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Abstract: Ti6Al4V alloys are difficult-to-cut materials that have extensive applications in the
automotive and aerospace industry. A great deal of effort has been made to develop and improve
the machining operations of Ti6Al4V alloys. This paper presents an experimental study that
systematically analyzes the effects of the machining conditions (ultrasonic power, feed rate, spindle
speed, and tool diameter) on the performance parameters (cutting force, tool wear, overcut error,
and cylindricity error), while drilling high precision holes on the workpiece made of Ti6Al4V
alloys using rotary ultrasonic machining (RUM). Numerical results were obtained by conducting
experiments following the design of an experiment procedure. The effects of the machining
conditions on each performance parameter have been determined by constructing a set of possibility
distributions (i.e., trapezoidal fuzzy numbers) from the experimental data. A possibility distribution
is a probability-distribution-neural representation of uncertainty, and is effective in quantifying
the uncertainty underlying physical quantities when there is a limited number of data points
which is the case here. Lastly, the optimal machining conditions have been identified using these
possibility distributions.
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1. Introduction

Ti6Al4V is an important alloy material extensively utilized in many engineering industries such
as spacecraft, aircraft, military and medical prosthesis. This is owing to the superior properties
of Ti6Al6V. For instance, its high strength to weight ratio, high strength at elevated temperature,
corrosion and oxidation resistance, good creep and fatigue strength, chemical inertness, fabricability
and stability [1,2]. However, Ti6Al4V is regarded as a difficult-to-cut material due to work hardening,
poor thermal conductivity, chemical reactivity with tool material at elevated temperature, saw-tooth
chip formation, and low young modulus [2,3]. For machining of Ti6Al4V, rotary ultrasonic machining
(RUM) exhibits high potential when compared to other machining methods, as demonstrated in
previous studies [1,2,4–6]. Rotary ultrasonic machining consists of the material removal mechanisms
of diamond grinding and ultrasonic machining. A rotating and ultrasonically vibrating diamond
abrasives bonded tool is axially fed toward the work piece. Coolant is pumped through the tool in
RUM to assist in keeping the tool cool and flushing the debris generated during machining.

Various studies have been reported using ultrasonic assisted RUM for drilling and grinding of
various types of hard and brittle materials. Churi et al. [1] used RUM for drilling holes in Ti6Al4V alloy
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and studied the effects of spindle speed, feed rate and ultrasonic power on the cutting force, material
removal rate and surface roughness. They reported that spindle speed, feed rate and ultrasonic power
have significant effects on cutting force and surface roughness. Cong et al. [7] employed RUM for
drilling holes in carbon fiber reinforced plastic composites and investigated the effect of cutting fluid
and cold air on the cutting force, torque, surface roughness and tool wear. Zhang et al. utilized
RUM for drilling holes in K9 glass and compared the results with diamond drilling [8]. The results
showed that the rotary ultrasonic drilling produced significantly less fracturing of the workpiece
surface and much lower forces when compared with diamond drilling. Li et al. [9] reported that
a reduction of 50% in the cutting forces and an increase of 10% in material removal rate could be
achieved during RUM of ceramic matrix composites, as compared to diamond drilling. In another
study, Cong et al. [10] developed and validated a cutting force prediction model of RUM for carbon
fiber reinforced plastics, assuming that brittle fracture is the dominant factor in material removal.
The prediction trends by this model showed that cutting force decreases with the increase in ultrasonic
vibration amplitude, tool rotation speed and abrasive size, and with the decrease in feed rate and
abrasive concentration. Pujana et al. [5] studied ultrasonic assisted drilling of Ti6Al4V and reported
higher force reductions and higher temperature increments with the increase in vibration amplitude.
Choi et al. [11] applied RUM for grinding Ti6Al4V, FCD700 and S45C materials and reported that
lower cutting temperature and tool wear are observed, when compared with conventional grinding.
Tsai et al. [12] investigated the use of ultrasonic assisted end milling for the improvement of the
machined surface quality of hard Stavax mold steel. They found that an optimum amplitude value of
the ultrasonic vibrations is to be used for the best surface finish, and that increasing the amplitude
does not improve surface quality. Wang et al. [13] developed a novel edge chipping mechanism for the
drilling of holes considering machining-induced cracks, and the model was verified by experiments
on quartz glass. The study revealed that both the magnitude of the driving force and the size of the
machining-induced crack determine the initiation of edge chipping. Liu et al. proposed a mechanistic
cutting force model for RUM of brittle materials [14]. The input variables of this model are core drill
variables, properties of work-piece material, ultrasonic vibration variables and machining process
variables. The developed model was verified by the experiments on alumina. Noma et al. [15]
demonstrated that the drilled hole quality, in terms of exit chip size, can be significantly improved by
the application of the compressive stresses at the bottom surface of the rotary ultrasonic machined
chemically strengthened glass. In another study, Nambu et al. demonstrated that the ratio of the hole
depth to drill diameter during micro hole drilling can be significantly increased by the application of
ultrasonic vibrations to the drill tool [16]. It is observed that in reported studies, the performance of the
RUM machining process has been evaluated in terms of cutting force, material removal rate, exit chip
size, temperature generation and tool wear. The results of these studies have proven the benefits of
RUM in terms of lower cutting forces and temperatures, higher material removal rates and quality of
the drilled holes when compared with the available alternative machining processes.

Tool wear is a critical factor in RUM, which influences geometrical accuracy and the material
removal rate of RUM [17]. Dam et al. [18] stated that the hardness and toughness properties of
materials affect tool wear in RUM. They reported that higher fracture toughness and hardness of
ceramic work material increases tool wear. Kumar et al. [19] performed an experimental study to
find out the tool wear rate in ultrasonic machining of pure titanium. They identified that power
rating and tool material are the most influential parameters for the variation in the tool wear rate.
Jadoun et al. [20] used tools of tungsten carbide, high carbon steel and high speed steel to investigate
the tool wear rate in ultrasonic drilling of ceramics. Less tool wear is found in tools made of tungsten
carbide, compared to high speed steel and high carbon steel.

Kumar [21] reported that geometrical inaccuracies in ultrasonic machining can be categorized as
dimensional inaccuracy (overcut) and form inaccuracy (conicity). He also added that a decrease
in abrasive grain size leads to improved accuracy of drilled holes in ultrasonic machining.
Adithan and Venkatesh [22] showed that higher static load and machining time increases the overcut
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error and conicity error for glass material in ultrasonic machining. They also demonstrated that
overcut error is greatest at entry, and this error increases with increases in diameter-length ratio in
ultrasonic drilling. They added that grain structure and brittle fracture properties of work material
also influence the overcut and conicity. Komaraiah et al. [23] stated that increases in the ratio of
hardness to Young’s modulus of elasticity of work material results in increases of out-of-roundness of
the drilled holes in ultrasonic machining. They also reported that RUM shows better performance for
out-of-roundness results compared to ultrasonic machining. Ding et al. [24] performed an experimental
study on drilling holes in C/SiC composites using RUM, and reported that RUM is a useful machining
process for reduction of tearing defects. Feng et al. [25] investigated the tearing defect formation
during drilling holes in C/SiC composites using RUM. They found that the reduction of thrust force
(the drilling force along the axial direction) results in decreased tearing defects at the hole exit by more
than 60%. They also reported that the tearing defect can be further decreased by decreasing the feed
rate or by increasing the spindle speed and ultrasonic amplitude.

Before now, no work has been reported to study the effect of RUM machining parameters on the
performance parameters of cutting force, tool wear, and production inaccuracies—simultaneously
for drilling holes in Ti6Al4V—using a systematically designed experimental approach. In drilling
holes, the important production inaccuracies are overcut error (cutting inaccuracy) and cylindricity
error (form inaccuracy). The current study attempts to experimentally analyze the RUM parameters
for drilling high precision holes in Ti6Al4V. The main aim of the current study is to systematically
present the effects of the machining conditions (ultrasonic power, feed rate, spindle speed and tool
diameter) on the performance parameters (cutting force, tool wear, overcut error and cylindricity
error) by building a set of possibility distributions (i.e., trapezoidal fuzzy numbers). Later, the optimal
cutting conditions are identified using the possibility distributions.

2. Experimentation

Machining experiments are performed on Sonic-mill series 10 rotary ultrasonic machines
(SONIC-MILL, Albuquerque, NM, USA), with a maximum spindle rotation speed of 8000 rpm,
maximum vibration frequency of 20 kHz, and maximum ultrasonic power of 1000 Watts. The rotary
ultrasonic machining setup which was used for drilling holes in Ti6Al4V work pieces is shown in
Figure 1. The three main systems of rotary ultrasonic machining setup are an ultrasonic spindle system,
a coolant set-up and a data acquisition system. The main components of the ultrasonic spindle system
are an ultrasonic spindle, a power supply, a motor and a speed controller. The electric supply is
converted into a high-frequency (20 kHz) electrical signal by the power supply. The piezoelectric
actuator transforms high-frequency electrical signals to mechanical vibrations along the tool feed
direction. The ultrasonic vibrations are then amplified and transmitted to the spindle. The amplitude
of the tool vibrations can be changed by regulating the ultrasonic power supply output. The spindle
motor speed controller can be adjusted to vary the rotational speed of the spindle. These motions of
the spindle provide the drill tool rotational motion and ultrasonic vibration. The drill is then fed into
the workpiece with a constant pressure or constant feed rate. The cooling system supplies the coolant
at the interface of the diamond tool and work piece to reduce the cutting temperature and to flush
out the debris. In this setup, water miscible Fuchs Ecocool S-HL oil (Fuchs, Dissen, Germany) (with a
concentration of 10%) was used as coolant.

In this research, Ti6Al4V supplied by Magellan (Norwalk, CT, USA) is used for drilling holes.
The chemical composition and mechanical properties of Ti6Al4V are given in Tables 1 and 2,
respectively. The dimensions of the work piece used in experiments are 50 mm × 50 mm × 3 mm.
All the produced holes in work pieces are through drilled.
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Figure 1. (a) Rotary ultrasonic machine used for experiments; (b) Rotary ultrasonic machining setup; 
(c) A Ti6Al4V work piece with drilled holes. 

Table 2. Mechanical properties for Ti6Al4V. 

Property Value
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Tensile strength (GPa) 950 
Rockwell hardness (HRC) 40 
Density (Kg·m−3) 4510 
Melting point (K) 1941 ± 285 
Coefficient of thermal expansion (K−1) 8.64 × 10−6 

The input parameters that are varied during the experiments include ultrasonic power supply, 
feed rate, spindle speed and tool diameter. Due to the limitation of the Sonic-mill machine used 
during the experiments, the frequency of the ultrasonic vibrations was kept constant at 20 KHz. The 
ultrasonic power was varied to change the amplitude of the ultrasonic vibrations [26–28]. The 
relationship between the ultrasonic power and the vibration amplitude is shown in Figure 2. A single 
input parameter is changed at a time while others are kept constant. Each trial is repeated two times 
and an average output response is calculated. The input parameters and their respective values are 
shown in Table 3. 

Figure 1. (a) Rotary ultrasonic machine used for experiments; (b) Rotary ultrasonic machining setup;
(c) A Ti6Al4V work piece with drilled holes.

Table 1. Chemical composition of the Ti6Al4V.

Constituent Ti Al V Fe Cu Mu Mo

Composition % Balance 6.35 4.01 0.167 <0.005 <0.01 <0.005

Table 2. Mechanical properties for Ti6Al4V.

Property Value

Thermal conductivity (W·m−1·K−1) 21
Tensile strength (GPa) 950
Rockwell hardness (HRC) 40
Density (Kg·m−3) 4510
Melting point (K) 1941 ± 285
Coefficient of thermal expansion (K−1) 8.64 × 10−6

The input parameters that are varied during the experiments include ultrasonic power supply,
feed rate, spindle speed and tool diameter. Due to the limitation of the Sonic-mill machine used during
the experiments, the frequency of the ultrasonic vibrations was kept constant at 20 KHz. The ultrasonic
power was varied to change the amplitude of the ultrasonic vibrations [26–28]. The relationship
between the ultrasonic power and the vibration amplitude is shown in Figure 2. A single input
parameter is changed at a time while others are kept constant. Each trial is repeated two times and an
average output response is calculated. The input parameters and their respective values are shown
in Table 3.
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Figure 2. Relationship between ultrasonic power (%) and vibration amplitude (µm).

Table 3. Machining parameters and their selected values.

Input Parameter Abbreviation Level 1 Level 2 Level 3

Ultrasonic power P 20% 40%
Feed rate (mm/min) F 0.1 0.6

Spindle speed (rev/min) S 2000 4000 6000
Tool diameter (mm) D 3.97 5.9 8.9

The cutting tools used are hollow metal bonded diamond core drills (Sonic Mill, Albuquerque,
NM, USA). Three different diameter tools are used in the experiments, as shown in Figure 3a,b and
enlarged side cutting faces and end cutting faces of new and used tools are presented in Figure 4a–d.
The cutting length for all the tools is 12.6 mm. The mesh size of the diamond abrasives on all the tools
is 80–100 µm.Materials 2017, 10, 1069 6 of 17 
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Figure 4. (a) Zoomed-in view of the side cutting face of a typical new drill; (b) Zoomed-in view of the
side cutting face of a drill after machining; (c) Zoomed-in view of the end cutting face of a typical new
drill; (d) Zoomed-in view of the end cutting face of a drill after machining.

Kistler dynamometer type 9257B with charge amplifier type 5070A and data acquisition type
5697A1 (Kistler Corp, Winterthur, Switzerland) were used to measure the cutting force (FC) along
the feed direction during drilling. Voltage signals generated from dynamometer during RUM of
samples are amplified by the charge amplifier. Later, the data acquisition system converts the amplified
signals into numerical signals. To measure the drilled holes’ quality, a coordinate measuring machine
(CMM, Zeiss Accura, Oberkochen, Germany) was used to measure the holes’ cylindricity error and
overcut error. For both cylindricity error and overcut error, twenty-seven points were measured on
the cylindrical surface of the holes at three depths; nine points measured at each depth level across
the circular profile. The tool wear is defined as the weight loss of the cutting tool during machining
of each hole. Specifically, it is the difference between tool weights before and after drilling a hole.
After drilling of each hole, the cutting tool was detached to clean the residual by acetone [26,27].
A high-accuracy weight balance (Model PW124 Analytical Balance, Adam Equipment, Oxford, UK)
was used to measure the weight of the tool.

The design of experiments is considered to be a very useful method for deducing accurate and
meaningful inferences from the experimental data. In the current study, a L36 design of experiments is
implemented to capture the effect of the RUM variables on the four output responses: cutting force
(FC), tool wear (TW), overcut error (OE) and cylindrical error (CE). The variable input parameters and
their respective levels are shown in Table 3. The levels of each input parameter are used, leading to
a total of 36 experiments, as shown in Table 4.
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Table 4. Design of experiments and corresponding results.

Exp. No Ultra-Sonic Power
(P) %

Feed Rate (F)
mm/min

Spindle Speed (S)
rev/min

Tool Diameter (D)
mm

Cutting Force (FC)
N

Tool Wear (TW)
mg

Over Cut Error (OE)
mm

Cylindricity Error (CE)
mm

1 20 0.1 2000 3.97 97.32 2.8 0.2787 0.0463
2 20 0.1 2000 5.9 67.58 0.9 0.2488 0.0251
3 20 0.1 2000 8.9 30.2 4.5 0.1824 0.0152
4 20 0.1 4000 3.97 96.41 6.4 0.1762 0.0093
5 20 0.1 4000 5.9 12.8 4.4 0.1793 0.0037
6 20 0.1 4000 8.9 13.85 7.2 0.1549 0.0086
7 20 0.1 6000 3.97 62.1 2.6 0.1922 0.0096
8 20 0.1 6000 5.9 13.75 1.5 0.1745 0.0062
9 20 0.1 6000 8.9 21.94 1.9 0.1803 0.0053

10 20 0.6 2000 3.97 158.62 2.6 0.2645 0.0384
11 20 0.6 2000 5.9 144.76 7.4 0.2697 0.0272
12 20 0.6 2000 8.9 124.75 4.9 0.2122 0.0012
13 20 0.6 4000 3.97 58.3 3.2 0.2152 0.0412
14 20 0.6 4000 5.9 30.54 8.1 0.1931 0.0304
15 20 0.6 4000 8.9 69.7 3.7 0.1852 0.002
16 20 0.6 6000 3.97 36.83 5.1 0.1925 0.0186
17 20 0.6 6000 5.9 31.63 5.4 0.1771 0.0073
18 20 0.6 6000 8.9 99.84 16 0.2075 0.011
19 40 0.1 2000 3.97 56.53 2.8 0.2854 0.0658
20 40 0.1 2000 5.9 44.21 4.7 0.2593 0.0448
21 40 0.1 2000 8.9 45.89 5.1 0.1985 0.0152
22 40 0.1 4000 3.97 88.4 2.7 0.1885 0.0074
23 40 0.1 4000 5.9 17.2 1.6 0.1798 0.0035
24 40 0.1 4000 8.9 39.72 1.1 0.1737 0.003
25 40 0.1 6000 3.97 38.11 1.6 0.1947 0.0143
26 40 0.1 6000 5.9 23.86 7.2 0.1792 0.014
27 40 0.1 6000 8.9 18.8 3.5 0.1809 0.0116
28 40 0.6 2000 3.97 116 5.8 0.1196 0.0624
29 40 0.6 2000 5.9 79.92 4.2 0.1562 0.0511
30 40 0.6 2000 8.9 104.36 3.9 0.1964 0.0059
31 40 0.6 4000 3.97 81.66 0.7 0.1922 0.0032
32 40 0.6 4000 5.9 66.88 0.9 0.1654 0.0041
33 40 0.6 4000 8.9 141.5 1 0.1858 0.0072
34 40 0.6 6000 3.97 61.71 2.4 0.1838 0.0214
35 40 0.6 6000 5.9 49.9 3.7 0.1731 0.0139
36 40 0.6 6000 8.9 69.55 24.5 0.1941 0.0078
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3. Uncertainty Analysis

This section describes an uncertainty analysis that helps build the relationship between the
machining conditions and machining performances. The goal is to predict the machining performances
beforehand. Here, the machining conditions mean values of parameters such as Ultrasonic Power
(P), Feed Rate (F), Spindle Speed (S), and Tool Diameter (D), as listed in Table 3. The machining
performances mean the values of parameters such as Cutting Force (FC), Tool Wear (TW), Over Cut
Error (OE), and Cylindricity Error (CE), as listed in Table 4. The experimental results shown in Table 4
become the input information for the uncertainty analysis that exhibits the relationships among
machining conditions (P, F, S, and D) and machining performances (FC, TW, OE, and CE).

It is worth mentioning that the relationships can be expressed in terms of some “if . . . then . . . ”
rules [29,30]. Alternatively, one can use possibility distributions or fuzzy numbers (e.g., triangular
fuzzy numbers and trapezoidal fuzzy numbers) [31–34] to represent the uncertainty associated with
each combination of machining condition and performance parameter. Possibility distribution based
analysis has been shown to be effective in quantifying the uncertainty associated with materials’
properties [35–37], surface roughness [38,39], CO2 emissions and alike [40]. A possibility distribution
is a probability-distribution-neutral representation of uncertainty associated with a quantity [31–34].
It is particularly suitable for quantifying the uncertainty when there is a lack of data [37]. As such,
it is appropriate for this particular case. For every given state of machining condition, there are
only 12 sets of data points for each performance variable. The methodology to induce a possibility
distribution from a given set of numerical data points described in [33] is used in this study to quantify
the uncertainty in the performance variable for each state of machining conditions (see Appendix A).

Figure 5a–d shows the results. Figure 5 shows the effect of P on FC, TW, OE, and CE; Figure 6 shows
the effect of F on FC, TW, OE, and CE; Figure 7 shows the effect of S on FC, TW, OE, and CE; Figure 8
shows the effect of D on FC, TW, OE, and CE. The caption of vertical axis in all plots in Figure 5a–d is
the membership values of the respective possibility distributions, which is always a number in the
interval [0, 1]. See [31–33] for more details about the properties of possibility distributions. As seen
in Figure 5a–d, compared to P = 20%, P = 40% exhibits a somewhat better control over Fc, TW and
OE. On the other hand, compared to P = 40%, P = 20% exhibits a somewhat better control over CE.
Having said that, it is also true that neither an increase or decrease of P ensures the performance to a
stipulated range. A very similar trend is seen for the possibility distributions of F, as shown in Figure 6.
Having said that, it is also true that F = 0.1 mm/min helps keep the FC low, as is evident from the
possibility distribution of FC in Figure 6.
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(TW); (c) On Over Cut Error (OE); (d) On Cylindricity Error (CE).
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Figure 7. Effect of spindle speed on the performance parameters (a) On Cutting Force (FC); (b) On Tool
Wear (TW); (c) On Over Cut Error (OE); (d) On Cylindricity Error (CE).

However, (as shown in Figure 7) S = 6000 rpm is effective for having low FC and CE; S = 4000 rpm or
6000 rpm is effective for having low OE. On the other hand, to keep TW to a narrow range, S = 2000 rpm is
the best but S = 4000 also results in low TW.

Referring to Figure 8, D = 5.7 mm ensures low Fc, compared to D = 3.97 mm and 8.7 mm. As far as
a low Tw is concerned, D = 3.97 mm is recommended. As far as a low OE or CE is concerned, D = 8.9 mm
is the best.

The abovementioned uncertainty analysis results in an optimization procedure described in
Table 5. The combinations of machining conditions shown in Table 5 can be used to perform machining.
These combinations will help minimize all the performance parameters.
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Table 5. Optimal machining conditions. 
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4. Concluding Remarks 

(1) This study investigated the effect of the machining conditions on the performance parameters 
for drilling high precision holes in Ti6Al4V using rotary ultrasonic machining. It was found that 
increases or decreases of power did not ensure a specific performance. Low feed is good for 
reducing cutting force and it also ensures low tool wear. High spindle speed is good for having 
low cutting force, and increase in spindle speed reduces cutting force. Low or moderate spindle 
speed is good for reducing tool wear. However, high spindle speed ensures low overcut error 
and low cylindrical error. It was also observed that smaller tool diameter ensures low tool wear, 
and bigger tool diameter ensures low overcut error and cylindrical error. 

(2) This study also depicts the uncertainty associated with the performance parameters for drilling 
in Ti6Al4V by rotary ultrasonic machining using possibility distributions. Finally, the optimal 
machining conditions are identified using possibility distributions, and it can be stated that 
different sets of machining conditions are required to minimize different performance 
parameters. 
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Figure 8. Effect of tool diameter on the performance parameters. (a) On Cutting Force (FC); (b) On Tool
Wear (TW); (c) On Over Cut Error (OE); (d) On Cylindricity Error (CE).

Table 5. Optimal machining conditions.

Minimize P (%) F (mm/min) S (rev/min) D (mm)

FC (N) 40 0.1 6000 5.7
Tw (mg) 40 0.1 4000 3.97
OE (mm) 40 0.1 6000 8.9
CE (mm) 20 0.1 2000 8.9

4. Concluding Remarks

(1) This study investigated the effect of the machining conditions on the performance parameters
for drilling high precision holes in Ti6Al4V using rotary ultrasonic machining. It was found that
increases or decreases of power did not ensure a specific performance. Low feed is good for
reducing cutting force and it also ensures low tool wear. High spindle speed is good for having
low cutting force, and increase in spindle speed reduces cutting force. Low or moderate spindle
speed is good for reducing tool wear. However, high spindle speed ensures low overcut error
and low cylindrical error. It was also observed that smaller tool diameter ensures low tool wear,
and bigger tool diameter ensures low overcut error and cylindrical error.

(2) This study also depicts the uncertainty associated with the performance parameters for drilling
in Ti6Al4V by rotary ultrasonic machining using possibility distributions. Finally, the optimal
machining conditions are identified using possibility distributions, and it can be stated that
different sets of machining conditions are required to minimize different performance parameters.
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Appendix A Inducing Possibility Distributions (Fuzzy Numbers) from Numerical Data

This appendix describes the mathematical procedures applied for inducing the possibility
distributions from the numerical data reported in this paper, as follows.

Let x(t) ∈ <, t = 0, . . . , n − 1 be n data points, as shown in Figure A1.Materials 2017, 10, 1069 12 of 17 
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Let (x(t), x(t + 1)), t = 0, . . . , n − 1, be a point-cloud in the universe of discourse X = [xmin, xmax]
so that xmin < min(x(t)|∀t ∈ {0, . . . , n}) and xmax > max(x(t)|∀t ∈ {0, . . . , n}). Let A and B two square
boundaries so that the vectors of the vertices of A and B (in the anti-clockwise direction) are ((xmin, xmin),
(x, xmin), (x, x), (xmin, x)) and ((xmax, xmax), (x, xmax), (x, x), (xmax, x)), respectively, ∀x ∈ X. As such,
(x, x) is their common vertex of A and B. For example, consider the arbitrary point-cloud shown in
Figure A2. As from Figure A2, the universe of discourse X = [20, 80]. Notice the relative positions of
boxes denoted by A and B in Figure 2. The boxes are connected at their common vertices.
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Let PrA(x) and PrB(x) be two subjective probabilities, wherein PrA(x) and PrB(x) represent the degrees
of chances that the points in the point-cloud are, in A and B, respectively. As such, these functions are
defined by the following mappings:

X→ [0, 1]

x 7→ PrA(x) =

n−1
∑

i=0
Θ(t)

n−1

Θ(t) =

{
1 ((x(t) ≤ x) ∧ (x(t + 1) ≤ x))
0 otherwise

(A1)

X → [0, 1]

x 7→ PrB(x) =

n−1
∑

i=0
Ω(t)

n−1

Ω(t) =

{
1 ((x(t) ≥ x) ∧ (x(t + 1) ≥ x))
0 otherwise

(A2)

The typical nature of the functions defined in Equations (A1) and (A2) are illustrated in Figure 3,
using the information of the point-cloud shown in Figure A2. Note that PrA(x) increases with the
increase in x and the opposite is true for PrB(x). It is worth mentioning that PrA(x) + PrB(x) ≤ 1 for the
point-cloud, though for some cases PrA(x) + PrB(x) = 1 (see Figure 4). This means that PrA(x) + PrB(x)
does not serve the role of “cumulative probability distribution.” A cumulative probability distribution
can however be formulated by using the information of PrA(x) and PrB(x), as shown in Figure A3:
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Consider a mapping that maps x into the minimum of PrA(x) and PrB(x), as follows:

X → [0, a]
x 7→ g(x) = min(PrA(x), PrB(x))

(A3)

In Equation (A3), a = 1, if the point-cloud is a point; otherwise, a < 1. Figure A4 shows the nature
of g(x) for PrA(x) and PrB(x). The area under g(x) is given by:

Q =
∫
X

g(x)dx (A4)
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There is no guarantee that Q = 1. Otherwise, g(x) could have been considered a probability
distribution of the underlying point-cloud. However, a function F(x) can defined, as follows:

[0, a]→ [0, 1]

x 7→ F(x) =

x∫
xmin

g(x)dx

Q

(A5)
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Figure A6 shows the probability distribution Pr(x) underlying F(x) shown in Figure A5. It is 
needless to say that the area under the probability distribution Pr(x) is a unit and Pr(x) remains in the 
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Figure A5. Nature of cumulative probability distribution of a point-cloud.

F(x) can be considered a cumulative probability distribution because max(F(x)) = 1, F(x) ≥ F(z) for
x ≥ z, F(x) ∈ [0, 1], ∀x, z ∈ X. Figure A5 shows the nature of F(x) derived from g(x) shown in Figure A4.
The cumulative probability distribution defined in Equation (A5) produces a probability distribution
Pr(x). Thus, the following formulation holds:

Pr(x) =
dF(x)

dx
(A6)
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Figure A6 shows the probability distribution Pr(x) underlying F(x) shown in Figure A5. It is
needless to say that the area under the probability distribution Pr(x) is a unit and Pr(x) remains in the
bound of [0, 1].

From the induced probability distribution Pr(x), a possibility distribution given by the membership
function µI(x)) can be defined based on the heuristic rule of probability-possibility transformation—that
the degree of possibility is greater than or equal to the degree of probability. The easiest formulation is
to normalize Pr(x) by its maximum value, max(Pr(x)|∀x ∈ X). Therefore,

[0, 1]→ [0, 1]
Pr(x) 7→ µI(x) = Pr(x)

max(Pr(x)|∀x∈X)

(A7)

Figure A7 shows the possibility distribution µI(x) derived from the probability distribution Pr(x)
shown in Figure 6. The shape of the induced probability distribution and the shape of the induced
possibility distribution are identical, as evident from Figures A6 and A7. Other formulations can be
used instead of the formation (A7) as suggested by others.
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However, it is observed that when the point-cloud resembles the point-cloud of a bimodal quantity,
the induced possibility distribution resembles a trapezoidal fuzzy number. In addition, when the
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point-cloud is a point, the induced possibility distribution becomes a fuzzy singleton. Moreover, when
the point-cloud resembles the point-cloud of a unimodal data, the induced probability/possibility
distribution resembles a triangular fuzzy number. To define the membership function of an induced
fuzzy number in the form of a triangular fuzzy number, the following formulation can be sued.

Let u, v, and w be three points in the ascending order in the universe of discourse X, u ≤ v ≤ w
∈ X. Let the interval [u, w] be the support of a triangular fuzzy number and the point v be the core.
The following procedure can be used to determine the values of u, v, and w from the induced fuzzy
number µI(x) (Equation (A7)):

u ≤ v ≤ w ∈ X
u = x (µI(x) = 0∧ µI(x + dx) > 0)
v = x (µI(x− dx) < 1∧ µI(x) = 1)
w = x (µI(x− dx) > 0∧ µI(x) = 0)

(A8)

As defined in (A8), u is the point after which the membership value µI(x) is greater than zero,
v is the point corresponding to the maximum membership value max(µI(x)), and w is the point
from/beyond which the membership value µI(x) again becomes/remains zero. Thus, the membership
function µT(x) of the induced triangular fuzzy number is as follows:

X→ [0, 1]
x 7→ µT(x) = max

(
0, min

( x−u
v−u , w−x

w−v
)) (A9)

It is needless to say that this formation is valid only for the point-cloud exhibiting the nature of
an unimodal quantity.
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