(i.e., the first- and second-order sensitivity equations are formed prior to applying the discretized numerical
integration routine); an alternative approach is a so-called “first-discretize-then-differentiate” technique,
whereby certain aspects of the internally-discretized integration algorithm are differentiated either via
AD or through numerical differences during the integration procedure. This latter approach is generally
known as internal numerical differentiation (IND) and has shown greater solution accuracies and speeds
when used in conjunction with embedded model shooting-based dynamic optimization schemes [40–42].
Despite the merits of this newer approach, for the ease of availability through existing solvers, we have
followed the first approach in this study.

Algorithm 1 Multi-period gradient-based non-linear program (NLP) solution approach
with embedded differential-algebraic equations (DAE). QP, quadratic programming.

Input: initial primal and dual variable guesses and tolerances
1: generate scenario realizations: θ = θ(i) ∈ [θL,θU ] ∀ i = 1, . . . , ns

2: define initial guesses for primal, x[0] = {w[0] = {ξ(i)0,j ,µ
(i)
0,j ,υ

(i)
j }j,i, d

[0], p[0]}, and dual variables ν[0]

3: provide optimality (tolkkt) and feasibility (tolfeas) tolerances
Output: primal/dual solution x∗, ν∗ to a local minimum of the NLP satisfying tolerances

4: procedure {x∗,ν∗} ← NLP_SOLVE(x[0], ν[0], tol{kkt, feas})
5: k ← 0

6: initial eval of objective/constraints and 1st derivatives (gradient, Jacobian)
7: J(x[0]), ∇xJ(x[0]) . explicit function eval ∀ j, i
8: {cj,i(x[0]), ∇xcj,i(x[0])}j,i ← DAE_SOLVE(x[0],θ) . implicit function eval ∀ j, i
9: {qj,i(x[0]), ∇xqj,i(x[0])}j,i . explicit function eval ∀ j, i

10: initial Lagrangian Hessian approximately (or eval exactly via DSOA_SOLVE(x[0],ν
[0]
c ,θ))

11: repeat until termination criteria satisfied
12: check KKTconditions (and other termination criteria)
13: compute search direction of primal/dual variables (d[k]

x , d
[k]
ν ) via QP solver

14: compute step size α[k] via a line search (requires objective/constraint eval)

15:
perform step:

x[k] ← x[k] + α[k]d[k]
x

ν[k] ← ν[k] + α[k]d[k]
ν

16: k ← k + 1

17: re-evaluate function derivatives ∀ j, i (used to construct the next QP)
{∇xcj,i(x[k])}j,i ← DAE_SOLVE(x[k],θ)
{∇xqj,i(x[k])}j,i

18: update Hessian approximately (or eval exactly via DSOA_SOLVE(x[k],ν
[k]
c ,θ))

19: end
20: end procedure

Algorithm 1 sketches a high-level SQP-type solution procedure for the NLP given by Problem P3. The
purpose of outlining the NLP solution approach is to provide some insight to where specifically within
the algorithm an embedded DAE solver (and possibly a first- and/or second-order sensitivity solution) is
required. Alternatively, one could utilize a non-linear interior-point approach where the major differences
from Algorithm 1 are an adaptive barrier update strategy that nests a procedure similar to Steps 11 to
18 where the Newton search direction is determined from a single solution of the primal-dual equations
as opposed to Step 13 shown here, which solves the QP to optimality (see [43] for the details). For the
particular algorithm shown, initially, a complete specification of the scenario realization set, initial primal
(and possibly dual) variables and termination tolerances is provided. Note that an initial simulation of the
embedded DAE can be used to determine initial feasible guesses for the primal shooting variables ξ(i)0,j and



Processes 2015, 3 552

µ
(i)
0,j for all j and i, given υ(i)

j , d and p. The dual variables can be initialized at zero (cold start) or warm
started if a previous similar NLP solution is available. Following this, an iterative quadratic programming
procedure is performed whereby: (1) objective, constraint and derivative functions are evaluated; (2)
termination criteria are checked (and possibly termination signalled); (3) a search direction is determined
from a quadratic program (using either an active-set or primal-dual interior-point method) (this step is
often preceded by a dimensionality reduction of the original QP; additionally, infeasible QP’s are handled
in a so-called feasibility restoration phase); (4) a globalization procedure is performed to determine the
step size (we note a line search, but a trust-region approach within the QP itself is possible); and (5) primal
and dual variables are updated and objective, constraint and derivative functions are re-evaluated. The
time-dominant aspect of the algorithm occurs with the embedded implicit function evaluations denoted by
DAE_SOLVE, which we handle specifically within our implementation by Algorithm 2. Additionally, note
that during the step size globalization procedure, re-evaluation of objective and constraint functions is
required, and for the multiple-shooting continuity constraints, sensitivity generation is deactivated within
DAE_SOLVE. We remark that an algorithm for the procedure DSOA_SOLVE follows in a similar manner
to Algorithm 2, whereby a second-order forward-over-adjoint sensitivity analysis is performed for each
shooting interval j and scenario i, which is specifically handled by the SUNDIALS integration solvers.

Algorithm 2 Parallel multi-period DAE and first-order sensitivity function evaluation.

Input: state initial conditions, control parameters and invariant model parameters
1: specified scenario realizations θ = {θ(i)}ns

i=1

2: NLP variables x = {w = {ξ(i)0,j ,µ
(i)
0,j ,υ

(i)
j }j,i, d, p}

3: provide relative (tolrel) and absolute (tolabs) integration tolerances for DAE solution
Output: differential state solution x(i)(tj+1), s

(i)
d (tj+1) = ∂x(i)(tj+1)/∂{wi,di,p} ∀ i, j

4: procedure {x, sd} ← DAE_SOLVE(x, θ, tol{rel, abs})
5: for i := 1 to ns do . in parallel using OpenMP for k = 1, . . . , n · ns tasks
6: for j := 0 to n− 1 do
7: set initial differential and algebraic DAE variables:

x(i)(tj)← ξ
(i)
0,j

z(i)(tj)← µ
(i)
0,j

8: set initial differential DAE sensitivity variables:
s
(i)
d (tj)← [Inx |0nx×(ny−nx)]

9: solve DAE and 1st order sensitivity system
{x(i)(tj+1), s

(i)
d (tj+1)}← SUNDIALS_DAE_SOLVER

10: end for
11: end for
12: end procedure

Algorithm 2 computes the solution of the discretized relaxed embedded DAE (both state and first-order
sensitivity variables over each interval and scenario), which is used to evaluate the continuity constraints
and associated Jacobian at each major iteration of the NLP algorithm. Note that using the relaxed DAE
approach, the initial conditions of the differential and algebraic states are by formulation always consistent
at tj . For each shooting node and scenario realization, the embedded DAE is initialized in Step 7 of
Algorithm 2 by the NLP parameters; next, in Step 8, the initial values of the differential sensitivity
variables (in matrix form) are set to an augmented identity matrix. The next step is to solve the DAE
and first-order sensitivity system using an appropriate DAE solver with efficient methods for handling



Processes 2015, 3 553

the sensitivity equation solution. The last step (not shown) is to construct the continuity equations and
Jacobian, the latter of which is a matrix with appropriately positioned blocks of sensitivity variables at
tj+1 (see [12]). Several remarks are warranted with respect to Algorithm 2: (1) when using an implicit
integration routine, such as IDAS from SUNDIALS, one needs to additionally provide initial values
for the time-derivatives of the differential states ẋ(i)(tj), the initial time-derivatives of the differential
sensitivity variables ṡ

(i)
d (tj) and the initial algebraic sensitivity variables s

(i)
a (tj); (2) the differential

time-derivatives are determined from a single evaluation of the ODE portion of the DAE; and (3) the
differential time-derivative sensitivity variables and algebraic sensitivity variables are computed from
a linear solve of the initial sensitivity equations (note that this requires a single initial factorization and
several back solves using multiple right-hand-side vectors for a linear system given by AX = B). We
elaborate on this last point. For example, given that variables x(i)(tj), z(i)(tj), and s

(i)
d (tj) are known at

tj , we can rearrange the initial first-order sensitivity equation system as,[
Inx −f zd (tj)

0nz×nx f za (tj)

][
ṡ
(i)
d (tj)

s
(i)
a (tj)

]
=

[
fxd (tj) s

(i)
d (tj) + fyd (tj)

−fxa (tj) s
(i)
d (tj)− fya (tj) +∇yϑ(γ

(i)
j , tj)

]
(16)

and solve for the initial values of ṡ(i)d (tj) and s
(i)
a (tj) (in matrix form).

The particular details of the underlying ODE/DAE or NLP solution used in this paper can be found
in the previously noted references. However, we remark on the following: both first- and second-order
sensitivity analysis is handled directly by the SUNDIALS integrators, and all the user needs is an
appropriate AD tool to form Equations (6) and (13) to (15); for our implementation, we used the
tape-based features of ADOL-C for all serial computation and the tapeless forward differentiation features
when evaluation is needed within parallel OpenMP regions of the code (we refer readers to the ADOL-C
manual for the particular details of tapeless and tape-based operator overloaded AD). We further note
that all code and third party libraries used for our example problems were compiled using GCC-4.7
(with OpenMP-3.1) and run using 64-bit Linux. The hardware was an HP Proliant computing server
configured with four sockets using AMD Opteron 6386SE series chips (16 cores per chip) at 2.8 GHz,
which provide a total of 64 available cores (processors/threads). Furthermore, an appropriate amount of
memory was allocated/utilized to suit the requirements of the program.

4. Example Problems

We demonstrate our proposed parallel multi-period dynamic optimization approach using a batch
reactor problem and a large-scale air separation problem. The objective is to assess the computational
performance (resource utilization efficiency and scalability) of the proposed method when the number
of scenarios and shooting intervals (embedded integration tasks), model size and available computing
processors are increased.

4.1. Batch Reactor Problem

The initial portion of this example is performed with a parallel implementation using the ODE
integration solver CVODES and NLP solver SNOPT. Subsequently, further comparison is made using
second-order sensitivity analysis for generating the Lagrangian Hessian when using the NLP solver



Processes 2015, 3 554

IPOPT with the exact Hessian versus an approximate limited memory quasi-Newton update, which only
requires first-order sensitivity information. For this last portion, we currently only report serial solution
times of the implementation.

The case study example considered is adapted from [16] and involves a batch reactor problem in a
purely ODE form that follows a first order reaction scheme A → B, where the kinetic parameters are
assumed to be uncertain. The objective is to operate the reactor for an indeterminate duration (i.e., design
variable), such that a maximum profit is achieved. The objective function comprises a revenue term
proportional to the product conversion, xB, and an operating cost dependent on the duration of operation
tf . The optimization problem is defined according to Formulation E1,

min
tf ,u(i)(τ) ∀ i

J := c1 t
c2
f −

∑ns
i=1 wi c0 x

(i)
B (1)

st: ẋ
(i)
A (τ) = −[θ

(i)
1 u(i)(τ)θ

(i)
2 + u(i)(τ)]x

(i)
A (τ) tf

ẋ
(i)
B (τ) = θ

(i)
1 u(i)(τ)xA(τ) tf

x
(i)
{A,B}(0) = x{A0,B0}

x
(i)
{A,B}(τ) ∈ [0, 1]

u(i)(τ) ∈ [0, 5] , ∀ τ ∈ [0, 1], i = 1, . . . , ns

θ1 ∈ (0.45, 0.55), θ2 ∈ (2.15, 2.25)

(E1)

The initial state conditions are taken as xA0 = 1, xB0 = 0 ∀ i, where we use a normalized time horizon,
such that the end-time tf is taken as a design parameter. The cost/objective coefficients are set as c0 = 700,
c1 = 50, c2 = 2; and the weights are set as wi = 1/ns. The parameterized control profile is taken to be
piecewise constant, and initial guesses for the polynomial coefficients are set to 1.0 for all scenarios and
shooting intervals. For this example, we kept the number of shooting intervals constant at n = 25 and
with a uniform size over the time horizon. The uncertain model parameters (θ1, θ2) were determined by
sampling uniformly between the defined bounds.

Figure 2 depicts a base line solution to formulation E1 using a single processor with increasing scenario
realizations. For the input and state solution trajectories in Figure 2a, the solid input and state trajectory
lines represent the nominal solution, while the shaded bands represent an envelope of possible solutions
generated via discrete realizations of the uncertain parameter values. Interesting aspects to note include:
(1) as the number of scenarios is increased, both the optimal objective value (defined here as the ratio of
the multi-period objective value to the nominal objective value, J/J̄) and parametric degree of freedom, tf ,
converge to a point (or rather confidence interval), which can be considered close to the true solution of the
original infinitely dimensional stochastic program; and (2) considering ns = 40 as the base line, we see a
×2.26, ×4.20, ×8.81 increase in total computation time per major SQP iteration for ns = 80, 160, 320,
respectively (i.e., almost a linear increase in computation time as scenario realizations are added). Based
on Figure 2a, an appropriate number of scenarios to use would exceed 80, where the profiles for J/J̄ and
tf level off.



Processes 2015, 3 555

0

2

4

6

u
(τ

)

0.77

0.78

0.79

t f
0 0.5 1

0

0.5

1

τ = t/tf

x
{A

,B
}(
τ
)

0 10 20

1

1.02

1.04

√
ns

J
/
J̄

(a)
40 80 160 320

0

1

2

3

ns scenarios

w
al

lc
lo

ck
(s

ec
/it

.)

DAE time
NLP time

np = 1

(b)

Figure 2. Case Study 1: (a) control input and state trajectories (nominal solution represented
by the solid line) and (b) base line DAE and NLP solution times for increasing ns.

Parallel solution times for the total program are reported in Table 1 for ns = 40, 80, 160, 320 (number
of scenario realizations) and np = 4, 8, 16, 32 (number of processors/threads). Additionally, the serial
solution time is reported for each scenario realization level and the time required for the nominal
dynamic optimization solution (i.e., ns = 1). We further remark that the parallel solution times are
an average of three independent experiments; the NLP problem dimension is represented by the total
number of variables vars and equality/inequality constraints cons; and the number of NLP iterations
until termination is given by iter. Considering ns = 80 as the ideal number of scenarios to use,
we see a ×116 total computation increase from the nominal solution, and if 16 processors are used
(i.e., the maximum advisable np for the given problem size; see the discussion below), this number
drops by 66%, indicating a ×39 increase from the nominal serial solution. Given that we are only
parallelizing the discretized implicit DAE integration tasks, a 66% improvement is a promising result.
A breakdown of the specific computation performance using speed-up S = Tserial/Tparallel, where Tserial

and Tparallel represent serial and parallel program run times, respectively, and efficiency E = S/np, is
sketched in Figure 3. Note, for our particular case that we consider each metric to be based on the
time to evaluate objective/constraint functionals and derivatives (denoted as DAE time) and exclude
the serial in-solver time related to the matrix computations within the NLP solver (denoted as NLP
time). From Figure 3a, the parallel performance in terms of speed-up is quite good up to about eight
processors/threads, after which a significant deviation from ideal speed-up is observed. This undesirable
behaviour using np ≥ 16, for our chosen problem size of m = n · ns, can be explained using the laws of
Amdahl and Gustafson [44]. Amdahl’s law gives us an indication of the possible scalability or maximum
speed-up for a fixed problem size, while Gustafson’s law can be used to understand the influence of
problem size on scalability. Considering first Amdahl’s law, the parallel time can be approximated
as Tparallel := f Tserial + (1 − f )Tserial/np, where f represents an inherent serial fraction of the overall
computation, which results in the speed-up expression S(np) = (f + (1− f )/np)

−1, and as np →∞, the
maximum possible speed-up is S(∞) = f −1. Therefore, for our particular example, if the time to evaluate
the NLP objective/constraint functionals has an inherent serial portion of 10%, then we would achieve a
maximum possible speed-up of 10. Fortunately, if we further consider the influence of problem size m,
whereby the serial fraction of the program is now considered a function of problem size f (m), it can be
shown using Gustafson’s law that speed-up can be given by S(m,np) = f (m) + np(1− f (m)), where



Processes 2015, 3 556

f (m) := a(m)/(a(m) + b(m)), and a(m) and b(m) represent the inherent serial and parallel portions,
respectively. Thus, if we are able to better load the processors with more work such that the inherent serial
portion diminishes relative to each parallel portion (b(m) � a(m)), then the fraction f (m) decreases
with increasing m, and as m→∞, the speed-up will approach np. This concept can be better seen using
the log-p model where Tparallel := Tserial/np + log2(np) and Tserial ∝ m (see p. 79 of [44]). The speed-up
expression can be derived as S(m,np) = np/(1 + (np/m) log2(np)), and if m = M np where M is the
work per processor, then the speed-up (and efficiency) can be controlled by limiting the influence of the
log2(np) term by increasing M . Additionally, to ensure a uniform M on each processor, one needs to
properly balance and schedule the distribution of work. For example, in our case study, we found that if
the computation time on each processor for a chunk size of M is relatively constant between processors,
then a so-called OpenMP static scheduling policy is adequate, while if the computation time differs, a
dynamic (round-robin) policy is preferred, which is able to better balance the computation load between
processors. To achieve good scalability, one often tries to keep the efficiency fixed by increasing the
problem size (or rather, work per process, M ) at the same rate as the number of processors/threads np. If
this is possible, then the algorithm can be considered weakly scalable; on the other hand, if one is able to
keep the efficiency constant for a fixed problem size as np increases, then the algorithm is considered
strongly scalable. Based on these definitions of scalability, our particular parallel implementation is not
strongly scalable; however, there is enough evidence to suggest weak scalability. For example, from
Figure 3d, the “DAE time” (i.e., out-of-solver NLP function evaluation time of which the majority
represents the parallelized DAE solution) remains relatively constant for a work load of M = 250

integration tasks per processor up to about np = 16 after which a slight increase in wall-clock time is
observed (i.e., decrease in efficiency), which can be attributed to a greater influence of parallel computation
overhead (i.e., the previously noted log2(np) term) relative to the chosen computation load M .

Table 1. Case Study 1: parallel computation results comparing increasing ns.

Total Program Solution Time (s)
ns m

? vars cons iter† J/100 ‡ tf np = 1 np = 4 np = 8 np = 16 np = 32

1 25 78 53 24 (60) −1.4911 0.7683 0.389 0.251 0.235 0.201 –
40 1000 3081 2081 40 (1239) −1.5235 0.7785 17.48 8.87 7.01 6.26 6.24
80 2000 6161 4161 46 (2244) −1.5463 0.7868 45.41 21.61 16.88 15.20 14.87

160 4000 12,321 8321 49 (4395) −1.5340 0.7823 90.00 42.37 34.74 30.87 30.35
320 8000 24,641 16,641 49 (8718) −1.5200 0.7772 188.69 82.60 65.10 56.74 55.67

? m = n · ns, total No. integration tasks, where n = 25; † SNOPT solver with No. minor QP iter.in brackets;
‡ NLP optimality/feasibility tol.= 1× 10−6, 1× 10−8, DAE relative/absolute tol. = 1× 10−6, 1× 10−8.



Processes 2015, 3 557

2 4 8 16 32

2
4

8

16

32

np processors

Sp
ee

du
p

Effect of increasing np, ns

linear speedup
ns = 80

ns = 320

0 0.2 0.4 0.6 0.8 1

1

2

4

8

16

32

wallclock (sec/it.)

n
p

pr
oc

es
so

rs

Effect of increasing np with ns = 80

DAE time

NLP time

2 4 8 16 32

0.2

0.4

0.6

0.8

1

np processors

E
ffi

ci
en

cy

40/4 80/8 160/16 320/32
0

0.5

1

1.5

ns/np

w
al

lc
lo

ck
(s

ec
/it

.)

Effect of increasing ns/np ratio

Total time
NLP time
DAE time

ns = 80

(a) (b)

(d)(c)

Figure 3. Case Study 1: speed-up, efficiency and wall-clock times for increasing ns.

The next aspect of the study considers assessing the use of forward-over-adjoint second-order sensitivity
analysis in order to form a representation of the Lagrangian Hessian. Note, that such a procedure is quite
expensive given the numerous forward and reverse sweeps of the integrator for all shooting intervals and
scenarios, and the objective here is to provide some insight on the additional cost when compared to a
quasi-Newton approximation scheme. For demonstration purposes, we use the interior-point non-linear
programming solver IPOPT-3.11.9 with default options and MA27, MC19 for the linear solver and
scaling, respectively. Results comparing the limited memory BFGS approximation to the sensitivity
approach are reported in Table 2, where we highlight the total number of primal-dual IPM iterations,
total computation time, time spent in the NLP solver, total time to compute the continuity constraint
Jacobian using forward sensitivity analysis and additional point constraint first derivatives using AD,
which we denote overall as FSA, and total time to compute the lower triangular portion of the Lagrangian
Hessian (Equation (8)) via second-order sensitivity analysis (including all AD computations), which we
denote as DSOA. From Table 2, comparing columns qn and ex for quasi-Newton and exact Hessian,
respectively, we make the following observations: the DSOA approach reduces the overall number of
primal-dual iterations (as one would expect); the total computation time increases on average by about
×25 over the quasi-Newton approach where about 98% of the total computation is spent generating the
Lagrangian Hessian. From these results, it is quite clear that providing the Lagrangian Hessian of our
multi-period NLP formulation by means of second-order sensitivity analysis is very expensive. From an
implementation perspective, the computation in each shooting interval could be parallelized; however, this
is unlikely to lead to a significant enough decrease in time to justify the use of second-order sensitivities
as implemented in our study. An alternative approach proposed by Hannemann and Marquardt [45] is to
use a so-called composite or aggregated approach, which only requires a single second-order sensitivity
computation encompassing all shooting intervals. Such a technique has been shown to reduce the Hessian
computation time considerably when used in the context of implicit Runge–Kutta integration techniques.



Processes 2015, 3 558

Given our adherence to the SUNDIALS solvers in this work, we have not explored this new technique,
but it would be the next logical step.

Table 2. Case Study 1: serial computation results comparing Hessian generation approach.

iter Total (s) NLP (s) FSA(s) DSOA(s)
ns J/100 † qn ex qn ex qn ex qn ex ex

1 −1.4911 52 48 0.793 22.96 0.311 0.111 0.482 0.297 22.56
40 −1.5235 70 66 27.81 632.42 2.277 0.591 25.54 12.27 619.56
80 −1.5463 65 64 48.61 1218.46 3.697 1.060 44.91 23.57 1193.82
160 −1.5340 71 65 107.3 2204.61 8.023 1.920 99.32 47.12 2155.57
320 −1.5200 49 44 151.2 4397.64 11.70 3.962 139.5 92.78 4300.90

† IPOPT optimality tolerance = 1× 10−6.

4.2. Air Separation Problem

This next case study explores further the influence of processor loading on algorithm scalability and
additionally the influence of DAE model size. A large-scale DAE air separation model is used, which
considers the separation of nitrogen from air. The model used here was adapted from Cao [46], and
a simplified process schematic is shown in Figure 4. As a first step, air enters from the atmosphere
and is compressed using a multi-staged compressor (COM); impurities are then removed using several
adsorption units; high pressure purified air is then cooled in a multi-path heat exchanger (PHX) using the
returning gas product (GN2) and waste streams from a high pressure distillation column (HPC); the cooled
air stream is then split where a portion goes through a turbine (EXP) to promote further cooling before
entering the bottom of the distillation column, while the other stream goes directly to the distillation
column. The air entering the column is converted into high purity gaseous nitrogen, which exits at the
top, and crude liquid oxygen, which accumulates at the bottom. A portion of the high purity nitrogen
gas is drawn off as product (VN2), while the remainder is fed to an integrated reboiler/condenser (IRC)
to exchange heat with a crude oxygen stream, which is drawn from the bottom of the column. The heat
exchange converts gaseous nitrogen to liquid, which is then refluxed back to the top of the column and
optionally drawn off as liquid nitrogen product (LN2).

The portion of the process we focus on in this study is the distillation column (HPC) and integrated
reboiler/condenser (IRC) units, with the air feed to the bottom of the distillation column (F1) as the input
stream. A detailed listing of the variables and equations used in our particular model can be found in [46].
The optimization formulation considered seeks to determine a robust control profile to transition from one
steady state to another while satisfying path inequality constraints on product composition (defined in the
form of product impurity yO2) and tray flooding (defined implicitly by ensuring the vapour velocity νnt is
below the flooding velocity ν̄nt on the critical tray of nt, which represents the top tray of the column), all



Processes 2015, 3 559

while under the influence of uncertainty within key model parameters. The formulation can be defined as
a continuous multi-period dynamic optimization problem according to the following equations,

min
u(t)

J =
∑ns

i=1 wi
∫ tf
t0
‖y(i)(t)− ysp‖2 + ‖∆u(t)‖2 dt

st: DAE model (125 ODEs, 329 AEs)

x(i)(t0)− xss = 0 (initial steady state)

V sp
N2 − V

(i)
N2 (tf ) ≤ 0 (min. production rate at tf )

y
(i)
O2(t)− ymax

O2 ≤ 0 (max. product impurity)

ν(i)nt (t)− ν̄(i)nt (t) ≤ 0 (avoid tray flooding)

u(t) ∈ [uL,uU ] , ∀ t ∈ [t0, tf ] , i = 1, . . . , ns

θ ∈ [θL,θU ]

(E2)

where y(t) = VN2(t) and ysp = V sp
N2 are the measured output and corresponding final desired set-point

for the nitrogen production rate; u(t) = F1(t) is the manipulated input feed rate of air to the first tray
(i.e., column bottom); θ = [η, ∆P ]> is a vector of uncertain model parameters, which we select a priori as
the tray efficiency η ∈ [0.4, 0.6] and pressure drop between trays ∆P ∈ [0.45, 0.55] kPa. Note the stated
DAE model dimension of nx = 125 differential and nz = 329 algebraic variables/equations excludes
all sub-expression algebraic variables/equations; thus, the algebraic portion of the model is in fact quite
larger than it might appear. Select output and state solution trajectories of Formulation E2 are plotted in
Figure 5 for variables F̄1(t) ≡ F1(t)/F1(t0) and V̄N2(t) ≡ VN2(t)/VN2(t0) and path constrained variables
yO2(t) and α(t), where α(t) = νnt(t)/ν̄nt(t) ≤ 1.

HPC

IRC

PHX

EXP

COM

AIR

LN2

GN2
Waste

Drain

F1(t)

VN2(t)

Figure 4. Case Study 2: air separation process schematic.



Processes 2015, 3 560

1

1.2

F̄
1

1

1.1

1.2

1.3

V̄
N
2

0 1 2

0

1

2

Time (hrs)

y
O
2

(p
pm

)

0 1 2

0.8

0.9

1

Time (hrs)

α

(a)
20 40 80

0

2

4

×103

ns scenarios

w
al

lc
lo

ck
(s

ec
/it

.)

DAE time
NLP time

np = 2

(b)

Figure 5. Case Study 2: (a) robust control and select output trajectories (nominal solution
represented by the solid line) and (b) base line DAE and NLP solution times for increasing ns.

A piecewise linear input control profile was selected, and the rate of change of this profile was penalized
in the optimization objective function. Note that in order to prevent unnecessary chattering of the control
input in the latter portion of the time horizon, the profile uses an evenly-distributed parameterization of
n − 1 shooting intervals within the first 0.5 h of the time horizon and a final single interval within the
remaining 1.5 h. From Figure 5, we see that the production rate of nitrogen vapour V̄N2(t) and the vapour
velocity ratio α(t) both increase in proportion to the feed air input F̄1(t) (as one would logically expect);
however, due to the flooding constraint, there is a clear limitation on the rate of production increase,
and the influence of parametric uncertainty within the model directly affects the onset of constraint
activation. Ultimately, we are able to establish an optimal control profile that is robust to the prescribed
uncertainties within the model and adherent to the constraints within the formulation. In order to establish
a performance base line, we consider a fixed number of shooting intervals, three increasing scenario sizes
and two processors. For shooting intervals n = 6 and scenarios ns = 20, 40, 80, the average total solution
time per major SQP iteration was approximately 1.37× 103 s (22.7 min), 3.22× 103 s (53.6 min) and
8.12 × 103 s (135.4 min), respectively; which are about ×15.53, ×36.68 and ×92.51greater than the
nominal solution time of 1.46 min. The corresponding ratio of time spent in the NLP solver versus the
DAE solver was 0.14, 0.30 and 0.88, respectively, which indicates that as the problem size increases, the
computational burden shifts dramatically from the DAE solver to the in-solver aspects of the NLP solver
(e.g., active-set determination, matrix factorizations, matrix-matrix/matrix-vector multiplications, etc.)

With the base line solution properties established, we now turn to assessing the potential computation
speed-up via our parallel multi-period approach. Table 3 lists the optimization problem size and solution
results, in terms of the number of SQP iterations and total wall-clock times, for an incremental number
of integration tasks m = n · ns (where n = {6, 12} and ns = {20, 40, 80}) using an increasing number
of computing processors. Considering first a problem with n = 6 and increasing scenario realizations
(ns = {20, 40, 80}), we observed good scaling properties using at most np ≤ 32. For example, using
np = 16, we observe an overall average computation speed-up of ×3.57, ×2.88, ×1.93 for each ns,
respectively; and for np = 32, ×4.54, ×3.24, ×2.07, where the decrease in rate of speed-up from 16 to
32 processors is due to the increasing serial portion of the NLP solver. If we remove this large serial NLP
portion, it can be confirmed that the parallel implementation of the embedded DAE shooting intervals



Processes 2015, 3 561

can be done fairly efficiently. For example, Figure 6a provides speed-up trends for np from two to 64
at a fixed amount of work (m) based on the so-called “DAE time” as defined in the previous case study.
It is evident that good, strong scaling properties are observed up to about 32 processors, after which a
more sharply decreasing rate is observed, which can be attributed in part to an insufficient work load per
processor M . Figure 6b compares the amount of time, per major SQP iteration, spent in the DAE solver
versus the NLP solver. Considering a problem size of m = 480 and imposing an increase in processors
from two to 64, we see a significant reduction in DAE solution time relative to the serial NLP solution
time. Furthermore, from Figure 6c, if we increase the number of processors in proportion to the problem
size m, the DAE solution time remains relatively constant, which indicates reasonably good weak-scaling
properties. For the case of n = 12 (see Figure 6d,e), where we effectively double the NLP size, better
speed-up with increasing number of processors is observed, which indicates the expected result that as we
increase the work per processor (M ), we also reduce the relative parallel overhead and ultimately see
better, strong scaling properties. However, for the particular active-set SQP solver used in this study, we
quickly run into significant serial computation overhead within the QP subproblems (i.e., a sharp increase
in the number of QP iterates).

Finally, we consider the aspect of increasing the embedded DAE size and provide a relative comparison
on the influence of DAE size on the overall parallel scalability of the implementation. Table 4 compares
model sizes of nx/nz = {23/57, 59/153, 125/329} where nx and nz represent the number of differential
and algebraic state variables, respectively, that are a result of increasing the number of distillation column
trays according to nt = {5, 17, 39}. The base line total solution time per SQP iteration for each model
size using ns = 80 scenarios was 6.24 min, 20.23 min and 135.37 min, respectively, which are over
100-times the nominal solution time. Through parallelization, these base line times can be reduced by
about ×3.6, ×2.4 and ×1.9, respectively; where again, we observe that as the serial NLP portion grows,
the potential speed-up diminishes. Figure 7 reveals more closely the speed-up and efficiency excluding
the influence of the serial in-solver NLP contribution. As the model size is increased (i.e., more expensive
integration tasks), a more pronounced improvement is observed when compared to increasing the number
of integration tasks per processor via discretization alone (i.e., increasing M via increasing ns or n).
In other words, if one compares the delta in speed-up from nx/nz = 59/153 and nx/nz = 125/329 in
Figure 7a to the delta in speed-up from ns = 40 and ns = 80 in Figure 6a, then a larger deviation results
from increasing the model size versus the discretization refinement. This result is particularly positive
and highlights that one is able to more easily achieve better parallel scalability using larger embedded
DAE models versus creating more independent integration tasks.



Processes 2015, 3 562

Table 3. Case Study 2: parallel computation results comparing increasing n and ns.

Total solution time (s)/1.0 × 105

n ns m vars cons iter J/10 † np = 2 np = 16 np = 32 np = 48 np = 64

6 1 6 3184 3194 9 (1308) 1.0159 0.0079 – – – –
20 120 63,680 63,974 14 (42,704) 1.0134 0.1908 0.0535 0.0420 0.0426 0.0501
40 240 127,360 127,955 16 (85,672) 1.0181 0.5146 0.1785 0.1589 0.1596 0.1688
80 480 254,720 255,915 17 (170,391) 1.0156 1.3808 0.7166 0.6669 0.6720 0.6882

12 1 12 5914 5930 12 (3221) 1.0141 0.0135 – – – –
20 240 118,280 118,808 18 (81,273) 1.0114 0.7163 0.1955 0.1558 0.1491 0.1474
40 480 236,560 237,628 11 (162,037) 1.0159 0.9167 0.5179 0.4891 0.4732 0.4714
80 960 473,120 475,268 17 (322,952) 1.0129 7.7468 3.2047 2.8156 2.7239 2.6748

† NLP optimality/feasibility tol. = 1× 10−4, 1× 10−6, DAE relative/absolute tol. = 1× 10−3, 1× 10−4.

2 16 32 48 64

2

16

32

48

64

np processors

Sp
ee

du
p

(n
p
=

2
ba

se
lin

e)

Effect of increasing np, ns

linear speedup
ns = 20

ns = 40

ns = 80

0 2 4 6 8

×103

2
4
8

16
32
48
64

wallclock (sec/it.)

n
p

pr
oc

es
so

rs

Effect of increasing np with ns = 80

DAE time
NLP time

20/16 40/32 80/64
0

2

4

×103

ns/np

w
al

lc
lo

ck
(s

ec
/it

.)

Effect of increasing ns/np ratio

Total time
NLP time
DAE time

2 16 32 48 64

2

16

32

48

64

np processors

Sp
ee

du
p

0 20 40

×103

2
4
8

16
32
48
64

wallclock (sec/it.)

n
p

pr
oc

es
so

rs

20/16 40/32 80/64

0

5

10

15

×103

ns/np

w
al

lc
lo

ck
(s

ec
/it

.)
ns = 80

(a) (b) (c)

(d) (e) (f)

Figure 6. Case Study 2: speed-up and wall-clock times for increasing np and ns, where n = 6

fixed for (a) to (c) and n = 12 fixed for (d) to (f).



Processes 2015, 3 563

Table 4. Case Study 2: parallel computation results comparing different DAE dimensions.

Total Solution Time (s)/1.0 × 105

nx/nz
∗m † vars cons iter J/10 np = 2np = 16np = 32np = 48np = 64

23/57 6 566 568 19 (184) 0.8559 0.0006 – – – –
480 45,280 45,915 22 (16,326) 0.8560 0.0824 0.0230 0.0247 0.0368 0.0416

59/153 6 1490 1492 12 (616) 1.0111 0.0011 – – – –
480 119,200 119,835 18 (38,928) 1.0110 0.2185 0.0896 0.0870 0.0881 0.1052

125/329 6 3184 3194 10 (1294) 1.0159 0.0079 – – – –
480 254,720 255,915 17 (170,391) 1.0156 1.3808 0.7166 0.6669 0.6720 0.6882

∗ dimension based on number of distillation trays nt = {5, 17, 39}; † problem size based on n = 6 and
ns = {1, 80}.

2 16 32 48 64

2

16

32

48

64

np processors

Sp
ee

du
p

linear speedup

nx/nz = 23/57

nx/nz = 59/153

nx/nz = 125/329

2 16 32 48 64
0

0.5

1

np processors

E
ffi

ci
en

cy

(a) (b)

Figure 7. Case Study 2: speed-up and efficiency for increasing DAE size nx/nz based on
nt = {5, 17, 39}, with n = 6, ns = 80 fixed.

5. Concluding Remarks

In this paper, we have presented a parallel computing approach for large-scale dynamic optimization
under uncertainty that targets the decomposition of the embedded differential-algebraic equation model.
A combined multi-period multiple-shooting approach was used to discretize the DAE optimization
formulation to yield a multi-period NLP formulation with embedded implicit DAE functionals within
the constraints. The DAE model and sensitivity equations corresponding to each shooting interval and
scenario constitute independent integration tasks, well suited for parallel processing. Our multi-period
approach was applied to a large-scale DAE air separation model comprising up to 125 ODEs and 329
algebraic equations for the purpose of obtaining a robust optimal control profile subject to uncertainty
in the model parameters. Results indicated fairly good parallel scalability using a parallel OpenMP
implementation of the DAE solution; however, the extent of scalability depends largely on the amount
of work per processor and on the ability to effectively balance the work load between processors. In
this paper, we were able to demonstrate the benefits of parallelizing the DAE solution portion of the
multiple-shooting algorithm; however, as the NLP size grows with scenario realizations, the computation
bottleneck shifts to the NLP solver. While it is possible to alleviate some of the computation burden



Processes 2015, 3 564

through the use of a sparse interior-point NLP solver (as opposed to an active-set solver, primarily used
in this study), a better approach, and the subject for future work, would be to take advantage of the
multi-period block structure of the NLP by exploiting the partial separability of the system and tailoring
the linear algebra within the algorithm (possibly through an interior-point QP solution strategy within an
overall SQP approach) to suit a given structure, which would speed up the algebraic computations and
reduce the overall memory consumption.

Acknowledgements

Funding for this work through the McMaster Advanced Control Consortium (MACC) and an Ontario
Research Fund Research Excellence grant (ORFRE-05-072), is gratefully acknowledged. We further
thank Yanan Cao for providing us with an initial version of the air separation model that we adapted for
this study.

Author Contributions

This paper represents collaborative work by the authors. The research concepts and strategy were
devised by both authors, I.D.W. implemented all coding and generation of data, and I.D.W. and C.L.E.S.
analyzed the results. Both authors were involved in the preparation of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Geletu, A.; Li, P. Recent Developments in Computational Approaches to Optimization under
Uncertainty and Application in Process Systems Engineering. ChemBioEng Rev. 2014, 1, 170–190.

2. Mohideen, M.J.; Perkins, J.D.; Pistikopoulos, E.N. Optimal design of dynamic systems under
uncertainty. AIChE J. 1996, 42, 2251–2272.

3. Sakizlis, V.; Perkins, J.D.; Pistikopoulos, E.N. Recent advances in optimization-based simultaneous
process and control design. Comput. Chem. Eng. 2004, 28, 2069–2086.

4. Wang, S.; Baldea, M. Identification-based optimization of dynamical systems under uncertainty.
Comput. Chem. Eng. 2014, 64, 138–152.

5. Diwekar, U. Introduction to Applied Optimization; Springer: New York, NY, USA, 2008.
6. Arellano-Garcia, H.; Wozny, G. Chance constrained optimization of process systems under

uncertainty: I. Strict monotonicity. Comput. Chem. Eng. 2009, 33, 1568–1583.
7. Kloppel, M.; Geletu, A.; Hoffmann, A.; Li, P. Using Sparse-Grid Methods To Improve Computation

Efficiency in Solving Dynamic Non-linear Chance-Constrained Optimization Problems. Ind. Eng.
Chem. Res. 2011, 50, 5693–5704.

8. Diehl, M.; Gerhard, J.; Marquardt, W.; Monnigmann, M. Numerical solution approaches for robust
non-linear optimal control problems. Comput. Chem. Eng. 2008, 32, 1279–1292.



Processes 2015, 3 565

9. Houska, B.; Logist, F.; Van Impe, J.; Diehl, M. Robust optimization of non-linear dynamic systems
with application to a jacketed tubular reactor. J. Process Control 2012, 22, 1152–1160.

10. Huang, R.; Patwardhan, S.C.; Biegler, L.T. Multi-scenario-based robust non-linear model
predictive control with first principle Models. In 10th International Symposium on Process Systems
Engineering: Part A; de Brito Alves, R.M., do Nascimento, C.A.O., Biscaia, E.C., Eds.; Elsevier:
Oxford, UK, 2009; Volume 27, pp. 1293–1298.

11. Lucia, S.; Andersson, J.A.E.; Brandt, H.; Diehl, M.; Engell, S. Handling uncertainty in economic
non-linear model predictive control: A comparative case study. J. Process Control 2014,
24, 1247–1259.

12. Washington, I.D.; Swartz, C.L.E. Design under uncertainty using parallel multi-period dynamic
optimization. AIChE J. 2014, 60, 3151–3168.

13. Shapiro, A.; Dentcheva, D.; Ruszczynski, A. Lectures on Stochastic Programming; SIAM:
Philadelphia, PA, USA, 2009.

14. Brenan, K.E.; Campbell, S.L.; Petzold, L.R. Numerical Solution of Initial-Value Problems In
Differential-Algebraic Equations; SIAM: Philadelphia, PA, USA, 1996.

15. Varvarezos, D.K.; Biegler, L.T.; Grossmann, I.E. Multi-period design optimization with SQP
decomposition. Comput. Chem. Eng. 1994, 18, 579–595.

16. Bhatia, T.K.; Biegler, L.T. Multi-period design and planning with interior point methods.
Comput. Chem. Eng. 1999, 23, 919–932.

17. Albuquerque, J.; Gopal, V.; Staus, G.; Biegler, L.T.; Ydstie, B.E. Interior point SQP strategies for
large-scale, structured process optimization problems. Comput. Chem. Eng. 1999, 23, 543–554.

18. Cervantes, A.M.; Wachter, A.; Tutuncu, R.H.; Biegler, L.T. A reduced space interior point strategy
for optimization of differential algebraic systems. Comput. Chem. Eng. 2000, 24, 39–51.

19. Zavala, V.M.; Laird, C.D.; Biegler, L.T. Interior-point decomposition approaches for parallel solution
of large-scale non-linear parameter estimation problems. Chem. Eng. Sci. 2008, 63, 4834–4845.

20. Word, D.P.; Kang, J.; Akesson, J.; Laird, C.D. Efficient parallel solution of large-scale non-linear
dynamic optimization problems. Comput. Optim. Appl. 2014, 59, 667–688.

21. Kang, J.; Cao, Y.; Word, D.P.; Laird, C.D. An interior-point method for efficient
solution of block-structured NLP problems using an implicit Schur-complement decomposition.
Comput. Chem. Eng. 2014, 71, 563–573.

22. Leineweber, D.B.; Schafer, A.; Bock, H.G.; Schloder, J.P. An efficient multiple shooting based
reduced SQP strategy for large-scale dynamic process optimization. Part II: Software aspects and
applications. Comput. Chem. Eng. 2003, 27, 167–174.

23. Bachmann, B.; Ochel, L.; Ruge, V.; Gebremedhin, M.; Fritzson, P.; Nezhadali, V.; Eriksson, L.;
Sivertsson, M. Parallel Multiple-Shooting and Collocation Optimization with OpenModelica. In
Proceedings of the 9th International Modelica Conference, Munich, Germany, 3–5 September 2012;
pp. 659–668.

24. Andersson, J. A General-Purpose Software Framework for Dynamic Optimization. Ph.D. Thesis,
Arenberg Doctoral School, KU Leuven, Department of Electrical Engineering (ESAT/SCD) and
Optimization in Engineering Center, October 2013.



Processes 2015, 3 566

25. Leineweber, D.B.; Bauer, I.; Bock, H.G.; Schloder, J.P. An efficient multiple shooting based
reduced SQP strategy for large-scale dynamic process optimization. Part I: Theoretical aspects.
Comput. Chem. Eng. 2003, 27, 157–166.

26. Houska, B.; Diehl, M. A quadratically convergent inexact SQP method for optimal control of
differential algebraic equations. Optim. Control Appl. Methods 2013, 34, 396–414.

27. Maly, T.; Petzold, L.R. Numerical methods and software for sensitivity analysis of
differential-algebraic systems. Appl. Numer. Math. 1996, 20, 57–79.

28. Feehery, W.F.; Tolsma, J.E.; Barton, P.I. Efficient sensitivity analysis of large-scale
differential-algebraic systems. Appl. Numer. Math. 1997, 25, 41–54.

29. Schlegel, M.; Marquardt, W.; Ehrig, R.; Nowak, U. Sensitivity analysis of linearly-implicit
differential-algebraic systems by one-step extrapolation. Appl. Numer. Math. 2004, 48, 83–102.

30. Kristensen, M.R.; Jorgensen, J.B.; Thomsen, P.G.; Michelsen, M.L.; Jorgensen, S.B. Sensitivity
Analysis in Index-1 Differential Algebraic Equations by ESDIRK Methods; IFAC World Congress:
Prague, Czech Republic, 2005; Volume 16, pp. 895–895.

31. Ozyurt, D.B.; Barton, P.I. Cheap Second Order Directional Derivatives of Stiff ODE Embedded
Functionals. SIAM J. Sci. Comput. 2005, 26, 1725–1743.

32. Cao, Y.; Li, S.; Petzold, L.; Serban, R. Adjoint sensitivity analysis for differential-algebraic
equations: The adjoint DAE system and its numerical solution. SIAM J. Sci. Comput. 2003,
24, 1076–1089.

33. Hannemann-Tamas, R. Adjoint Sensitivity Analysis for Optimal Control of Non-Smooth
Differential-Algebraic Equations. Ph.D. Thesis, RWTH-Aachen University, Aachen, Germany,
February 2012.

34. Albersmeyer, J. Adjoint-based algorithms and numerical methods for sensitivity generation
and optimization of large scale dynamic systems. Ph.D. Thesis, University of Heidelberg,
Interdisciplinary Center for Scientific Computing, Heidelberg, Germany, 23 December 2010.

35. Davis, T. Direct Methods for Sparse Linear Systems; SIAM: Philadelphia, PA, USA, 2006.
36. Hindmarsh, A.C.; Brown, P.N.; Grant, K.E.; Lee, S.L.; Serban, R.; Shumaker, D.E.;

Woodward, C.S. SUNDIALS: Suite of non-linear and differential/algebraic equation solvers.
ACM Trans. Math. Softw. 2005, 31, 363–396.

37. Gill, P.E.; Murray, W.; Saunders, M.A. SNOPT: An SQP algorithm for large-scale constrained
optimization. SIAM Rev. 2005, 47, 99–131.

38. Wachter, A.; Biegler, L.T. On the implementation of an interior-point filter line-search algorithm for
large-scale non-linear programming. Math. Program. 2006, 106, 25–57.

39. Walther, A.; Griewank, A. Getting started with ADOL-C. In Combinatorial Scientific Computing;
Naumann, U., Schenk, O., Eds.; Chapman-Hall CRC Computational Science: London, UK, 2012;
chapter 7, pp. 181–202.

40. Albersmeyer, J.; Bock, H.G. Sensitivity Generation in an Adaptive BDF-Method. In Modeling,
Simulation and Optimization of Complex Processes; Bock, H.G., Kostina, E., Phu, H.X.,
Rannacher, R., Eds.; Springer: New York, NY, USA, 2008; pp. 15–24.



Processes 2015, 3 567

41. Quirynen, R.; Vukov, M.; Zanon, M.; Diehl, M. Autogenerating microsecond solvers for
non-linear MPC: A tutorial using ACADO integrators. Optim. Control Appl. Methods 2014,
doi:10.1002/oca.2152.

42. Hannemann-Tamas, R.; Imsland, L.S. Full algorithmic differentiation of a Rosenbrock-type method
for direct single shooting. In Proceedings of the 2014 European Control Conference (ECC),
Strasbourg, France, 24–27 June 2014; pp. 1242–1248.

43. Nocedal, J.; Wright, S.J. Numerical Optimization, 2nd ed.; Springer: New York, NY, USA, 2006.
44. Pacheco, P.S. An Introduction to Parallel Programming; Morgan Kaufmann: New York, NY,

USA, 2011.
45. Hannemann, R.; Marquardt, W. Continuous and Discrete Composite Adjoints for the Hessian of

the Lagrangian in Shooting Algorithms for Dynamic Optimization. SIAM J. Sci. Comput. 2010,
31, 4675–4695.

46. Cao, Y. Design for Dynamic Performance: Application to an Air Separation Unit. Master Thesis,
McMaster University, June 2011.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Problem Statement
	Proposed Solution Approach
	Multi-Period Multiple-Shooting Discretization
	First-Order Derivative Generation
	Second-Order Derivative Generation
	Implementation Details

	Example Problems
	Batch Reactor Problem
	Air Separation Problem

	Concluding Remarks

